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ABSTRACT
The general ability to achieve a singular task with a set of decen-

tralized, intelligent agents is an important goal in multiagent re-

search. The complex interaction between individual agents’ incen-

tives makes designing their objectives such that the resultingmultia-

gent systemalignswithadesiredglobal goal particularly challenging.

In this work, instead of considering the problem of designing suit-

able incentives from scratch, we assume a multiagent systemwith

given preset incentives and consider automatically modifying these
incentives online to achieve a new goal. This reduces the search

space over possible individual incentives and takes advantage of

the effort instilled by the previous system designer. We demonstrate

the promise as well as the limitations of re-purposing multiagent

systems in this way, both theoretically and empirically, on a variety

of domains. Surprisingly, we show that training a diversemultiagent

system to align with a modified global objective (𝑔→𝑔′) can, in at
least one case, lead to better generalization performance in unseen

test scenarios, when evaluated on the original objective (𝑔).

KEYWORDS
Price of Anarchy, Multiagent Learning, Reward Sharing, Collective

Intelligence

1 INTRODUCTION
Designing an objective for a single artificial agent that accurately

reflects human values is difficult [10]. Designing value-aligned ob-

jectives for a system of artificial agents is even more complex. Even

if individual agent objectives may be value-aligned and seemingly

innocuous in isolation, they may conflict with each other when

brought together in amulti-agent system. Consider, for example, the

sensible goal of tasking a self-driving car with minimizing its occu-

pant’s commute time to work. Assuming the car is also guaranteed

to drive perfectly safely, would a city of such vehicles align with our

desired values? Unfortunately, this is not the case, as exemplified by

Braess’s paradox [2, 3, 32]. In certain road networks, each car min-

imizing commute time counter-intuitively leads to higher commute

time for all. This result is not a byproduct of reward-hacking or any

suboptimal driving policy, but a direct result of rational behavior.

Furthermore, naively replacing all individual objectiveswith a singu-

lar shared global objective as is standard in cooperative multiagent

learning [25, 31] is not a balm for these issues; e.g., we assume indi-

viduals actually want to minimize their own commute time, not the

average commute timeof an entire city. These adversarial results, col-

lectively coined price of anarchy, present a challenge for multi-agent
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alignment. Furthermore, we may desire more from a multiagent

system than simply minimal average commute time across a pop-

ulation. For example, in an instance of Braess’s paradox in London,

work to transform the Strand into a pedestrian space started in 2021.
Westminster City Council said closing the Strand to motorists would
“provide better movement of [motor] traffic” and, at the same time, “im-
prove the public realm.” [26]. Not only do current governments seek

systems that minimize average commute time, but also ones that

align with more general values (e.g., reducing greenhouse gas emis-

sions or inequity [9]).Ourworkaims to (1) automaticallymodify
agents’ rewards to (2) optimizeanarbitraryglobal objective (e.g.,
minimize average commute time + greenhouse gas emissions).
(1) Automatically Modifying Rewards. Humans with diverse

skills and preferences are often brought together to solve a variety of

tasks. Similarly, ongoing AI research is currently developing a wide

array of artificial agents for particular tasks. Instead of continuing to

develop systems of bespoke agents for each new global objective, we

would like tomodify some core set of original, local objectives slightly
to encourage an existing group of agents to achieve a new task with

the hope that this would make efficient use of previously learned

skills. Importantly, we want to modify objectives automatically via
reward-sharing [12, 17, 18, 24]. Reward-sharing assumes that agents

are deployed with sensibly defined objectives (e.g., minimize com-

mute time) that we may wish to modify post deployment in some

minimal way. Automatically re-purposing local objectives in this

way may greatly reduce the search space of finding compatible local

objectives. Gemp et al. [12] and Lupu and Precup [17] have devel-

oped approaches based on reward-sharing to minimize the specific

global objective of average agent loss (equiv. maximize welfare). We

follow previous work and consider linear reward-sharing among 𝑛

agents [12], where we aim to learn 𝑛2
sharing weights that modify

the original objectives rather than searching over the infinite space

of all objective modifications. In Sections 3, 4, 5 we analyze how our

framework re-purposes local objectives for each domain.

(2) Importance of Arbitrary Global Objectives. The problem of

automatically constructing or modifying local objectives is techni-

cally difficult. In order to evaluate the performance of a set of local

objectives, onemustmeasure thevalueof theglobal objectiveat some

predicted steady state behavior (i.e., system equilibrium) [15, 28].

