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ABSTRACT
In this paper, we address the problem of ensuring that autonomous

learning agents are in alignment with multiple moral values. Specif-

ically, we present the theoretical principles and algorithmic tools

necessary for creating an environment where an agent is assured of

learning a behaviour (or policy) that corresponds to multiple moral

values while striving to achieve its individual objective. To address

this value alignment problem, we adopt the Multi-Objective Rein-

forcement Learning framework and propose a novel algorithm that

combines techniques fromMulti-Objective Reinforcement Learning

and Linear Programming. In addition to providing theoretical guar-

antees, we illustrate our value alignment process with an example

involving an autonomous vehicle. Here, we demonstrate that the

agent learns to behave in alignment with the ethical values of safety,

achievement, and comfort. Additionally, we use a synthetic multi-

objective environment generator to evaluate the computational

costs associated with guaranteeing ethical learning in situations

with an increasing numbers of values.

KEYWORDS
Value Alignment, Moral Decision Making, Multi-Objective Rein-

forcement Learning

1 INTRODUCTION
The challenge of guaranteeing that autonomous agents act value-
aligned (in alignment with human values) [31, 36], is becoming

critical as agents increasingly populate our society. Hence, it is

of great concern to design ethically-aligned trustworthy AI [12]

capable of respecting human values [15, 19] in a wide range of

emerging application domains (e.g., social assistive robotics [9],

self-driving cars [17], conversational agents [11]).

Indeed, there has been a rising interest, in both the Machine

Ethics [30, 41] and AI Safety [3, 20] communities, in applying Rein-

forcement Learning (RL) [37] to tackle the critical problem of value
alignment. A common approach in these two communities to deal

with the problem, is to design an environment along with incentives

to behave ethically. These incentives are provided by exogenous

reward functions (e.g., [1, 4, 22, 24, 25, 40]). First, these reward
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functions are specified from some ethical knowledge. Afterwards,

rewards are incorporated into an agent’s learning environment

through an ethical embedding process. However, in such learning

approaches, the ethical knowledge always comes from a single

moral value. Nonetheless, most of the Ethics literature considers

that human societies share several moral values, which are ordered

based on how they are preferred (i.e., by considering first what

they value most) [6, 14, 29, 38]. This ordered collection of values is

often referred to as a value system. In summary, to the best of our

knowledge, guaranteeing that an agent learns to behave aligned

with a value system remains an open problem, despite being the

most common case in our society [14].

Against this background, the objective of this work is to auto-

mate the design of ethical environments where an agent learns to

behave in alignment with a value system while trying to pursue its

individual objective. We do so by assimilating the agent’s individual

objective to the moral value of achievement1, which is embedded
in the value system at hand and prioritised with respect to the

rest of moral values. With this aim, we adhere to the stance that

“the end doesn’t justify the means” and claim that achievement

should always be ranked below higher ethical standards (such as

non-maleficence) within the value system.

In this paper, we tackle the value alignment problem by propos-

ing a novel ethical embedding process in a reinforcement learning

context. From a given (initial) social value system, we first enrich

it by including the achievement moral value that encapsulates the

agent’s individual objective. Next, our ethical embedding shapes

the learning environment so that it guarantees that an agent will

learn an ethical behaviour that is aligned with the (enriched) value

system. As we are considering multiple values, we refer to this

ethical embedding as the Multi-Valued Ethical Embedding. Notice,

though, that to ease readability, we will simply refer to it as ethical

embedding.

Our contributions are three-fold. First, the formalisation of the

Multi-Valued Ethical Embedding problem within the framework

of Multi-Objective Markov Decision Processes (MOMDP) [27, 32].

This formalisation models moral values as ethical objectives within

1
Although achieving an individual goal can naturally be related to the moral value

of diligence, we advocate for achievement because Schwartz defines it as based on

competence and personal success when including it in his list of 10 Basic Human

Values [33].
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a so-called Multi-Valued Markov Decision Process, an instance of

a Multi-Objective MDP. Moreover, our formalisation paves the

way for our definition of ethical policies, which characterise the

behaviour of an agent aligned with a value system (i.e., aligned with

the moral values and respects the preferences over those values).

Finally, since considering multiple objectives does require specific

(more complex) algorithms for the learning agent, we reformulate

the ethical embedding problem as finding the single-objective MDP

that embeds all ethical objectives (so that the optimal policies in this

MDP are ethical). To this end, we follow the prevailing approach

(e.g.[4, 40]) of applying a linear scalarisation function that weighs
the rewards related to each ethical objective.

Secondly, we propose a novel algorithm to solve the ethical

embedding problem that generalises the single-value ethical em-

bedding process in [25]. Our novel algorithm combines recent devel-

opments in the Multi-Objective Reinforcement Learning literature

(to compute ethical policies) together via linear programming (to

compute how to weight ethical objectives). Figure 1 outlines this

algorithm, which transforms an input multi-objective environment

M into a single-objective ethical environment M∗. It is in this

single-objective environment where the agent can thus apply a

standard reinforcement learning method and it is guaranteed that

it will learn a policy aligned with the value system at hand.

Thirdly, we illustrate our ethical embedding process by applying

it to a novel (and simple) autonomous car scenario which includes

three moral values (safety, achievement and comfort). These values

have been chosen inspired from those described in [10]. We show

that indeed an agent learns to behave in alignment with a value

system with the aid of a simple Q-learning algorithm. However,

since the above-mentioned values only represent a subset of those

proposed by Caballero et al., we perform an empirical analysis of

the computational cost to pay to guarantee ethical learning when

considering an increasing number of values. We do so with the aid

of the synthetic multi-objective environment generator from [23].

