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ABSTRACT
Multi-agent deep reinforcement learning (MADRL) problems often
encounter the challenge of sparse rewards. This challenge becomes
even more pronounced when coordination among agents is necessary.
In this paper, we propose a new approach for rewarding strategies
where agents collectively exhibit novel behaviors. To achieve this,
we introduce a measure of novelty that specifically considers diverse
coordination patterns exhibited by a team of agents. We present
JIM (Joint Intrinsic Motivation), a multi-agent intrinsic motivation
method that follows the centralized learning with decentralized exe-
cution paradigm. By testing JIM with the state-of-the-art MADRL
method QMIX, we demonstrate how joint exploration is crucial for
solving tasks where the optimal strategy requires a high level of
coordination.

KEYWORDS
Multi-agent Systems, Deep Reinforcement Learning, Intrinsic Moti-
vation

1 INTRODUCTION
One crucial aspect of human intelligence is its ability to act coinci-
dentally with other human beings, to either cooperate or compete in
a given task. This has led researchers to study reinforcement learning
(RL) in the context of multi-agent systems (MAS), where multiple
artificial agents interact with their environment and each other while
concurrently learning to perform a task [10, 25]. However, having
multiple agents in the environment makes the RL process signifi-
cantly more difficult for several reasons [30]. In particular, the global
reward depends on the actions of several independent agents, which
makes the search for the optimal joint policy more complicated.

Recently, multi-agent deep reinforcement learning (MADRL)
approaches have combined advancements in RL and deep learning
to tackle long-standing problems in MAS such as credit assignment
or partial observability [5, 10, 20]. These techniques are able to
solve very complex multi-agent tasks such as autonomous driving
[22] or real-time strategy video games [15]. However, major issues
still remain with these approaches, such as the problem of relative
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overgeneralization [27, 29] where agents struggle to find the optimal
joint policy because local policies are attracted towards suboptimal
areas of the search space. This makes most algorithms inefficient in
tasks where the optimal strategy requires strong coordination among
agents. Relative overgeneralization can be described as a problem
of exploration of the joint-state space: as the success of the MAS
depends on the coordination of multiple agents, exploring the joint-
observation space is required to discover optimal joint behaviors.
In this paper, we address the question of how to explore the joint-
state space to efficiently discover superior coordinated strategies for
solving the task at hand.

In single-agent RL, the problem of exploration has been studied
to solve hard exploration tasks where positive reward signals are
very sparse. One solution is to use intrinsic motivation [9, 16, 21]
to incite agents to explore unknown parts of the environment. In
addition to the environment reward, agents are given an auxiliary
reward related to the novelty of encountered states. Maximizing this
intrinsic reward leads agents to visit previously unexplored regions
of the environment, ultimately discovering new solutions to the task.
These methods have shown great success in helping RL agents solve
hard exploration tasks [1, 17].

In the multi-agent setting, intrinsic objectives have also been
studied to induce different kinds of behaviors in agents such as coor-
dinated exploration [7], social influence [8, 26] or alignment with
other agents’ expectations [12]. However, previous works have only
used local observations to generate intrinsic rewards. In the context
of exploration, an intrinsic reward based only on local observations
will lead to each agent exploring their own observation space without
taking care of the current state of other agents. This can result in
inefficient exploration in cooperative tasks where the success of the
MAS depends on the coordination of all agents.

In this paper, we introduce a novel multi-agent exploration ap-
proach called Joint Intrinsic Motivation (JIM) which can be com-
bined with any MADRL algorithm that follows the centralized train-
ing with decentralized execution paradigm (CTDE). JIM exploits
centralized information to motivate agents to explore new coordi-
nated behaviors. In order to compute joint novelty, JIM combines
two previous state-of-the-art approaches: NovelD [32] for exploring
unknown parts of the environment, and E3B [6] for having more
diverse trajectories. Experimental studies show that combining JIM
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with the state-of-the-art algorithm QMIX [20] helps to overcome the
problem of relative overgeneralization.