Therefore, simply evaluating the global objective assumes comput-

inganequilibrium,which isPPAD-complete [5, 8] forNashequilibria

(NE). Several global objectives have been studied in the social sci-

ences and computer science, motivating the study of a more diverse

set of global objectives. The debate between utilitarianism and egali-

tarianism (e.g. maximizing utility of the least well-off individuals) is

arguably the most well studied [20]. Reducing income inequality is
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also well studied, however, procedural modifications to player objec-

tives (i.e., mechanisms) can only be derived for select settings. Fur-

thermore, strong negative results exist in the related area of research

on incentive compatible mechanisms; Roberts’ theorem from 1979

proves that the only family of global objectives that can be assuredly

optimized is a weighted sum of local objectives [27] (i.e., weighted-

welfare). In this work, we consider non-weighted-welfare objectives.

Our solution is to build upon Decentralised, Differentiable, Dy-
namicCompromise (D3C) [12].D3Cwasoriginallydesignedwithwel-

fare as the global objective. However, at least programmatically, we

may substitute any desired global objective, including non-welfare

objectives. Section 2 introduces notation and covers basics of the

D3C framework, in particular, loss-sharing. Section 3 proves theo-

retical results, delineating the space of viable non-welfare objectives

in two analytically tractable domains. This section also proposes a

Pareto efficiency analysis for evaluating the tradeoff between indi-

vidual and global objectives. Section 4 then explores a model case

study in traffic networks, reapplying the evaluative tools designed

in the previous section. Section 5 looks at a complex multi-agent

reinforcement learning (MARL) setting and examines the resulting

multi-agent system evaluated in held-out test scenarios. Section 6

discusses future directions and interesting challenges.

Contributions: In this work, we propose the problem of automat-

ically modifying individual agent objectives to optimize a desired

global objective ormultiagent auto-alignment for short. We show

that agents can in some cases achieve non-welfare goals via loss

mixing in both simple and complex domains, but this is not always

the case, and we prove this analytically.We demonstrate empirically

that achieving these goalsmay require some tradeoffwith individual

losses. Lastly, we encounter a surprising empirical finding that train-

ing on non-welfare objectives can actually lead to higher welfare on

held out test scenarios with unseen partners.

2 BACKGROUND / PRELIMS
D3C. For our empirical studies, we assume the D3C framework [12],

in which individual agent objectives are modified in a way that min-

imizes the price of anarchy, i.e., the global loss at an equilibrium rela-

tive to the minimum possible global loss. To reduce the search space

of all possible objective modifications, D3C assumes that individual

objectives are onlymodified as linearmixtures of all individual objec-

tives. It is also assumed that these mixtures respect budget balance,

i.e., total loss cannot be createdor destroyed.Weexplore relaxing this

last constraint, colloquially referred to as “money burning”, in the

following section. Lastly, D3C introduces a KL term on the learned

mixtures that penalizes modifying the originally defined objectives.

In Figure 3, we study the effect of the KL coefficient on how the mul-

tiagent system trades off between global and individual objectives.

Notation and Modified Objectives. Let agent 𝑖’s loss be ℓ𝑖 (𝒙) :

𝒙 ∈ X → R where 𝒙 is the joint strategy of all agents. Let ℓ𝐴
𝑖
(𝒙)

denote agent 𝑖’s modified loss which mixes losses among agents.

Let ℓ (𝒙) = [ℓ1 (𝒙),...,ℓ𝑛 (𝒙)]⊤ and ℓ𝐴 (𝒙) = [ℓ𝐴
1
(𝒙),...,ℓ𝐴𝑛 (𝒙)]⊤ where

𝑛 ∈Z denotes the number of agents. We consider transformations

of the form ℓ𝐴 (𝒙)=𝐴⊤ℓ (𝒙) (note the tranpose) where each agent 𝑖
controls row 𝑖 of𝐴. For example, agent 1’s loss is mixed according

to the first column of𝐴which may not sum to 1, and not the first

row, which it controls:

ℓ𝐴
1
(𝒙)= ⟨

[𝐴11,𝐴21,𝐴31 ]︷        ︸︸        ︷
[0.9,0.3,0.5],[ℓ1 (𝒙),ℓ2 (𝒙),ℓ3 (𝒙)]⟩. (1)

In the case where budget balance is maintained, each row is con-

strained to the simplex, i.e. 𝐴𝑖 ∈ Δ𝑛−1
. Alternatively, if “money

burning”
†
is allowed, the entries of𝐴 are assumed non-negative and∑

𝑗𝐴𝑖 𝑗 ≤ 1 for all 𝑖 . Lastly, [𝑎;𝑏]= [𝑎⊤,𝑏⊤]⊤ signifies row stacking of

vectors.

While describing agent objectives as losses seem sensible in do-

mains suchas traffic (e.g., commute time), describing themas rewards

or utilities may better fit others. In the latter case, note that losses

can be recovered from rewards as ℓ𝑖 (𝒙)=−𝑟𝑖 (𝒙). The usage should
be clear from the context.

