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ABSTRACT
Communication is a widely used mechanism to promote coopera-

tion in multi-agent systems. In the field of emergent communication

agents are usually trained on a particular type of environment: co-

operative, competitive, or mixed-motive. Motivated by the idea that

real-world settings are characterised by incomplete information

and that humans face daily interactions under a wide spectrum of

incentives, we hypothesise that emergent communication could

be simultaneously exploited in the totality of these scenarios. In

this work we pursue this line of research by focusing on social

dilemmas, and develop an extended version of the Public Goods

Game which allows us to train independent reinforcement learning

agents simultaneously on different scenarios where incentives are

aligned (or misaligned) to various extents. Additionally, we intro-

duce uncertainty regarding the alignment of incentives, and we

equip agents with the ability to learn a communication policy, to

study the potential of emergent communication for overcoming

uncertainty. We show that in settings where all agents have the

same level of uncertainty, communication can help improve the

cooperation level of the system, while, when uncertainty is asym-

metric, certain agents learn to use communication to deceive and

exploit their uncertain peers.

KEYWORDS
Emergent Communication, Social Dilemmas, Multi-Agent Rein-
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1 INTRODUCTION
Cooperation is a fundamental feature of human societies. Its emer-

gence among self-interested agents has traditionally been consid-

ered a challenge by disciplines concerned with human interaction,

such as biology or sociology [40]. More recently, cooperation has

been gaining a central stage also in artificial intelligence research:

the ability for cooperation is now considered an essential feature for

artificial agents to be able to operate meaningfully within human

societies [1, 7]

Substantial literature exists already on the emergence of coop-

eration among artificial agents [8, 37, 38]. The bulk of it, however,

concentrates on the ability of agents to learn to cooperate in coop-

erative environments, that is, environments where clear incentives

for cooperation exist. More recently, a handful of papers have also

started to address the challenge of the emergence of cooperation
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in environments where the incentives for cooperation are weaker

[5, 35], which are called mixed-motives environments [41]. Typical

instances of such environments are those involving interactions

known in economics and sociology as social dilemmas [24]. The

present paper focuses on one such social dilemma, known as the

public good game [2], taking a reinforcement learning (RL) [44]

perspective.

Within the multi-agent reinforcement learning (MARL) frame-

work, agents are usually trained to act optimally in either cooper-

ative, competitive or mixed-motives environments. However, hu-

mans and animals learn to operate on all of those environments

at the same time. Therefore we believe that is important to study

the learning outcome of RL agents when trained on a spectrum of

environments, in which their incentives are (mis)aligned to vari-

ous degrees. This study is arguably essential for the development

of MARL based applications that are able to deal with complex

real-world scenarios.

In this work, we analyze the learning process of agents trained

on a spectrum of environments eliciting different levels of coop-

eration. Crucially, we aim to understand what are the effects of

uncertainty regarding the degree of incentives’ alignment on the

level of cooperation that agents are able to achieve, and whether

cheap-talk [14] (i.e., non-binding and costless signals) emergent

communication can help improve it.

We present the following key contributions:
• We develop a multi-agent environment based on the Public

Goods Game, which we refer to as the Extended Public Good

Game (EPGG). This environment allows to train agents on a

spectrum of games ranging from fully cooperative, mixed-

motives, to fully competitive;

• Within the EPGG, we analyze the impact of uncertainty on

the level of cooperation achieved by independent RL agents.

We show that the introduction of uncertainty in a mixed

cooperative-competitive scenario shifts the outcome towards

a less cooperative behavior.

• We explore the role of emergent communication in the EPGG.

We empirically show that when all the agents are uncertain,

introducing a communication channel between agents can

help to overcome uncertainty, specifically moving the out-

come of the learning process towards cooperation. Moreover,

when uncertainty is asymmetric, communication can be used

by the certain agents to deceive the others.

• We also show that adding communication to the case with

uncertainty allows to improve cooperation over the case
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with full observability, opening up a novel interesting route

to support cooperation when incentives are not fully aligned.

2 RELATEDWORK
Our work builds on previous research in the fields of emergent com-

munication and social dilemmas within multi-agent reinforcement

learning.

Emergent Communication. Seminal works in the emergent com-

munication field were published by Foerster et al [16, 17], which

studied a sequential decision-making problem in a partially observ-

able multi-agent system. Later, [43] used a continuous communi-

cation protocol to solve cooperative tasks, and [42] was the first

to work on mixed and competitive tasks. In subsequent years the

field of emergent communication took off — with an overview pre-

sented in [23, 26] — and many papers focused on solving referential

games, where a pair of sender and receiver agents have to learn a

communication protocol to solve cooperative tasks [13, 18, 27, 28].

Most of the work concerning the emergence of communication

focused on cooperative scenarios. Nonetheless, the study of mixed

scenarios remains highly relevant, since operating in real-world

settings often includes contexts that are not completely cooperative.

One of the papers focusing on this setting is the one by Cao et al.

[5], studying a bargaining negotiating scenario in which agents

use emergent communication to split a common pool of items.