2 RELATED WORKS
In recent years, deep reinforcement learning techniques have been
used in the context of MAS to tackle long-standing issues in multi-
agent learning. Successful single-agent RL approaches have been
adapted to the CTDE framework [10, 31], using a centralized value
function to guide the training of decentralized policies. Recent
studies have investigated the problem of credit assignment [5] in
MADRL, i.e, distributing the global reward among agents based
on their participation. Value factorization methods also do this im-
plicitly [24], combining the output of local value functions into a
centralized one that predicts the current value of the system. In par-
ticular, QMIX [20] uses a separate network to predict the Q-value
of the joint action, given the output of local Q-values and the global
state of the environment. QMIX has established itself as a long-
standing state-of-the-art approach, despite its inherent limitations
that several works have tried to surpass [19, 23]. However, MADRL
algorithms have been shown to suffer from the problem of relative
overgeneralization [28, 29]. So far, few works have addressed this
problem: Wei et al. [28] propose maximum entropy RL to explore
the joint-action space, and MAVEN [13] augments QMIX using a
hierarchical policy to guide the exploration of joint behaviors.

A promising approach to overcome relative overgeneralization
is to intrinsically motivate agents to explore their environment, ulti-
mately discovering the optimal reward signals. In single-agent RL,
curiosity has been defined to help agents solve hard exploration
tasks [9, 16, 21] by rewarding the visitation of states considered as
novel. For measuring novelty, several methods have used the error of
trainable prediction models. The Intrinsic Curiosity Module (ICM)
[17] trains a model of environment dynamics and uses the prediction
error as a measure of novelty. Random Network Distillation (RND)
[2] uses a target network that produces a random encoding of the
state and trains a predictor network to generate the same encoding,
the prediction error being the measure of novelty. The idea behind
these two approaches is that the prediction models will yield low
novelty for states similar to what they have trained on while pro-
ducing high novelty for unknown parts of the environment. RIDE
[18] and NovelD [32] use respectively ICM and RND to compute
a reward from the difference of novelty between the next state and
the current state, pushing the agents to always seek novel states.
Similarly, NGU [1] and E3B [6] use clustering techniques to reward
states that are distant from previous states. Finally, a similar ap-
proach is proposed by AGAC [4] which trains an adversarial policy
to predict the main policy’s output, the latter being rewarded with
the former’s prediction error.

In MADRL, recent works have demonstrated the effectiveness
of intrinsic rewards in promoting desirable behaviors in groups of
agents. One example is social influence [8, 26] that rewards agents
for performing actions that have a significant impact on other agents.
Ma et al. [12] propose an intrinsic reward based on the average align-
ment with other agents’ expectations, promoting more predictable
behaviors in agents. Lupu et al. [11] propose to reward policies that
perform diverse trajectories in comparison to a population of agents,
which is shown to help train agents to be more versatile. Du et al. [3]

use intrinsic objectives as a credit assignment technique. Finally,
Iqbal and Sha [7] propose an approach for coordinated exploration
using several metrics for estimating the novelty of observations that
depend on all agents’ past experiences. However, their model is
computationally expensive and does not address the exploration
of the joint-observation space, which can be problematic for hard
exploration tasks where relative overgeneralization can occur.

In this paper, we address the challenge of relative overgeneraliza-
tion by rewarding agents for exploring the joint-observation space.
In the following sections, we will present the necessary formal back-
ground and an overview of the proposed algorithm that implements
joint intrinsic motivation.

3 BACKGROUND
3.1 Dec-POMDP
To describe cooperative multi-agent tasks, we use the setting of de-
centralized POMDP (Dec-POMDP) [14], defined as a tuple ⟨S,A,𝑇 ,
O,𝑂, 𝑅, 𝑛,𝛾⟩ with 𝑛 the number of agents. S describes the set of
global states 𝑠 of the environment. O is the set of joint observations,
with one joint observation o = {𝑜1, ..., 𝑜𝑛} ∈ O, and A the set of joint
actions, with one joint action a = {𝑎1, ..., 𝑎𝑛} ∈ A. 𝑇 is the transition
function defining the probability 𝑃 (𝑠′ |𝑠, a) to transition from state 𝑠
to next state 𝑠′ with the joint action a. 𝑂 is the observation function
defining the probability 𝑃 (o|a, 𝑠′) to observe the joint observation
o after taking joint action a and ending up in 𝑠′. 𝑅 : O × A → R is
the reward function producing at each time step the reward shared
by all agents. Finally, 𝛾 ∈ [0, 1) is the discount factor controlling the
importance of immediate rewards against future gains.