3 THEORYANDTOOLS
Can a multiagent system use linear loss-sharing to optimize for

any global objective?We investigate this question theoretically and

empirically (using D3C) in a modified Prisoner’s Dilemma domain

(mixed-motive), a zero-sum game, and a fully-cooperative game.We

find that the budget balance assumption is a key limiting factor to

what kinds of global objectives a multiagent system can achieve,

however, we believe the question of whether one should require

budget balance is domain-specific. Note that the theoretical results

in this section are D3C-agnostic and only assume the simple linear

loss-sharing scheme outlined in Section 2.

3.1 Prisoner’s Dilemma
We adopt the same modified Prisoner’s Dilemma domain (PD) used

in [12] where there are 𝑛=2 players. The modified domain defines

each player’s loss as a strongly convex function:

Definition 1 (PD). Let 𝑥1,𝑥2 ∈ [0,1] and ℓ1,ℓ2 be player 1 and 2’s
strategy spaces and losses respectively:

ℓ1 (𝑥1,𝑥2)=𝑥2

1
+(𝑥2−1)2

(2)

ℓ2 (𝑥1,𝑥2)=𝑥2

2
+(𝑥1−1)2 . (3)

Note that for any strategy chosen by player 2, player 1 is incen-

tivized to play 𝑥1 = 0 (i.e., defect). The game is symmetric, so the

same argument holds for player 2. This joint strategy (𝑥1 =𝑥2 = 0)

constitutes the unique Nash equilibrium. However, note that both

players could achieve lower loss if they chose to play 𝑥1=𝑥2=
1

2
(i.e.,

cooperate). This same incentive structure is reflected in the matrix

variant of the Prisoner’s Dilemma, hence the connection.

Reachability: We use this domain to study which global objec-

tives it is possible to optimize under the assumption that individual

objectives may be modified via linear mixing. We cannot practically

analyze the set of all possible global functions𝑔(𝒙) on 𝒙 ∈X= [0,1]2
,

so we instead use squared distance to an arbitrary joint strategy as

a representative family of global objectives.

†
The money burning propositions 3.2 and 3.4 still hold if we remove the sum

inequality constraint (

∑
𝑗𝐴𝑖 𝑗 ≤ 1).



Figure 1: Analytical result on Prisoner’s Dilemma: Budget balance. (Left) Each cell in the grid represents a target joint action
𝑥 that we want the system to converge to. Light blue means that D3C can analytically converge to that joint action and dark
bluemeans that it cannot. (Center, Right) Displays values of the sharingmatrix for all target joint actions 𝑥 . Since we only have
two players, we only need two values𝐴11=1−𝐴12 (center),𝐴22=1−𝐴21 (right) to represent the sharingmatrix.

Figure 2: Empirical result: Budget balance. Reported over 3 seeds. (Left) For each target joint action, we ran D3C and report
the global loss achieved. (Center, Right)We report the final sharingmatrix D3C agents converged to at the end of training. Darker
values representmore selfish sharing weights. The joint action 𝑥 = (0,0) is the NE for the identitymatrix (selfish sharing weights
for𝐴11 and𝐴22. The joint action 𝑥 = (0.5,0.5) is the NE for the uniform sharingmatrix (𝐴𝑖 𝑗 =0.5∀𝑖, 𝑗).

3.1.1 Analytical Result: Budget Balance. We observe the following

result on the viability of ushering players in PD towards minima of

global functions from this family. A proof sketch is provided.

Proposition 3.1. [PD Reachability - w/ Budget Balance] Assume
agent losses are mixed linearly and budget balance is maintained.
Also, assume agents play the Prisoner’s Dilemma game (PD) as defined
in [12] for 𝑛=2 players. Then each of the light blue squares in Figure 1
(left) is the unique Nash equilibrium of PD played with a unique, cor-
responding sharing matrix𝐴. Conversely, the dark squares are not the
Nash equilibria of PD for any viable sharing matrix.

Proof. PD satisfies the conditions of a strongly monotone game.