Our analysis indicates that our algorithm manages to do the ethical

embedding of environments with up to seven objectives and almost

10
6
states in less than five hours. However, we also observe that its

computational cost exponentially grows with the number of values

considered.

Next, Section 2 formally introduces our ethical embedding prob-

lem and the type of environments that we target. Section 3 details

our algorithm for building ethical environments. Section 4 details

our empirical analysis. Finally, Section 5 concludes and sets paths

to future work.

2 THE MULTI-VALUED ETHICAL EMBEDDING
PROBLEM

In this section we propose a formalisation of the ethical embedding
problem that considers multiple moral values. As previously intro-

duced, our main goal is to design an environment that guarantees

that an agent learns to behave ethically, that is, in alignment with

a system of multiple moral values. In the Ethics literature, moral

values (also called ethical principles) express the moral objectives

worth striving for [38]. It is common to consider the set of moral

values together with preferences among them [8, 21, 34]. Here, we

define a Value System in the vein of [35]:

Definition 1. A value systemV𝑆 is a tupleV𝑆 = ⟨V, ⪰⟩, where:
V = {𝑣1, . . . , 𝑣𝑛} stands for a non-empty set, i.e. 𝑛 > 0 moral values;
and ⪰ is a total order over the moral values of V . If 𝑣 ⪰ 𝑣 ′ we say
that 𝑣 is more preferred than 𝑣 ′.

As mentioned in the Introduction and shown in Figure 1, we

consider that we are given V𝑆0 –the value system shared by a

human society to align with– and the agent’s individual objective.

Then, we represent this objective as the achievement moral value

𝑣𝑎 and embed it within V𝑆0 to produce V𝑆 . However, we impose

that 𝑣𝑎 must always be ranked below higher ethical standards
2
in

V𝑆 . In other words, there is always some value 𝑣 inV𝑆 such that

𝑣 ⪰ 𝑣𝑎 .
Afterwards, we can transform the ethical knowledge in the

value system V𝑆 into ethical rewards of a particular case of Multi-

Objective Markov Decision Processes (MOMDP) [28]. We can do

so following the approach of [26], as values evaluate actions as

being ‘right’/praiseworthy or ‘wrong’/blameworthy with respect

to a given value
3
, and therefore, we can assign positive rewards

to praiseworthy actions and negative rewards to the blameworthy

ones. We refer to the resulting MOMDP as Multi-Valued MDPs.

Next we provide the corresponding formal definitions.

MOMDPs formalise sequential decision making problems in

which we need to ponder several objectives. Formally:

Definition 2. A (finite)4 𝑛-objective Markov Decision Process
(MOMDP) is defined as a tuple ⟨S,A, ®𝑅,𝑇 ⟩ where S is a (finite) set of
states, A(𝑠) is the set of actions available at state 𝑠 , ®𝑅 = (𝑅1, . . . , 𝑅𝑛)
is a vectorial reward function with each 𝑅𝑖 as the associated scalar
reward function to objective 𝑖 ∈ {1, . . . , 𝑛}, 𝑇 is a transition func-
tion. Each MOMDP has its associated multi-dimensional state value
function ®𝑉 = (𝑉1, . . . ,𝑉𝑛) in which each 𝑉𝑖 is the expectation of the
obtained sum of 𝑖-objective rewards.

In this work we consider a particular type of MOMDP (M),

which encodes ethical rewards in accordance with a value system

V𝑆 . In particular, each component in the corresponding vectorial

reward function ®𝑅 characterises each moral value in V𝑆 . Since
the performance of an action cannot simultaneously promote and

demote the samemoral value, the corresponding reward component

will be simply positive if the action is praiseworthy, negative if it

is blameworthy, and 0 if it is neutral to the value. Moreover, the

moral value of achievement 𝑣𝑎 —which corresponds to the agent’s

individual objective— is mapped to one reward 𝑅𝑎 . We refer to this

family of MOMDPs as Multi-Valued MDPs. Formally:

Definition 3 (Multi-Valued MDP). Given: i) a value system
V𝑆 = ⟨V, ⪰⟩ with 𝑛 values including the achievement value 𝑣𝑎
(which cannot be prioritised first in ⪰); and ii) an MOMDP

M = ⟨S,A, (𝑅1, . . . , 𝑅𝑛),𝑇 ⟩, (1)

2
In the case of bioethics, the highest ethical standards are considered to be autonomy,

beneficence, non-maleficence, and justice [7]. Moreover, although ethicists consider

them to be “prima facie” of equal importance, depending on the specific application

context, it is common to prioritise some values over others [16].

3
For example, considering ecology, protecting a forest is praiseworthy while defor-

estation is blameworthy.

4
Thorough the paper we refer to a finite Multi Objective MDP simply as an MOMDP.

We also assume that policies are stationary.