3.2 Intrinsic rewards
In Section 2, we introduced intrinsic motivation as a way to incite
agents to actively explore their environment. To this end, at each
time step 𝑡 , agents receive an augmented reward 𝑟𝑡 = 𝑟𝑒𝑡 + 𝛽𝑟 𝑖𝑛𝑡𝑡 ,
where 𝑟𝑒𝑡 is the extrinsic reward given by the environment, 𝑟 𝑖𝑛𝑡𝑡 is
the intrinsic reward and 𝛽 is a hyperparameter controlling the weight
of the intrinsic reward in the agents’ objective.

In this section, we describe three methods of intrinsic rewards
from the literature that we will use later in Section 4.2.

Random Network Distillation. In Random Network Distillation
(RND), Burda et al. [2] compute novelty using two neural networks
with the same architecture: a target network 𝜙 and a predictor net-
work 𝜙 ′. The target’s parameters are initialized randomly and fixed.
It takes as input the state 𝑠𝑡 and produces a random embedding 𝜙 (𝑠𝑡 ).
The predictor is trained to output the same embedding, minimizing
the Euclidean distance:

𝑅𝑁𝐷𝑡 (𝑠𝑡 ) = ∥𝜙 (𝑠𝑡 ) − 𝜙 ′ (𝑠𝑡 )∥2 (1)

This distance is used as a measure of the novelty of state 𝑠𝑡 and is
given as an intrinsic reward to agents.

NovelD. Zhang et al. [32] build upon RND to devise a novelty
criterion termed NovelD. It is defined as follows:

𝑁 (𝑠𝑡 , 𝑠𝑡+1) = max[𝑅𝑁𝐷 (𝑠𝑡+1) − 𝛼𝑅𝑁𝐷 (𝑠𝑡 ), 0]×
× I{𝑁𝑒 (𝑠𝑡+1) = 1} (2)
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with 𝛼 a scaling factor and 𝑁𝑒 an episodic count of visited states.
The first part is the core of the novelty criterion. It uses RND to
reward agents for positive gains in novelty between the current and
the next states. The second part is an episodic restriction that ensures
the reward is given only when state 𝑠𝑡+1 is observed for the first time
in this episode. This restriction limits the use of NovelD to discrete
state spaces as it relies on an explicit count of visited states.

E3B. With E3B, Henaff et al. [6] propose an episodic bonus based
on the position of the observed state with respect to an ellipse that
fits all states previously encountered in the current episode. Formally,
it is computed as follows:

𝑏 (𝑠𝑡 ) = 𝜓 (𝑠𝑡 )⊤𝐶−1
𝑡−1𝜓 (𝑠𝑡 ), (3)

with

𝐶𝑡−1 =
𝑡−1∑︁
𝑖=1

𝜓 (𝑠𝑖 )𝜓 (𝑠𝑖 )⊤ + 𝜆𝐼, (4)

where 𝐼 is the identity matrix and 𝜆 a scalar coefficient. 𝜓 is an
embedding network trained using an inverse dynamics model [17]:
embeddings of following states𝜓 (𝑠𝑡 ) and𝜓 (𝑠𝑡+1) are used by a sep-
arate neural network trained to predict the action 𝑎𝑡 taken between
these states. As a result of this training process,𝜓 encodes parts of
the observation that are controllable by the agents (please refer to [6]
for details). Intuitively, 𝑏 can be understood as a generalization of
a count-based episodic bonus for a continuous state space. States
that are close to previously encountered states in the current episode
will yield low bonuses, whereas states that are very different will
produce high bonuses.

4 ALGORITHM
In this section, we introduce the Joint Intrinsic Motivation (JIM)
exploration criterion for coordinated multi-agent exploration. Firstly,
we describe the motivation behind our approach by providing a
detailed description of the problem of relative overgeneralization.
Then, we define the intrinsic reward used for motivating agents
to explore a continuous state-space environment in a coordinated
fashion. Finally, we explain how this reward is used in a multi-agent
setting with JIM.