This class of games is special in that there exists a unique fixed point

of the projected dynamical system (i.e., simultaneous projected gra-

dient descent) and it is necessarily a Nash equilibrium [21]. We ask

whether there exists a sharing matrix𝐴whose unique equilibrium

matches each goal 𝑥∗ ∈ [0,1]2
. We can study the fixed points of

the dynamics by setting the player gradients to zero, giving us a

map from𝐴 to 𝑥∗. We can then identify the range of this map if𝐴

is restricted to a row-stochastic matrix proving the claim. □

3.1.2 Empirical Result: Budget Balance. We next verify whether

running D3C gives us empirical results that are consistent with

Proposition 3.1. We evaluate reachability for all goals (𝑥∗
1
,𝑥∗

2
) by

plotting the mean value of 𝑔(𝑥) at the end of D3C training over 3

seeds. Results are shown in Fig. 2. D3C is empirically able to min-

imize loss for the analytically reachable regions (bottom left and

top right squares). For the unreachable regions (top left and bot-

tom right blocks), D3C is still able to achieve low loss, indicating

that empirically, D3C can still approximately optimize unreachable

global objectives. As the goal (𝑥1,𝑥2) moves farther away from the

reachable areas, D3C receives higher loss.



Figure 3: Pareto-frontier for Prisoner’s Dilemma for varying degrees ofKL regularization of the sharingmatrix. Each plot visually
depicts a trade-off between the average individual agent loss (y-axis) and the global system objective (x-axis), in themodified PD
game.Givendifferentvaluesof𝜆, and theexpression𝑔(𝑥)+𝜆ℓ̄ (𝑥)where ℓ̄ (𝑥)= 1

𝑛

∑𝑛
𝑖=1

ℓ (𝑥),weanalytically solve for thevalueof𝑥 that
minimizes the expression (for each of those 𝜆 values). We then plot the values𝑔(𝑥) and ℓ̄ (𝑥), which represent the black dots in the
graph. The blue dots represent the Pareto frontier of this multi-objective optimisation. The rest of the colored dots in red, orange,
yellow, etc. represent runs of D3Cwith different KL coefficients. The different KL coefficients are represented by the color bar.

3.1.3 Analytical Result: Money Burning. We now consider which

global objectives can be optimized if we allow “money burning”

(Sec. 2). We attain the following result by replicating the same proof

technique.

Proposition 3.2. [PD Reachability - w/o Budget Balance] Assume
agent rewards are mixed linearly and budget balance is not required.
Also, assume agents play the Prisoner’s Dilemma game (PD) as defined
in [12] for 𝑛=2 players. Then there always exists a mixing matrix𝐴
that induces a unique Nash equilibriummatching the goal.

Therefore, a multiagent system in which some agents destroy

(or ignore) loss can actually allow the system to optimize global

objectives that were previously impossible.

3.1.4 Tradeoff: Global and Local Objectives. To understand how

D3C re-purposes local agent objectives, we analyze how D3C trades

of between global and local objectives for different KL divergence

coefficients. Theoptimal value for the local objective is themaximum

welfare solution, 𝑥∗= (0.5,0.5). We sample four goals (0,0), (0.3,0.3),
(0.4,0.4), (0.5,0.5) that have varying degrees of alignment with the

local objective, where𝑥∗= (0.5,0.5) is themost aligned and𝑥∗= (0,0)
is the least aligned. For each of these goals we evaluate whether D3C

converges to a Pareto-optimal solution with respect to the global

and local objectives. We report the average local objective instead of

the local objective of each player because our goals are symmetric.

Results are averaged over 3 seeds and are shown in Fig. 3. When

the local and global objectives are most aligned, i.e., 𝑥∗ = (0.5,0.5),
there is only one Pareto-optimal solution. As the objectives become

less aligned, the Pareto-frontier becomes larger. For all KL coeffi-

cients, D3C prioritizes the global objective. For a zero coefficient,

D3C finds solutions that are Pareto-optimal. As we regularize the

sharing matrix to be closer to the identity matrix, D3C becomes

worse at maximizing both the global and local objective. The reason

for this is because themorewe regularize, themoreD3Cconverges to

solutions that are closer to𝑥 = (0,0). This solution does notmaximize

the local objective, whose optimal solution is 𝑥 = (0.5,0.5), nor the
global objective when 𝑥∗ ∈ {(0.3,0.3),(0.4,0.4),(0.5,0.5)}.

3.2 Zero-SumGames
Two-player, zero-sumgames are arguably themost intensely studied

class in game theory. We now ask the question of whether linear-

mixing can enable the players to minimize distance to a Nash equi-

librium. To examine this question, we consider the canonical “cycle

game” with unique Nash equilibrium at 𝑥1=𝑥2=0:

Definition 2 (ZS). Let 𝑥1,𝑥2 ∈ R and ℓ1, ℓ2 be player 1 and 2’s
strategy spaces and losses respectively:

ℓ1 (𝑥1,𝑥2)=𝑥1𝑥2 (4)

ℓ2 (𝑥1,𝑥2)=−𝑥1𝑥2 . (5)

Assume both players attempt to minimize their losses by per-

forming gradient descent on their mixed losses. We can ask whether

their update directions ever make progress towards the equilibrium.