Figure 1: Multi-Valued Ethical Embedding process for environment design (from left to right): partial convex hull computation,
ethical policy extraction, and solution weight vector computation. Rectangles stand for objects whereas rounded rectangles
correspond to processes.

we say thatM is a Multi-Valued MDP if and only if each 𝑅𝑖:1,...,𝑛 :

S × A → R is an ethical reward function that rewards positively
the performance of actions evaluated as praiseworthy (𝑅𝑖 > 0), and
rewards negatively the performance of actions evaluated as blame-
worthy (𝑅𝑖 < 0) for moral value 𝑣𝑖 ⊆ V . Furthermore, we denote
as 𝑅𝑎 ∈ (𝑅1, . . . , 𝑅𝑛) the reward aligned with the agent’s individual
objective (i.e., with value 𝑣𝑎)

Example 1. LetV𝑆 = ⟨V, ⪰⟩ be a value system with three values
ordered 𝑣3 ⪰ 𝑣1 ⪰ 𝑣2, where 𝑣1 or 𝑣2 (but not 𝑣3) correspond to the
achievement value. Then, we consider the associated Multi-Valued
MDP M = ⟨S,A, (𝑅1, 𝑅2, 𝑅3),𝑇 ⟩ specified by V𝑆 such that 𝑅1 is
defined according to 𝑣1, 𝑅2 to 𝑣2 and 𝑅3 to 𝑣3.

Having the Multi-Valued MDP M (see Figure 1), we can now

move forward with the value alignment process by addressing the

ethical embedding problem: that of ensuring that an agent learns to

behave ethically. As ethical embedding constitutes the main focus

of this work, the rest of the paper is dedicated to formalise and

solve it.

In order to formalise the ethical embedding problem, we must

first define ethical behaviour. We do so by defining an ethical pol-

icy in the context of a Multi-Valued MDP M and its associated

value system V𝑆 . As the rewards in M are defined according to

the values in V𝑆 , the policies learned in M will be naturally value-

aligned. However, if we consider that some values are preferred

over others in the value system, some policies (those performing

praiseworthy actions w.r.t important values) can be considered to

be more value-aligned than others (those performing praisewor-

thy actions w.r.t less important values). In this manner, we define

an ethical policy to be the most value-aligned policy. We resort

to lexicographic ordering [39] to give more importance to those

rewards obtained for the most preferred values. (Example 2 below

illustrates how lexicographic ordering handles value preferences

to order alternative value-aligned policies, hence allowing us to

determine the ethical policy.) Formally, an ethical policy maximises

ethical rewards following the lexicographic ordering induced by

V𝑆 over the rewards of a Multi-Valued MDP:

Definition 4 (Ethical policy). LetM be a Multi-Valued MDP
with a value system V𝑆 . Let 𝑙𝑉𝑆 be the lexicographic ordering of
objectives induced by ordering ⪰ of the value systemV𝑆 . We say that
a policy 𝜋∗ is an ethical policy in M if and only if its value vector
®𝑉 𝜋∗ is optimal with respect to the lexicographic ordering 𝑙𝑉𝑆 (in short,
it is 𝑙𝑉𝑆 -optimal).

Example 2. Considering the value system V𝑆 and the Multi-
Valued MDP M from Example 1, the order 𝑣3 ⪰ 𝑣1 ⪰ 𝑣2 induces
the lexicographic order 𝑙𝑉𝑆 = ⟨3, 1, 2⟩. Now, let us assume that M
only has a single state 𝑠 , four possible actions, and the following re-
wards: ®𝑅(𝑠, 𝑎1) = (5, 4,−1), ®𝑅(𝑠, 𝑎2) = (1,−2, 8), ®𝑅(𝑠, 𝑎3) = (4, 3, 8),
®𝑅(𝑠, 𝑎4) = (5, 3, 2). Then, 𝑙𝑉𝑆 prioritises the values of each action
as: (4, 3, 8) ⪰ (1,−2, 8) ⪰ (5, 3, 2) ⪰ (5, 4,−1) because 𝑎3 and 𝑎2
accumulate more rewards for 𝑣3 (8) than 𝑎4 (2) (and 𝑎4 more than 𝑎1)
and although both 𝑎3 and 𝑎2 accumulate the same rewards for 𝑣3, 𝑎3
accumulates more rewards for 𝑣1 (the second most preferred value)
than 𝑎2. Hence, 𝑎3 ⪰ 𝑎2 ⪰ 𝑎4 ⪰ 𝑎1 and 𝜋 (𝑠) = 𝑎3 is the ethical
policy (i.e., optimal with respect to the lexicographic ordering 𝑙𝑉𝑆 ).

Ethical policies are the most aligned policies with the value sys-

tem at hand, and hence, those we want to incentivise an agent to

learn. However, since learning in a multi-objective environment

can be complex, we aim at designing a simpler learning environ-

ment where the agent can learn with single-objective reinforcement

learning algorithms. Thus, we tackle the multi-valued ethical em-

bedding problem by transforming a Multi-Valued MDPM into a

single-objective MDP M∗ (see Figure 1). We do it by scalarising

the vectorial value function ®𝑉 of M by means of a scalarisation

function 𝑓𝑒 , which we call the embedding function. After applying
𝑓𝑒 we obtain a new environment wherein the agent’s problem be-

comes to learn a policy that maximises 𝑓𝑒 ( ®𝑉 ), a single-objective
problem. In our case, we assume that 𝑓𝑒 is linear

5
, and thus we

say that we apply a linear embedding or a weighting. Hereafter, we
refer to any linear scalarisation function simply as a weight vector

5
Despite having some limitations, linear scalarisation functions are widely used in the

MORL literature because they guarantee that the Bellman equation will be preserved

in the scalarised MDP [27].