4.1 The challenge of coordinated actions
Addressing hard exploration environments is challenging because of
the few positive reward signals that exist to guide the agent’s learning
process. This becomes even worse with MAS as the completion
of a task depends on the actions of multiple independent agents.
When strong coordination is needed, agents will struggle to find the
optimal strategy and settle for an easier suboptimal joint strategy,
which is a problem known as relative overgeneralization [27, 29].
Figure 1a provides an example of a social dilemma game where
relative overgeneralization occurs. The optimal strategy requires
both agents to choose action A. But if only one agent chooses action
A, the payoff is very bad. Therefore, agents will independently prefer
to take actions B or C, as action A most often leads to sub-optimal
outcomes.

In MAS, this can be seen as a problem of ill-coordinated explo-
ration. As success depends on coordinated behaviors, exploration
of joint policies is required in order to discover which ones lead to

optimal returns. In the example of Figure 1a, exploring independent
strategies will lead to ultimately choosing suboptimal actions as they
individually may yield better expected returns. On the other hand,
we argue that uniformly exploring joint actions would enable agents
to choose optimal joint strategies more often and consequently learn
more efficient individual behaviors. The approach described in the
following two sections implements an algorithm that efficiently re-
wards agents for exploring the joint-observation space, in order to
consistently find optimal strategies.

4.2 Double-timescale Intrinsic Reward
We define a novelty metric that combines two exploration criteria
working at different timescales:

• A life-long exploration criterion that captures how novel is
the current observation with respect to all observations since
the beginning of training.

• An episodic exploration criterion that captures the differ-
ence between the current observation and all previous obser-
vations in the current episode.

Intuitively, the life-long reward motivates agents to search for never-
experienced parts of the environment. Meanwhile, the episodic bonus
induces more diverse trajectories. These two elements will feed each
other and reinforce agents to efficiently explore their environment.

Concretely, for each transition from state 𝑠𝑡 to the next state 𝑠𝑡+1,
we define the double-timescale intrinsic reward as follows:

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑁𝑙 (𝑠𝑡 , 𝑠𝑡+1) ×
√︁
2𝑏 (𝑠𝑡+1) (5)

The first term 𝑁𝑙 (𝑠𝑡 , 𝑠𝑡+1) corresponds to the life-long novelty
and the second term

√︁
2𝑏 (𝑠𝑡+1) corresponds to the episodic novelty.

The life-long novelty 𝑁𝑙 is inspired from NovelD [32] (see Sec-
tion 3.2):

𝑁𝑙 (𝑠𝑡 , 𝑠𝑡+1) = max[𝑅𝑁𝐷 (𝑠𝑡+1) − 𝛼𝑅𝑁𝐷 (𝑠𝑡 ), 0], (6)

with 𝛼 a scaling factor and 𝑅𝑁𝐷 the novelty measure. We remove the
episodic restriction of the original approach as it relies on an episodic
count of visited states. This makes it impractical in a continuous
state space, as one state is very unlikely to be visited twice. Instead,
we scale the life-long novelty 𝑁𝑙 with the elliptical episodic bonus 𝑏
from E3B [6] (see also Section 3.2). This bonus replaces the episodic
restriction by scaling 𝑁𝑙 up or down, depending on the novelty of
the current state compared to what has been observed in the current
episode. As 𝑏 provides very large bonuses and decreases very fast,
we use

√︁
2𝑏 (𝑠𝑡+1) to both smooth out large values and increase small

ones.
Combining these two rewards makes it possible to take the ben-

efits of both. NovelD pushes agents to explore regions of the state
space that are not well-known to agents. Meanwhile, the elliptical
episodic bonus favors diverse trajectories, inducing agents to al-
ways seek new observations during a single episode. As the agents
explore their environment, the prediction error of RND (see equa-
tion (1)) slowly decreases. Thus, the life-long novelty decreases as
well, tending toward zero, allowing agents to progressively focus on
the extrinsic reward. Finally, the proposed intrinsic reward does not
rely on any explicit count of visited states. As a consequence, it can
be used in continuous state spaces.
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𝐴 𝐵 𝐶

𝐴 10 −5 −5
𝐵 −5 7 7
𝐶 −5 7 7

(a) (b)

Figure 1: Two examples of relative overgeneralization: (a) payoff
matrix of a social dilemma game, (b) heat-map of the reward
function of the rel_overgen environment for 𝐷 = 40 and 𝛿 = 30.