We can quantify this by measuring the inner product between their

update directions at any given joint strategy 𝒙 = (𝑥1,𝑥2) and the

vector from the Nash equilibrium to their joint strategy (𝒙−𝒙∗=𝒙);
a negative inner product would imply progress towards 𝒙∗.

3.2.1 Analytical Result: Budget Balance. In the case where the rows
of𝐴 live on the simplex, the inner product mentioned above is iden-

tically 0. We therefore claim the following result.

Proposition 3.3. [Zero-Sum Reachability - w/ Budget Balance]
Assume agent rewards are mixed linearly and budget balance is main-
tained. Also, assume agents play the 2-player, zero-sum game (ZS)
(Def. 2). Then no setting of the𝐴matrix (static or dynamic) leads to
updates that proceed towards the Nash equilibrium.

Under discrete time dynamics, all updates will diverge away from

the Nash equilibrium.

3.2.2 Analytical Result: Money Burning. We can replicate the anal-

ysis above without the simplex constraint to show the following.

Proposition 3.4. [Zero-Sum Reachability - w/o Budget Balance]
Assume agent rewards are mixed linearly and budget balance is not
required. Also, assume agents play the 2-player, zero-sum game (ZS)
(Def. 2). Then no fixed𝐴matrix leads to updates that proceed towards



Figure 4:We plot the Average Commute Time, Average Commute Time Inequality, Average Commute Time + Inequality, and
Expected CO2 Emissions over training, respectively. These graphs represent the different global objectives.We expected that
the corresponding line for each plot will have the lowest loss (e.g., the red CO2 line will have the lowest values for the Expected
CO2 Emissions plot).We find that this is true for all plots except Average Commute Time. In that plot, the Comm. + Ineq. line
achieves lower commute time, indicating that adding terms like inequality to the global objective acts as a regularizer that helps
optimize for the average commute time objective.

the Nash equilibrium. However, an 𝐴𝑡 matrix can be dynamically
chosen that will lead updates towards the Nash equilibrium.

3.3 Fully Cooperative Games
In the case where all agents directly minimize the global objective

(ℓ𝑖 =𝑔∀𝑖; i.e., fully cooperative games), linear-reward mixing with

budget-balancewill have no effect. This is simply because aweighted

sum of the same local objectives results in the same local objective.

Therefore, a systemof agentswith the same local objective cannot be

re-purposed via these means to optimize any other global objective.

If the budget balance constraint is relaxed, then it is possible for

the mixture weights to sum to numbers other than 1. This transfor-

mation can be represented by introducing a coefficient in front of

each player’s objective that indicates the degree towhich their objec-

tive has been scaled up or down. This is analogous to introducing a

dimension-wise learning rate schedule such as Adam [14], but does

not change the locations of equilibria.

Given the negative results on zero-sum and cooperative games,

we restrict our attention to mixed-motive games in the following

sections. These games provide the diversity in agent objectives that

serves as the necessary basis for constructing new objectives.

4 MODEL CASE STUDY: TRAFFIC
We depict an example of a traffic network in Fig. 5. Each vehicles’s

local objective ℓ𝑖 is to minimize their occupant’s expected commute

time from starting node S to destination node E. This network illus-

trates Braess’ paradox, which is an observation that adding more

roads can increase congestion [7, 22, 30, 33]. Without edge AB, dri-

vers commute according to the Nash equilibriumwith an average

commute time of 65minutes. After adding edgeAB, the average com-

mute time of rational, commute-time minimizing decision makers is

80minutes [12].We experiment with the following global objectives

𝑔(𝒙) that we may want our multiagent system to align with:

• Minimizing total commute time:
∑
𝑖 ℓ𝑖 .

• Minimizing inequality: |ℓ𝑖− 1

𝑛

∑
𝑗 ℓ𝑗 |. This objective depicts the

need for all drivers to have an equal commute time.

• Minimizing total commute time and inequality:
∑
𝑖 ℓ𝑖 +|ℓ𝑖−

1

𝑛

∑
𝑗 ℓ𝑗 |. This objectives equally weights the prior two.