®𝑤 . Any policy that maximises 𝑓𝑒 ( ®𝑉 ) = ®𝑤 · ®𝑉 is thus optimal in the

MDP ⟨S,A, ®𝑤 · ®𝑅,𝑇 ⟩, and we refer to it as a ®𝑤-optimal policy.

Consequently, given a Multi-Valued MDPM, our aim is to find a

scalarisation function that guarantees that it is only possible for an

agent to learn ethical policies over the scalarised MOMDP (M∗, a
single-objective MDP). Moreover, we require that ®𝑤 = (𝑤1, . . . ,𝑤𝑛)
is a weight vector with all weights𝑤1, . . . ,𝑤𝑛 > 0 to guarantee that

the agent is taking into account all rewards (i.e., all moral values).

Therefore, we can formalise the ethical embedding problem as

that of computing a weight vector ®𝑤 that transforms an initial

environment into another one wherein an agent is guaranteed to

behave ethically. Formally:

Problem 1 (Ethical embedding problem). Let M =

⟨S,A, (𝑅1, · · · , 𝑅𝑛),𝑇 ⟩ be a Multi-Valued MDP with a value system
V𝑆 . The multi-valued ethical embedding problem is that of finding the
weight vector ®𝑤 with positive weights such that all optimal policies
in the scalarised MDP M∗ = ⟨S,A,∑𝑛𝑖=1𝑤𝑖𝑅𝑖 ),𝑇 ⟩ are also ethical
in M (as defined in Def. 4).

Any weight vector ®𝑤 with positive weights that guarantees that

all optimal policies (with respect to ®𝑤 ) are also ethical is a solution

of Problem 1. Moreover, we take an environment-designer approach

and assume that incentivising the agent with ethical rewards has

a cost for the designer. Thus, we aim at finding solutions ®𝑤 that

have the smallest possible weights (i.e., the weight vector ®𝑤 with

the minimal scalarised accumulated rewards for the agent).

Example 3. Considering the lexicographic ordering 𝑙𝑉𝑆 and the
Multi-Valued MDP M from Example 2, the weight vector ®𝑤 = (10, 1,
100) guarantees that the ethical policy is optimal. Indeed: ®𝑤 · (4, 3, 8) =
843 > ®𝑤 · (1,−2, 8) = 808 > ®𝑤 · (5, 3, 2) = 253 > ®𝑤 · (5, 4,−1) = −46.
Yet, there exist other solutions with smaller weights, such as ®𝑤 ′ =

(3, 1, 4).

2.1 Solvability of MVEE Problems
In this section we prove that Problem 1 is solvable for any finite

Multi-Valued MDP. First, we need to prove an intermediate result:

in finite MOMDPs, any lexicographic ordering can be expressed as

a linear scalarisation function. Formally:

Theorem 1. Given a finite 𝑛-objective Markov Decision Process
(MOMDP) M = ⟨S,A, ®𝑅,𝑇 ⟩ and a lexicographic ordering 𝑙 , there
exists some weight vector ®𝑤 with strictly positive weights𝑤𝑖 > 0 ∀𝑖
for which every policy 𝜋 that maximises 𝑙 , 𝜋 is also ®𝑤-optimal.

Proof. We prove it by induction. First we consider a 2-objective

MDP in which the lexicographic ordering is 𝑙2 = ⟨2, 1⟩. We consider

a weight vector of the form ®𝑤∗ = (1,𝑤2). Let 𝜋 be a policy that is

(0, 1)-optimal (i.e., policies that are optimal for the weight vector

(0, 1)). Then, let us define the weight𝑤2 as follows:

𝑤2 = max

𝑠
max

𝜌∉Π2

𝑉
𝜌

1
(𝑠) −𝑉 𝜋

1
(𝑠)

𝑉 𝜋
2
(𝑠) −𝑉 𝜌

2
(𝑠)

+ 𝜖,

where 𝜖 > 0 and Π2 is the set of (0, 1)-optimal policies. For

such weight vector ®𝑤∗ = (1,𝑤2), any ®𝑤∗-optimal policy is neces-

sarily (0, 1)-optimal. Furthermore, since𝑤1 = 1 > 0, such weight

vector guarantees that among two (0, 1)-optimal policies, the one

with more value in objective 1 will be preferred. Therefore, any

®𝑤-optimal policy is also a policy that maximises the lexicographic

ordering 𝑙2, as desired.

By induction, let us assume that we can create a linear scalarisa-

tion function for any lexicographic ordering of up to𝑛−1 objectives.
Now we consider an MOMDP M with 𝑛 objectives and a lexico-

graphic ordering 𝑙𝑛 of the 𝑛 objectives. Without loss of generality,

we consider that objective 𝑛 is the most preferred one in 𝑙𝑛 . Con-

sider now the lexicographic 𝑙 ′𝑛 ordering without objective 𝑛, which

orders the other 𝑛−1 objectives. By the induction hypothesis, there

exists a weight vector ®𝑤 ′
for which any ®𝑤 ′

-optimal policy is 𝑙 ′𝑛-
optimal. Hence, we can re-express the vectorial reward function of

M as:

(
𝑛−1∑︁
𝑖=1

𝑤 ′
𝑖𝑅𝑖 , 𝑅𝑛) .

In other words, we can re-express MOMDPM as a 2-objective

MDP that preserves the lexicograhpical ordering. Since we have

already proven that we can find a weight vector that preserves the

lexicographic ordering for a 2-objective MDP, we can find it as well

for M, as desired. □

Now we are ready to prove that Problem 1 is solvable.