4.3 The Joint Intrinsic Motivation algorithm
Building from the intrinsic reward introduced previously, we propose
the Joint Intrinsic Motivation (JIM) algorithm to incite MADRL
agents to explore the joint-observation space. At each time step,
all agents receive the same global reward 𝑟𝑡 = 𝑟𝑒𝑡 + 𝛽𝑟

𝐽 𝐼𝑀
𝑡 , where

𝑟𝑒𝑡 is the extrinsic reward given by the environment, 𝑟 𝐽 𝐼𝑀𝑡 is our
joint exploration criterion and 𝛽 is a hyper-parameter controlling the
weight of the intrinsic reward. The exploration criterion in JIM uses
the double-timescale intrinsic reward defined earlier to compute the
novelty of the joint observation:

𝑟
𝐽 𝐼𝑀
𝑡 (o𝑡 , a𝑡 , o𝑡+1) = 𝑁𝑙 (o𝑡 , o𝑡+1) ×

√︁
2𝑏 (o𝑡+1), (7)

where o𝑡 = {𝑜𝑖𝑡 }0≤𝑖≤𝑁 , i.e., the concatenation of all local obser-
vations. Rather than only exploring their local-observation space,
agents will be rewarded for finding new combinations of observa-
tions with other agents of the system.

As JIM uses joint observations for computing the intrinsic reward,
it can be associated with any MADRL algorithm that fits in the
CTDE paradigm. These algorithms usually employ a centralized
value function [10, 20, 31] that looks at the joint observation to pre-
dict the value of the agents’ actions. Such centralized value functions
will be able to associate rewards provided by JIM to new configu-
rations in the joint observation space, thus inducing the agents to
actively search for these configurations.

One could note that the joint observation has two notable draw-
backs: the number of dimensions grows exponentially with the num-
ber of agents and there is a risk of capturing redundant information.
These issues are both alleviated with JIM as we use dimensionality
reduction techniques. 𝑁𝑙 and 𝑏 use respectively 𝜙 and 𝜓 (see Sec-
tion 3.2) as embedding networks to encode the joint observation
into a more condensed representation that contains only the required
information.

5 IMPLEMENTATION DETAILS
As previously said, JIM can be used to augment any MADRL ap-
proach that fits in the CTDE paradigm. In the experiments presented
in the next section, we use JIM with QMIX [20]. We use the default
QMIX architecture and hyperparameters, as presented in the origi-
nal paper. Both embedding networks𝜓 and 𝜙 (see Section 3.2) are

feed-forward neural networks with respectively one and three hidden
layers of dimension 128. They output encodings of dimension 64.
The hyperparameter 𝛼 (see equation (6)) is set to 0.2 and 𝜆 (see
equation (4)) to 0.1. Finally, the weight 𝛽 of the intrinsic reward in
the total reward is always set to 1. All our code is available online1.

6 EXPERIMENTS
In this Section, we evaluate the ability of JIM to address the prob-
lem of relative overgeneralization. In order to do so, we implement
the JIM exploration criterion within the state-of-the-art QMIX al-
gorithm for MADRL and benchmark the resulting algorithm on
different versions of a toy problem where the problem of relative
overgeneralization can be artificially tuned.

6.1 Environment definition
We design a simple test environment that expands the example
of relative overgeneralization shown in Figure 1a. In this envi-
ronment called rel_overgen, two agents can move on a discrete
one-dimensional axis with 𝐷 possible positions. Each agent is de-
noted by its position, namely x and y. At each time step, agents
observe their position as a one-hot vector 𝑜x𝑡 = {𝑜x, 𝑗𝑡 = 1 if x =

𝑗, 0 otherwise}0≤ 𝑗<𝐷 and can choose between three actions: move
in one direction or the other or stay in position. They receive a reward
corresponding to their combined position:

𝑟𝑒𝑡 (𝑥,𝑦;𝛿) = max
(
𝑅+ − 𝛿

𝐷

[
(𝑥 − 𝑟+𝑥 )2 + (𝑦 − 𝑟+𝑦 )2

]
,

𝑅− − 1
8𝐷

[
(𝑥 − 𝑟−𝑥 )2 + (𝑦 − 𝑟−𝑦 )2

] ) (8)

The result of this formula is displayed in Figure 1b. The reward
combines two hyperboles in opposite corners: one narrow that culmi-
nates at 𝑅+ at position (𝑟+𝑥 , 𝑟+𝑦 ), and another much wider that plateaus
at 𝑅− at position (𝑟−𝑥 , 𝑟−𝑦 ). We set the optimal reward 𝑅+ to 12 and
the suboptimal 𝑅− to 0. The width of the optimal reward spike is
controlled by the parameter 𝛿: a higher 𝛿 value yields a narrower
spike.