• Minimizing CO2 emissions. We generate a hypothetical sce-

nario where 1 tree is planted on path SAE, 1 tree is planted on

𝑛𝑆𝐴 ∈ {0−4},𝑛𝐵𝐸 ∈ {0−4}
10𝑛𝑆𝐴+10𝑛𝐵𝐸 <10𝑛𝑆𝐴+45

10𝑛𝑆𝐴+10𝑛𝐵𝐸 <10𝑛𝐵𝐸+45

Figure 5: TrafficNetwork, replicated from [12] with permis-
sion. Four drivers aim tominimize commute time from S to
E. Commute time on each edge depends on the number of
commuters, 𝑛𝑖 𝑗 . Without edge AB, drivers distribute evenly
across SAE and SBE for a 65 min commute. After edge AB
is added, switching to the shortcut, SABE, always decreases
commute time given the other driversmaintain their routes,
however, all drivers are incentivized to take the shortcut
resulting in an 80min commute.

path SBE, and 2 trees are planted on path SABE.We assume that

the number of trees on a path helps offset carbon emissions pro-

portionally, where the amount of carbon emission is defined as

𝑚𝑎𝑥 (0,𝑛𝑢𝑚𝐶𝑎𝑟𝑠𝑂𝑛𝑃𝑎𝑡ℎ−𝑛𝑢𝑚𝑇𝑟𝑒𝑒𝑠𝑂𝑛𝑃𝑎𝑡ℎ). Thus,more drivers

should take path SABE to reduce carbon emissions, even though

doing so may increase individual commute time.

Performance onGlobal Objectives.We first investigate howwell

D3C is able tominimize each global objectivewith a KL coefficient of

0 (see §2,D3C). Intuitively, we expect that if D3C is taskedwithmini-

mizingglobal objective 𝑖 , it should achieve lower losswhenmeasured

by objective 𝑖 thanD3C taskedwithminimizing global objective 𝑗 ≠𝑖 .

Results are shown in Fig. 4 across 10 seeds. For Inequality, Commute

Time + Inequality, and Expected CO2 Emissions, we verify that D3C

receives the lowest objectivewhen taskedwithminimizing that same

objective.However, for theCommuteTimeplot,we see that theCom-

mute Time + Inequality objective receives a lower loss than the Com-

mute Time objective. The Inequality objective is a helpful regularizer

that allows D3C to more easily converge on the optimal solution.

Trade off Between Local and Global Objectives.We ask how

much D3C is trading off individual objectives to optimize the global

objective. We investigate this trade off for different KL coefficients.

Fig. 6 shows the empirical Pareto-frontier and where the solutions



Figure 6: The empirical Pareto-frontier for all global objectives in the Traffic Domain. Given 𝑔(𝑥)+𝜆ℓ̄ (𝑥) where ℓ̄ (𝑥)= 1

𝑛

∑𝑛
𝑖=1

ℓ (𝑥),
we empirically solve for a value of 𝑥 that minimizes the expression for various values of 𝜆. Each dot represents the resulting
𝑔(𝑥),ℓ̄ (𝑥) for the values of 𝑥 that we solve for. The blue dots represent the Pareto-optimal points and the rest of the colored dots
represent runs of D3Cwith different KL coefficients. The color bar represents the different KL coefficients.

Figure 7: We study how D3C agents make the trade off between global and local objectives over time during training with a
KL coefficient of 0. The dotted blue lines represent theminimum values that you can achieve for each global and local objective.
The color bar represents training iterations. Ideally, we would like the trajectory to reach the lower left corner of the plot (where
the two blue dotted lines intersect). For the Inequality and CO2 plots, the local loss and global loss are not well-aligned, which
is why D3C prioritizes the global objective over the local objective.

thatD3C converged to lie on that frontier.We also visualize howD3C

trades off between global and local objectives throughout training

for a KL coefficient of 0 in Fig. 7. The blue dotted lines represent the

optimal values for both global and local objectives where the lower

left corner represents a point that minimizes both objectives per-

fectly. For all objectives, we observe that D3C is able to minimize the

global objective. For Inequality andCO2,wefind thatD3Cminimizes

the global objective at the expense of the local objective because

the local objective is not aligned with the global objective. We also

find consistent results with the third plot in Fig. 4 that adding a loss

inequality term to the commute time objective helps D3Cminimize

both global and local functions well.

5 MARL SOCIALDILEMMA: CLEANUP
Finally, we evaluate D3C on Clean Up, a sequential social dilemma

public goods game [16]. In Clean Up, there are 7 agents who are

rewarded for eating apples. Apples grow in an orchard that is in-

versely proportional to howmuch dirt there is in a nearby river. If

dirt accumulates in the river beyond a certain threshold, the apple

spawn rate drops to zero. Clean Up is an interesting domain since

some agents must learn to be prosocial and clean the river in order

for other agents to harvest apples.

All agents use A3C [19] as their underlying RL algorithm unless

specified otherwise. D3C agents must learn to share reward with

each other to incentivize each other to clean the river. RL agents

trained with a prosocial reward function serve as the dominant base-

line. The prosocial baseline results in an effective but unfair joint

policywhere 2 or 3 agents constantly clean the riverwhile the others

harvest apples. We ask whether we can choose a global objective

that will allow D3C to learn an effective but fairer policy (e.g., by

having agents take turns cleaning the river). To do so, we experiment

with the following global objectives (note that agent objectives are

expressed as rewards in this domain):

• Welfare + Equity:
∑
𝑖𝑟𝑖−|𝑟𝑖− 1

𝑁

∑
𝑗𝑟 𝑗 |.