Theorem 2. LetM = ⟨S,A, (𝑅1, · · · , 𝑅𝑛),𝑇 ⟩ be a Multi-Valued
MDP with a value system V𝑆 . There exists a vector ®𝑤𝐸 of positive
weights 𝑤𝑖 > 0 for which every optimal policy in the MDP M′ =
⟨S,A,∑𝑛𝑖=1𝑤𝑖𝑅𝑖 ),𝑇 ⟩ is also an ethical policy inM.

Proof. Direct from Theorem 1, since any ethical policies max-

imises some lexicographic ordering 𝑙 . □

To finish this section, there is an important remark about Theo-

rem 1 with respect to the relationship between lexicographic orders

and linear scalarisation functions. Given an MOMDPM, its convex
hull 𝐶𝐻 (M) [18] is defined as the set of policies that are strictly

better than any other policy for some linear scalarisation function

(i.e., some weights). A natural conclusion of Theorem 1 is that the

convex hull of any finite MOMDP constains all policies that are

optimal for some lexicographic ordering. Formally:

Corollary 1. Given a finite 𝑛-objective Markov Decision Process
(MOMDP)M = ⟨S,A, ®𝑅,𝑇 ⟩, then its set of policies optimal for any
lexicographic ordering is a subset of its convex hull 𝐶𝐻 (M).

3 SOLVING THE MVEE PROBLEM
In this section we explain how to compute a solution weight vector

for the multi-valued ethical embedding problem (Problem 1). Such

weight vector will allow us to transform our Multi-Value MDP M
into a (single objective) MDPM∗ by combining the ethical rewards

derived from the value system V𝑆 into a single reward in M∗, the
environment in which the agent learns an ethical policy.

In short, our algorithm to solve the MVEE problem, the so-called

Ethical Embedding algorithm, performs the following three steps

(see Figure 1):

(1) Computation of the partial convex hull of a Multi-ValuedMDP

M containing the subset 𝑃 of policies that are optimal for

some weight vector with positive weights.

(2) Extraction of one ethical policy 𝜋∗ from the partial convex

hull 𝑃 .



(3) Computation of the solution weight vector : use the extracted
ethical policy 𝜋∗ to find a weighting ®𝑤 of the rewards in M
to yield a single-objective, ethical environmentM∗ wherein
the learning of ethical policies is guaranteed.

The following three subsections provide the theoretical ground

for computing each step of our algorithm. After that, we present in

Subsection 3.4 the algorithm as a whole.

3.1 Computation of the Partial Convex Hull
To compute the specific weight vector ®𝑤 that solves Problem 1,

we resort to the multi-objective RL concept of convex hull. Recall
that, given a MOMDP M, its convex hull 𝐶𝐻 (M) [18] contains
those policies that are strictly better than any other policy for some

linear weights. By Theorem 2 and Corollary 1, we know that the

convex hull of aMulti-ValuedMDP contains all ethical policies since

we can express them as optimal for some linear combination of

weights. Therefore, the convex hull allows us to compute the weight

vector necessary to guarantee that all optimal policies are ethical.

Furthermore, again from Theorem 2, we only need to compute the

partial convex hull 𝑃 of policies that are optimal for some positive

weights (i.e., ®𝑤 such that𝑤𝑖 > 0 for all 𝑖).

Importantly, we can benefit from state of the art algorithms

(such as Convex Hull Value Iteration [5], which compute the whole

convex hull of an MOMDP), to compute only the region of interest

from the convex hull.

3.2 Extraction of an ethical policy
After computing the partial convex hull 𝑃 ⊆ 𝐶𝐻 (M), we are ready
to perform the second step of our algorithm, which is the extraction

of the ethical policy (together with its value vector) from 𝑃 .

To find the ethical policy among the policies in 𝑃 we must order

𝑃 lexicographically. To order the policies, we need to follow the

total ordering established by the value system V𝑆 , which allows

us to select the ethical policy. Formally, let 𝑃𝑙 be the sequence of

policies of the partial convex hull ordered by the lexicographic

ordering 𝑙𝑉𝑆 induced byV𝑆 :

𝑃𝑙 � (𝜋𝑘 )𝐾𝑘=1 such that ®𝑉 𝜋𝑖 ⪰ ®𝑉 𝜋𝑖+1 , (2)

where 𝐾 is the number of policies in 𝑃 . Let 𝑃𝑙𝑘 denote the 𝑘th

element of 𝑃𝑙 . Then, we can extract an ethical policy 𝜋∗ from 𝑃 by

computing 𝑃𝑙1 , the first element of 𝑃𝑙 .

Notice that for any policy 𝜋 in the positive partial convex hull

𝑃 , we know its value ®𝑉 𝜋 because we obtained it when computing

the partial convex hull. Thus, computing 𝑃𝑙 requires only a sorting

operation.

3.3 Computation of the Solution Weight Vector
To compute the solution weight vector (the scalarisation function),

we use the computed partial convex hull (step 1) and the reference

ethical policy 𝜋∗ (step 2). The solution weight vector ( ®𝑤𝑒 ) will
guarantee that the ethical policies in the initial environmentM are

the optimal policies in the ethical (single-objective) environment

M∗ (see Figure 1). In other words, the scalarisation function with

weight vector ®𝑤𝑒 will help us create an ethical environment, as

a single-objective MDP, wherein the agent will learn an ethical

policy.