The goal of the agents is to find where to go to maximize their
aggregated rewards. The wide suboptimal hyperbole will probably
attract agents to minimize their loss. The optimal reward spike is
difficult to find because it covers a small portion of the state space,
but it guarantees much greater returns. We can vary the difficulty
of the task by changing the width of this optimal reward spike: the
narrower the spike, the harder it is to find.

In this environment, we expect MADRL to struggle to find the
optimal reward spike. Exploring local states could help but would
not be sufficient to consistently solve the task. As the dimension 𝐷

of the local-state space is fairly small, novelty rewards will quickly
vanish and will not help agents to find the optimal reward spike.
Exploring the joint-observation space adequately is required in order
to consistently find optimal rewards. As JIM will reward exploration
until all combined positions (𝑥,𝑦) are visited several times, agents
will visit the optimal reward spike more often, thus helping them to
learn the optimal coordinated strategy.

1https://github.com/MToquebiau/Joint-Intrinsic-Motivation
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(a) easy (𝛿 = 30) (b) hard (𝛿 = 40) (c) very hard (𝛿 = 50)

Figure 2: Performance of variants of QMIX in the rel_overgen environment, with three levels of difficulty. On top, we show the
heat-maps representing the reward function in each version of the environment, where the difficulty is dictated by the width coefficient
of the optimal reward spike 𝛿 (as defined in equation (8)). Increasing 𝛿 leads to a slightly narrower optimal reward spike. Below is
shown the performance during training of QMIX with no intrinsic reward (QMIX), local intrinsic motivation (QMIX+LIM) and joint
intrinsic motivation (QMIX+JIM) (mean and standard deviation shown for 15 runs each). We see that a slight decrease in the size of
the optimal reward spike results in a considerable increase in the difficulty of the task.

6.2 Results
The results shown in Figure 2 confirm this hypothesis. We show
the performance of QMIX [20] in rel_overgen with no intrinsic
reward (QMIX) and with two intrinsic rewards: our approach JIM
(QMIX+JIM) and a local version of our intrinsic motivation where
each agent generates its own intrinsic reward based on its local
observations (QMIX+LIM2). Further, we show the performance in
three levels of difficulty dictated by the width of the optimal reward
spike. We plot the mean and standard deviation for 15 independent
runs each.

The results clearly demonstrate the importance of exploring the
joint-state space. QMIX alone manages to get some good perfor-
mance on the easy scenario, but the large standard deviation shows
its inconsistency. In the harder scenarios, QMIX’s performance de-
grades strongly, never finding any positive reward in the hardest
case. JIM clearly improves the performance. In the easy scenario,
QMIX+JIM consistently goes for the optimal reward spike. In the
harder settings, it still performs well, even in the "very hard" sce-
nario where the optimal reward spike covers only 0.013% of all
combined positions. The results of QMIX+LIM show that exploring
the local-observation space helps agents find the optimal reward
spike more often. However, it performs worse than JIM as it does
not insure that all combined positions are sufficiently explored. This
shows that exploring the joint-observation space is crucial to allow
agents to discover optimal coordinated behaviors.

2LIM: Local Intrinsic Motivation

7 CONCLUSION
In this paper, we present the JIM algorithm, which employs an explo-
ration criterion to reward teams of cooperating agents for exploring
the space of joint observations. JIM can be integrated to enhance any
Multi-Agent Deep Reinforcement Learning algorithm and can be ap-
plied to problems with continuous state-action spaces. By combining
JIM with the state-of-the-art QMIX algorithm, we demonstrate its
efficiency. Our results show that QMIX with JIM outperforms both
the original QMIX algorithm and QMIX with single-agent intrinsic
rewards. Notably, JIM enables the discovery of optimal coordinated
behaviors that would be hard to find otherwise as they necessitate
a high level of coordination between agents. Our short-term ob-
jective for this work is to validate the results in a more realistic
scenario involving multiple agents addressing the same cooperative
task. Preliminary results indicate that JIM allows agents to efficiently
explore more complex continuous environments to discover optimal
coordinated strategies.
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