• Welfare:
∑
𝑖𝑟𝑖 . We include this metric as an ablation.

• Equity: −∑𝑖 |𝑟𝑖− 1

𝑁

∑
𝑗𝑟 𝑗 |. We include this metric as an ablation.

In addition, we compare against two baselines:

• Prosocial‡:
∑
𝑖𝑟𝑖 . All agentsmaximize the total local reward. This

baseline represents what fully cooperative agents can achieve.

• IRL: 𝑟𝑖 . Indpendent RL. Agents maximize their own local reward.

Performance on Global ObjectivesWe begin by evaluating how

well D3C maximizes each global objective. We plot D3C’s perfor-

mance with respect to each global objective. Results are reported

across 3 seeds and are shown in Figures 8, 9, 10. Notably, we find that

theWelfare + Equity objective performs similarly to the Prosocial

baseline. Welfare + Equity is able to do so while achieving signifi-

cantly higher equity than the Prosocial baseline.

Trade-off Between Local and Global Objectives. How is D3C

re-purposing agent objectives? We further investigate how D3C

trades off between global and local objectives over training. Results

are shown in Fig. 11, reported over 3 seeds. The dotted blue lines

‡
This is different from D3C maximizing “Total Welfare” above, where agents

modify local reward functions over training via mixing such that

∑
𝑖𝑟𝑖 is maximized.

This is not the same as explicitly replacing each agent’s reward function with

∑
𝑖𝑟𝑖 .



Figure 8: Plottingmeanwelfare over training. Prosocial is the
current state of the art baseline.We implement the Prosocial
baseline by setting the sharingmatrix to the uniformmatrix.
Welfare + Inequity aversion performs similarly well to the
Prosocial baseline.

Figure 9: Plottingmean equity over time.Wefind that the IRL,
Welfare, and Equity baselines have themost equity, however,
all three of those baselines are not efficient at harvesting
apples.

Figure 10: Plottingmeanwelfare + equity over time.We find
that Equity and Welfare + Equity perform similarly well
because Equity achieves high equity and Welfare + Equity
achieves high welfare.

are empirical estimates of the optimal values of the local and global

objectives. The empirical estimates were calculated by taking the

maximum reward value over the different global objectives and

baselines. The Welfare + Equity objective best trades off between

local and global objectives whereas Equity and Welfare prioritize

the global objective over the local objective.

With an understanding of howD3C trades off between global and

local objectives across three domains, we further analyze whether

having different global objectives can give us desirable properties

such as zero-shot generalization in Clean Up.

Figure 11: We plot how D3C trades off between global and
local objectives over time with a KL coefficient of 0. The
dotted blue lines are empirical estimates of the optimal values
of the local and global objectives. The empirical estimates
were calculated by taking the maximum reward value over
the different global objectives and baselines. The Welfare
+ Equity objective best trades off between local and global
objectives whereas Equity and Welfare optimizes for the
global objective at the expense of the local objective.

Scenario 1 Visiting an altruistic bot population

Scenario 2 Our agents are resident and bots ride free

Scenario 3 Visiting a turn-taking bot population that cleans first

Scenario 4 Visiting a turn-taking bot population that eats first

Scenario 5 Our agents are visited by one reciprocator

Scenario 6 Our agents are visited by two suspicious reciprocators

Scenario 7 Our agents are visited by one suspicious reciprocator

Table 1: Description ofCleanup scenarios pairingD3C trained
agents with held-out partners.

Figure 12: The x-axis represents runs with different D3C
global objectives + baselines. The last two columns represent
agents whowere trained directly on the evaluation scenarios.
The y-axis represents different evaluation scenarios (Table 1).



5.1 Zero-shot Generalization
We evaluate our agents on six test scenarios in Clean Up. Each sce-

nario contains pre-trained bots that were not seen during training.

The bots in each scenario display a different behavior outlined in

Table 1 (e.g., free riding, turn-taking) that help us evaluate howwell

our trained agents can coordinate with these diverse unseen agents

out-of-the-box. In Fig. 12 we report the normalized reward that our

trained agents receive in each scenario (reward of 1 is the highest

and 0 is the lowest), as well as the mean normalized reward. We also

report the rewards that exploiter agents, or agents trained in the test

scenarios achieve. These exploiter agent scores aremeant to serve as

an upper bound, howeverwe cannot guarantee that their RL training

process converged to a global maximum.Welfare + Equity obtains

the highest overall mean reward followed by the exploiter agents.