Next we show how to cast the problem of finding the solution

weight vector ( ®𝑤𝑒 ∈ R𝑛 , where 𝑛 > 0 is the number of moral values)

as an optimisation problem that we solve with linear programming.

Consider a Multi-Valued MDP M1 with a single initial state 𝑠0,

with ethical policy 𝜋∗ and partial convex hull 𝑃 . Our goal is to find

the smallest (non-negative) values for the weight vector ®𝑤𝑒 of the
scalarised function ®𝑤𝑒 · ®𝑉 𝜋 , so that the ethical policy 𝜋∗ ofM1 is

optimal inM∗. This amounts to solving the following LP:

Min. ®𝑤𝑒 · ®𝑉 𝜋∗ (𝑠0) (3)

s.t. ®𝑤𝑒 ·𝑉 𝜋∗ (𝑠0) ≥ ®𝑤𝑒 ·𝑉 𝜋 (𝑠0) + 𝜖 ∀𝜋 ∈ 𝑃−𝜋∗, (4)

𝑤𝑖 > 0 ∀𝑖, (5)

𝑤𝑎 = 1, (6)

where𝑤𝑖 ∈ R+ are the decision variables, 𝜖 > 0 is an arbitrary

small positive number, 𝑃−𝜋∗ is the subset of the partial convex hull
𝑃 without 𝜋∗, and 𝑤𝑎 is the weight corresponding to the agent’s

individual objective. The objective function of Equation 3 indicates

that we aim at minimising the scalarised value of the ethical policy

(by minimising the values in ®𝑤𝑒 ). The constraint in equation 4 en-

sures that the ethical policy 𝜋∗ is an optimal policy for the scalarised

function ®𝑤𝑒 · ®𝑉 𝜋 ofM∗. Constraint 5 ensures that the weights in
®𝑤𝑒 are positive, and constraint 6 ensures that the rewards for the

individual objective are not modified.

In general, consider now that the Multi-Valued MDP has a set of

initial statesS0. Thenwemust change our LP above as follows. First,

we need to change the objective function in Equation 3. For that, we

must consider that each initial state 𝑠𝑖 ∈ S0 has a probability 𝑝𝑖 of

occurring, and therefore minimise the expectation of the scalarised

value of the initial states: E[ ®𝑤𝑒 · ®𝑉 𝜋∗ (𝑠0)]. Second, we must expand

constraint 4 to ensure that the ethical policy 𝜋∗ will be optimal for

each initial state in S0, and not only for a specific 𝑠0.

The LP above contains the following number of decision vari-

ables and constraints: 𝑛 decision variables (the 𝑛 ethical weights of

®𝑤𝑒 ); and |𝑆0 | · ( |𝑃 | − 1) constraints.

3.4 An Algorithm for Designing Ethical
Environments

We now have all the tools required to solve Problem 1, and hence

build an ethical environment where the learning of ethical policies

is guaranteed. Algorithm 1 implements the ethical embedding pro-

cess and receives as an input both a Multi-Valued MDP M and its

corresponding value system V𝑆 . Then, it starts in line 1 by com-

puting the partial convex hull 𝑃 ⊆ 𝐶𝐻 (M) of the input M; and

then in line 2 it obtains the ethical policy 𝜋∗ out of those in the

partial convex hull 𝑃 . Thereafter, in line 3 our weighting process

searches, within 𝑃 , for an ethical weight vector ®𝑤𝑒 that solves the
Linear Program in Eqs. 3 - 6 (see Subsection 3.3). For the obtained

weight vector ®𝑤𝑒 , all optimal policies of the single-objective MDP

M∗ = ⟨S,A, ®𝑤𝑒 · ®𝑅,𝑇 ⟩ are ethical. In other words, such weight

vector solves the ethical embedding problem (Problem 1). Finally, it

returns the MDP M∗ in line 4.

The computational cost of the algorithm mainly resides in com-

puting the partial convex hull of an MOMDP. The Convex Hull



Algorithm 1 Ethical Embedding

Input: Multi-Valued MDPM = ⟨S,A, ®𝑅,𝑇 ⟩, Value system
V𝑆 = ⟨V, ⪰⟩.

1: Compute 𝑃 ⊆ 𝐶𝐻 (M) the positive partial convex hull ofM.

2: Extract 𝜋∗ the ethical policy within 𝑃 by computing Eq. 2 ac-

cording to the ordering ⪰ inV𝑆 .
3: Find a value for ®𝑤𝑒 that solves the Linear Problem of Eqs. 3 - 6.

4: return ethical MDPM∗ = ⟨S,A, ®𝑤𝑒 · ®𝑅,𝑇 ⟩.

Value Iteration algorithm requires𝑂 (𝑛 ·𝑙𝑜𝑔 𝐾) times what its single-

objective counterpart [5, 13] requires, where 𝐾 is the number of

policies in the convex hull. In our case this number will be 𝑘′ ≤ 𝐾

since we are only computing the positive half of the convex hull.

Notice that the second step of our algorithm, solving Eq. 2, is a

sorting operation because we already have calculated ®𝑉 𝜋 for ev-

ery 𝜋 ∈ 𝑃 . Finally, the third step amounts to solving an LP with

|𝑆0 | · (𝑘′ − 1) constraints.
To finish, it is important to remark that the convex hull contains

all policies that are optimal for any given lexicographic ordering

(Theorem 1). Thus, in case that there was some change in the

ordering of values of a given value systemV𝑆 , our algorithm would

only need to re-compute steps 2 and 3.