This work explores how communication aids prosocial agents, but

neglects the self-interested case. A handful of papers focus on

emergent communication among competing teams of agents. An

example is the work of Liang et al. [32], where authors analyze

emergent communication in the game “Task, Talk & compete". Sim-

ilar work has been developed by Vanneste et al. [46], where the

focus is the prey-predator game, with the addition of an (emergent)

communication channel among predators; as well as by Brandizzi et

al. [4], where authors explore the role of emergent communication

in the social-deduction Werewolf game, as a tool to improve the

performance of the playing teams. [35] tackled a mixed cooperative-

competitive signaling game. Their setting defines a non-situated

game with variable amount of cooperation. These characteristics

make this setting similar to ours; however the authors study the

results of training the agents separately in different environments

with different incentive alignments, while we focus on learning con-

currently on a set of environments that present these differences.

Moreover, referential tasks are usually restricted to two agents,

while social dilemmas are scalable to any number agents.

Social Dilemmas.As Kollocks defines them in 1998, “Social Dilem-

mas are situations where individual rationality leads to collective

irrationality” [24], and are characterized by the presence of subop-

timal equilibria. Social dilemmas have been studied in game theory,

psychology and economics. Researchers have focused on how to

solve social dilemmas avoiding suboptimal competitive equilibria

and increase the cooperativeness of the outcome. A common out-

come of these studies is the positive effect of communication on the

cooperation level of the agents [9, 24, 25]. Communication among

players has also been studied from a game theoretic perspective:

in [6] the authors focused on information exchange in a sender-

receiver signaling game, and conclude that perfect communication

Figure 1: Representation of the Public Goods Game with
three players and multiplication factor 𝑓 = 2.

occurs only when agents’ goals are perfectly aligned, and the more

the incentives of the agents are misaligned, the more it declines.

The effect of uncertainty with respect to the payoffs in the public

goods game has been studied extensively in literature [3, 11, 15,

30]: different works show that, in this case, the contributions to

the public good are significantly lowered. Social dilemmas have

been studied also from the reinforcement learning perspective.

Much literature focuses in sequential social dilemmas, which are

temporally-extended games with game theoretic payoff matrices.

[10, 29] try to learn cooperation in multi-agent social dilemmas,

without the use of communication. O’Callaghan et al. [36] use

multi-objective reinforcement learning to tune the cooperative-

competitive behavior of agents. In [20] authors implement fairness

norms to solve dilemmas. In [21] authors use influence rewards

to enhance coordination and communication among agents. The

public good game has been previously studied only in [34], where

authors implemented a simulator of reinforcement learning agents

playing the game.

3 PRELIMINARIES
In this section we define the Public Goods Game and discuss its

equilibria, and introduce our proposed extension.

3.1 The Public Goods Game
A public good is an asset that can benefit all individuals in a social

group, both the ones that participated in its production and the

ones who did not [24]. Given this definition, the strategy a rational

agent should adopt (i.e., an agent whose only goal is to maximize

its own earning) is profiting from the public good without investing

on it — also called free-riding. This strategy is driven by the goal of

maximizing the utility of the individual, and also reinforced by the

fear that not enough of the other participants will cooperate to the

public good, in which case the individual would end up losing all

or part of its endowment [24]. However, if every individual follows

the rational strategy the public resource would not be created, so

no-one can benefit of it. In this game the incentives of the players

are neither perfectly aligned nor misaligned. Using the terminology

of [41], we refer to this type of interaction where the utilities of

the players are affected by the presence of partial conflict and

interdependence as “mixed-motive”.

Definition 3.1 (Public Goods Game). A Public Goods Game (PGG)

is a tuple ⟨𝑁, 𝒄, 𝐴, 𝑓 , 𝒖⟩, where 𝑁 denotes the set of players, and



|𝑁 | = 𝑛 ∈ N is the number of players; 𝒄 = (𝑐1, . . . , 𝑐𝑛) with 𝑐𝑖 ∈ R,
for agents 𝑖 ∈ 1, . . . , 𝑛 is the profile of endowments, that is the

amount of coins that each agent possesses; 𝐴 = {𝐶, 𝐷} is the set
of actions, that is, every player can either cooperate (investing

the full endowment in the public good) or defect (no investment);

we define 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴 as the action profile representing

actions chosen by each agent. 𝑓 ∈ R≥0 is the multiplication factor,

that is, the factor by which the collective investment is multiplied

to generate the public good. 𝒖 is the vector of utilities the agent

receive after acting, where the utility for agent 𝑖 is a function 𝑢𝑖 :

𝐴𝑛 × R≥0 × R𝑛 → R, defined as:

𝑢𝑖 (𝒂, 𝑓 , 𝒄) =
1

𝑛

𝑛∑︁
𝑗=1

𝑐 𝑗 𝐼 (𝑎 𝑗 ) · 𝑓 + 𝑐𝑖 (1 − 𝐼 (𝑎𝑖 )), (1)

where 𝑎 𝑗 denotes the 𝑗-th entry of 𝒂 and 𝐼 (𝑎 𝑗 ) is the indicator

function, equal to 1 if the action of the agent 𝑗 is cooperative, and

0 otherwise.