We suspect thatWelfare + Equity generalizes well because this led

to turn-taking behavior.

6 DISCUSSIONANDCONCLUSION
Our analytical and empirical findings show: 1) Agents can optimize

non-welfare global objectives via reward redistribution in both sim-

ple and complex domains. However, this is not always the case, and

we investigate this analytically. 2) Achieving system-level global

objectives can come at some cost to individual agent utilities, thus

defining the trade-off between local and global objectives is critical.

3) Surprisingly, training on non-welfare objectives can actually lead
to better performance on (some) held out test scenarios.

Taken holistically, our findings clearly motivate the value of en-

abling a multi-agent system (MAS) to automatically reconfigure

agent loss functions to be more efficiently re-purposed for different

global objectives. In otherwords, this type of framework is useful for

fast adaptation of a MAS. Returning to the traffic domain, a system

of self-driving cars not only needs to optimise routes for commute

time and carbon emissions. Perhaps certain roads are experiencing

heavier traffic, and the MAS needs to adapt its global objective to

incorporate infrastructure sustainability. This investigation serves

as initial deep dive into understanding value realignment withmore
general global objectives. As a result, it opens up many interesting

follow-on questions for exploration.

6.1 Future Directions
6.1.1 Global Objectives. Our investigations focus on a small num-

ber of selected domains and global objectives that align well with

desirable agent behaviors in those domains. It would be interesting

to scale up this analysis and explore a larger and more diverse set

of global objectives. For example, objectives can be a function of: (a)

agents’ rewards (maximal welfare, inequity), (b) joint observations
(goal state), or (c) joint actions (desired behaviour). If it is a function
of agent rewards, it can fall into different classes, for example a linear

versus non-linear combination. When considering MARL domains,

these factors can play an important role is computing and assessing

tradeoffs between local and global objectives.

Importantly, where do or should global objectives come from? In

this work, we predefined the global objectives. However, if we are

interested in a value-aligned MAS, it is important to provide the

capability of specifying goals and train the MAS on goals reflective

of real user values and preferences. Ideally, specification would oc-
cur through natural language, as this lends a familiar and intuitive

interface for humans and allows significantly more flexibility in

specifying the goal. With that, one important consideration is that

fine-tuning of user-specified goal prompts is critical, given current

large language models (LLMs) [23]. A promising idea is to learn a

global reward model, trained using reinforcement learning from

human feedback (RLHF) [6, 34] or from AI feedback (RLAIF) [1].

6.1.2 Fair Allocation of Reward. In fully cooperative multi-agent

settings, themulti-agent credit assignment problem [4] refers to the

task of ascertaining individual agent contributions from the collec-

tive reward achieved. In problem settingswe consider, agents receive

local rewards from the environment; however, it is unclear to what

extent these rewards reflect the contributionmade. For example, in

CleanUp, cleaning agents are pivotal for improving welfare because

unless sufficient cleaning occurs, no apples are spawned. Yet only
agents that eat apples are rewarded. ThoughD3C redistributes agent

environmental rewards, its bias is to make theminimal modification
necessary for improving welfare. Minimizing the Price of anarchy,

however, is known in somecases to result in increased inequality [11].

Completely reassigning environmental rewards to lessen the impact

of such issues requires more research.

6.1.3 Reward Sharing Mechanisms. Relaxing the constraint of bud-
get balancing (e.g. through burning wealth [13]) and examining its

impact on the expected performance is a particularly interesting

question to explore in more depth. Howwould computed tradeoffs

between local and global objectives change if agents were allowed

to burn wealth, instead of having to distribute all wealth amongst

the population? Another interesting question is around designing

more sophisticated reward-sharingmechanisms. Some ideas include

examining (a) non-linear combinations of agent rewards or (b) state-

dependent reward mixtures.

6.1.4 Zero-Shot Generalisation. Our final finding about improved

performance on a subset of held-out test scenarios was both inter-

esting and unexpected. In particular, it was surprising because we

had not trained agents with the goal of generalisation to unseen

co-players at test time. Is it the case that agents generalise better

on test scenarios where unseen players behave in ways that are

similar to their training partners? Another hypothesis is that the

reward-sharing mechanism inherently induces a more diverse set

of agent policies amongst the training population (as compared to

self-play training) and agents are able to be more adaptive in novel

test scenarios. More research is needed to understand when this

generalisation improvement effect is expected to occur.
This work provides in-depth analysis in a small number of se-

lected domains on how to automatically modify AI agent objectives

to enable amulti-agent system to be more value-aligned. Moreover,

the analytical and empirical findings are promising, and they open

up many exciting avenues for future research and exploration.
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