4 EXPERIMENTAL ANALYSIS
The purpose of this section is two-fold: to illustrate our process for

designing an ethical environment (see Figure 1), and to perform an

empirical analysis of the computational cost to pay to guarantee

ethical learning. First, due to the lack of benchmark reinforcement

learning environments that consider several moral values, we pro-

pose a novel (and simple) autonomous car environment which,

inspired by [10], includes the moral values of safety, achievement,

and comfort. Second, since Caballero et al. characterise further

potential values, and because environments in the literature with

more than three objectives hardly exist [18], we resort to a syn-

thetic multi-objective environment from [23] called WalkRoom.

With WalkRoom, we analyse the cost of applying our ethical em-

bedding process to environments with an increasing number of

values.

4.1 Multi-Valued Autonomous Car Environment
Figure 2a depicts the Multi-Valued Autonomous Car environment.

The learning car agent (C) aims at reaching its destination (X area)

while promoting safety by avoiding running over crossing pedes-

trians (P) and while avoiding bumpy (square) areas for the sake

of comfort. Thus, if we consider a value system that prioritises

safety (𝑣𝑠 ) over comfort (𝑣𝑐 ) over achievement (𝑣𝑎), then we have

𝑣𝑠 ⪰ 𝑣𝑐 ⪰ 𝑣𝑎 .

4.1.1 Multi-Valued MDP specification. We define a Multi-Valued

MDP M for the environment with the corresponding vectorial

reward function ®𝑅 = (𝑅𝑎, 𝑅𝑐 , 𝑅𝑠 ), with each reward corresponding

to one of the values of the value system. Now we specify each

element of the Multi-Valued MDP tuple ⟨S,A, ®𝑅,𝑇 ⟩:

States: States are fully observable by the agent and contain its own

position and the current position of the two pedestrians.

Actions: The autonomous car action set is: to move up, left, or

right, and with speed 0, 1, or 2 (the speed being the number of cells

that leaps forward in each time step).

Rewards: The reward functions are defined such that 𝑅𝑎 = 14 to

reward the car reaching its destination, but 𝑅𝑐 = −10 and 𝑅𝑠 =

−10 to punish blameworthy actions of running into pedestrians or

bumpy areas respectively (in any other cases, 𝑅𝑎 = −1, 𝑅𝑐 = 𝑅𝑠 = 0).

The reward functions of safety 𝑅𝑠 and comfort 𝑅𝑐 can only have

nonpositive values, so we expect an ethical policy to accumulate 0

rewards of both 𝑅𝑠 and 𝑅𝑐 .

Transition probabilities: Finally, there is also a source of stochas-
ticity in the environment: pedestrians. Pedestrians always move

counter-clockwise and can only walk through red (representing

walkable street) or blue cells (representing crosswalks) in the map.

However, they decide randomly (with same probability) whether

to cross through the crosswalk at their left or the one in front.

Also, there is one red walkable cell in which with a 50% probability

pedestrians may decide to stop for one time-step. These two factors

make their behaviour less predictable for the learning agent.

4.1.2 Building the ethical environment. We now apply Algorithm

1 to design an ethical environment M∗ for the Multi-Valued Au-

tonomous Car Environment.

1. Partial convex hull computation: Considering the Multi-

Valued MDPM, we compute its partial convex hull 𝑃 ⊆ 𝐶𝐻 (M).
Figure 2c depicts the resulting 𝑃 for the initial state 𝑠0, 𝑃 is com-

posed of 14 different policies.

2. Extraction of the ethical policy: We order the policies of 𝑃

by following the ordering 𝑣𝑠 ⪰ 𝑣𝑐 ⪰ 𝑣𝑎 and pick the first policy

as the ethical policy 𝜋∗, which is highlighted with a green star in

Figure 2c. Notice that 𝜋∗ is the only policy that maximises both

safety and comfort ®𝑉 𝜋∗ = (𝑉𝑎,𝑉𝑐 ,𝑉𝑠 ) = (6, 0, 0) because when the

agent follows 𝜋∗ it is capable of reaching its destination without

running over any pedestrian nor any bumpy area.

3. Computation of the scalarisation function: Line 3 in Algo-

rithm 1 computes the weight vector ®𝑤𝑒 for which 𝜋∗ is the only
optimal policy of 𝑃 , by solving the linear program in Eqs. 3-6. This

amounts to solve a linear program in which the objective function

is to minimise the scalarised value of the ethical policy. By solving

it, we find that if ®𝑤𝑒 = (1, 0.75, 0.55), then 𝜋∗ becomes the only

optimal policy inM∗. Hence, Algorithm 1 returns a single objective

MDPM∗ whose scalarised reward ®𝑤𝑒 · ®𝑅 incentivises an agent to

learn the ethical policy 𝜋∗.

4.1.3 Learning in the ethical environment. As expected, an agent

can easily converge to the optimal policy 𝜋∗ when learning within

the ethical environmentM∗, even if it applies a basic single-objective
reinforcement learning algorithm such as tabular Q-learning.

Figure 2b plots the rewards per episode accumulated by a Q-

learning agent, which stabilise at ®𝑉 𝜋∗ = (6, 0, 0), the values of
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Figure 2: (a) A possible initial state of the Multi-Valued Autonomous Car Environment. (b) Evolution of the accumulated
rewards per episode that the learning agent obtains in the ethical environment. Horizontal straight lines mark convergence
values for an ethical policy. (c) Convex hull of the Multi-Valued Autonomous Car Environment.

ethical policy 𝜋∗. For reference, the policy that just maximises the

individual objective obtains a value of (10, -20, -7.5), highlighted

with an orange triangle in Figure 2c. Thus, by behaving ethically the

agent completely eliminates the accumulation of negative rewards

in terms of safety and comfort (from -20 to 0, and from -7.5 to 0), at

the cost of decreasing its individual rewards (from 10 to 6).

4.2 Synthetic Environment
In this section, we analyse the computational cost of our MVEE in

environments as the number of moral values increases with the

aid of a synthetic environment generator from the literature, Walk-

Room [23]. Walkroom is modelled as an n-dimensional grid-world

in which the agent can move in any of the 𝑛 dimensions towards

several goal positions. It can be instantiated with an arbitrary num-

ber of dimensions, and an arbitrary grid size per dimension. Any

time the agent moves along 𝑖 , it receives a penalty for objective 𝑖 .

Thus, the dimensions correspond to the number of objectives of the

environment. We adapt this environment by adding a value system

V𝑆 with as many values as dimensions. Thus, the agent’s objec-

tive is to find the goal position which requires minimal movement

alongside the most prioritised objectives according toV𝑆 .

4.2.1 Experimental setup and results. We evaluated our algorithm

in a set of randomly generated Walkroom environments, from 2 to

9 objectives, and with a varying grid size per dimensions from 2 to

9. Hence, the number of states in the environment is determined

as (𝑠, 𝑜) = sizeobjectives. We performed 10 runs of our algorithm

on every version of the environment (in total 8 · 8 · 10 = 640

runs). All our experiments were performed on a machine with a

12-core 3.70GHz CPU and 64GB RAM. The heat maps in Figure 3

provide the average time results obtained for each of the 64 possible

configurations of the synthetic environment.

We observe in the heatmaps how the computational cost depends

exponentially on the domain size, and also even more exponentially

as we increase the number of objectives of the environment. This is

to be expected due to the computational cost of CHVI [5]. In more

detail, we find in Figure 3 (Left) how for half of the settings, the re-

quired amount of time is at most 10 seconds (e.g., any configuration



Figure 3: Heat maps reporting computational costs in seconds of our ethical embedding algorithm for 64 possible configurations
of Walkroom. Left: configurations that exceed a threshold of 10 seconds appear in dark blue (32 out of 64). Right: configurations
that exceed a threshold of 10 hours appear in black (13 out of 64).

Table 1: Average computational cost (mean± 3std in seconds)
of each step of the ethical embedding algorithm for particu-
lar Walkroom environment configurations (grid size 𝑠 and 𝑜
objectives).

(s,o) Step 1 Step 2 Step 3
(7, 4) 5.78 ± 2.67 0.0002 ±10−3 0.001 ± 2 · 10−3
(7,5) 48.83 ± 5.34 0.0002 ±10−4 0.002 ± 10

−3

(7,6) 695.98 ± 56.24 0.0008 ±10−3 0.004 ± 2 · 10−3
(7, 7) 17272.14 ± 710 0.007 ± 2 · 10−3 0.006 ± 4 · 10−3

with 2 or 3 objectives, and any configuration with size 2). However,

Figure 3 (Right) illustrates how almost all configurations with more

than 7 objectives exceeded the 10-hour threshold of computation

time.

Table 1 displays the average computation times for some of

the significant cases. Those cases exemplify a general pattern: the

computational cost of finding an ethical policy (step 2) and later

computing the solution weight vector (step 3) are negligible com-

pared with computing the convex hull (step 1).

As mentioned, we have discarded the environments in the litera-

ture for our empirical analysis because they do not go beyond three

objectives. Nevertheless, thanks to the obtained results we can pro-

vide rough estimates of how much time would our algorithm need

to do ethical embeddings . We consider the discrete environments

of the main multi-objective library, MO-Gym [2]. We assume that if

our algorithm needs 𝑡 seconds for WalkRoom with 𝑛 objectives and

a state space 𝑆 , then it needs at most 𝑡 seconds for an environment

with 𝑛 objectives and less than 𝑆 states. Thus: For a small state

space (less than 500 states) such as Fruit-tree (6 objectives) or Deep
Sea Treasure (2 objectives), our algorithm would need less than 2

seconds in total (the result from (𝑠, 𝑜) = (3, 6), which has 3
6 = 729

states). For a state space of almost 700,000 states and 3 objectives

such as Four-Room, our algorithm would need 5 hours (result from

(𝑠, 𝑜) = (7, 7)).

5 CONCLUSIONS
The literature on value alignment has focused on aligning an agent

with a single moral value, and with the exception of [25], disregard-

ing guarantees on an agent’s ethical learning. Here we tackled the

problem of building an ethical environment that guarantees that

an agent learns a policy aligned with multiple moral values.

Our novel contributions are founded in the framework of Multi-

Objective MDPs (MOMDPs). With MOMDPs we can formalise what

it means for an agent to behave ethically, that is, following a value

system of multiple values. Furthermore, we specify an algorithm to

build an ethical environment with a so-called multi-valued ethical
embedding process. In an ethical environment, an agent is guaran-

teed to learn an ethical policy.

Nonetheless, providing theoretical guarantees comes at a compu-

tational cost, which mainly resides in Convex Hull Value Iteration,

as our empirical analysis shows. Hence, to cope with large environ-

ments, future research should focus on more efficient algorithms

to compute convex hulls.
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