We define the strategy 𝑠𝑖 of player 𝑖 as a probability distribution

over her set of actions 𝐴: 𝑠𝑖 ∈ 𝑆 , where 𝑆 = Δ(𝐴) is the set of all
possible strategies, and Δ(𝐴) is the set of probability distributions

over the set of actions. A strategy profile 𝒔 is then a tuple containing
the chosen strategies of all the agents 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆𝑛 . A
strategy is called pure when the player has probability 1 of taking a

specific action, and is called mixed otherwise. We refer to a profile

𝒔 where each agent selects 𝐶 (respectively, 𝐷) with probability 1 as

the fully cooperative (respectively, fully competitive) profile. We can

then define the expected utility on the profile vector 𝑠 as:

𝑢𝑖 (𝒔, 𝑓 , 𝒄) =
∑︁
𝑎∈𝐴

𝑢𝑖 (𝑎, 𝑓 , 𝒄)
𝑛∏
𝑗=1

𝑠 𝑗 (𝑎 𝑗 ) (2)

Hereafter, where the values 𝑓 and 𝒄 are fixed, we call 𝑢 (𝒔) =
𝑢 (𝒔, 𝑓 , 𝒄).

Definition 3.2 (Domination). Given two strategies 𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆 for

player 𝑖 , and the set of strategy profiles for all the other players 𝑆−𝑖 ,
with 𝑠−𝑖 = (𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖+1, . . . , 𝑠𝑛), we can say that:

• 𝑠𝑖 dominates 𝑠′
𝑖
if 𝑢 ((𝑠𝑖 , 𝑠−𝑖 )) ≥ 𝑢 ((𝑠′𝑖 , 𝑠−𝑖 )), and ∃ 𝑠

★
−𝑖 ∈ 𝑆−𝑖

for which 𝑢 ((𝑠𝑖 , 𝑠★−𝑖 )) > 𝑢 ((𝑠
′
𝑖
, 𝑠★−𝑖 ))

• 𝑠𝑖 weakly dominates 𝑠′
𝑖
if 𝑢 ((𝑠𝑖 , 𝑠−𝑖 )) ≥ 𝑢 ((𝑠′𝑖 , 𝑠−𝑖 )) ∀𝑠−𝑖 ∈

𝑆−𝑖
A strategy (weakly) dominates all the other strategies for an agent

if it is (weakly) dominant [31].

Definition 3.3 (Pareto Optimality). Strategy profile 𝒔 dominates

profile 𝒔′ if, ∀𝑖 ∈ 𝑁 , 𝑢𝑖 (𝒔) ≥ 𝑢𝑖 (𝒔′) and there exists 𝑖 ∈ 𝑁 such that

𝑢𝑖 (𝒔) > 𝑢𝑖 (𝒔′). A strategy profile 𝒔∗ is Pareto optimal if there exists

no strategy profile 𝒔 such that 𝒔 dominates 𝒔∗.

Definition 3.4 (Dominant Strategy Equilibria). A strategy profile 𝒔
is a (weakly) dominant strategy equilibrium if∀𝑖 ∈ 𝑁 , 𝑠𝑖 is a (weakly)

dominant strategy for 𝑖 , that is: 𝑢𝑖 (𝒔) ≥ 𝑢𝑖 ((𝑠𝑖 , 𝒔−𝑖 )) ∀𝑠𝑖 ∈ 𝑆 .
We can characterize equilibria in PGG based on the value of the

multiplication factor 𝑓 , as follows:

Proposition 1. For any PGG ⟨𝑁, 𝒄, 𝐴, 𝑓 , 𝒖⟩:
• If 𝑓 > 𝑛, then the fully cooperative profile is the only domi-
nant strategy equilibrium. Such profile is, furthermore, Pareto
optimal;

• If 1 < 𝑓 ≤ 𝑛, then the only Pareto optimal profile is the
fully cooperative one. The fully competitive profile is one of
the weakly dominant strategy equilibria (when considering
only two players, then both the fully cooperative and the fully
competitive profiles are weakly dominant strategy equilibria);
• if 0 ≤ 𝑓 ≤ 1, the fully competitive profile is the only dominant
strategy equilibrium. Such equilibrium is, furthermore, Pareto
optimal.

The proposition follows from the following simple observations.

The best-case scenario for agent 𝑖 are profiles where all other players

invest, generating a public good of value at least 𝑓 · 𝑐 · (𝑛 − 1). In
such case, if 𝑓 > 𝑛, then the dominant strategy for 𝑖 is to contribute

by Equation (1). If 𝑓 ≤ 𝑛, then it is (weakly) better for 𝑖 to defect,

and this remains to be the case through to the worst-case scenario

in which every other player defects. However, public goods whose

value exceed their costs can be produced whenever 𝑓 > 1. In such

cases, Pareto optimality demands full cooperation. An example of

Proposition 1 is given in Figure 2, which illustrates the normal form

representation of the game for two players using the multiplication

factors 𝑓 = {0.5, 1.5, 2, 3.5}.

3.2 The Extended Public Goods Game
The classic Public Goods Game studied in game theory and behav-

ioral economics focuses on the interval in which the multiplication

factor is bigger than 1 and smaller than the number of players

1 < 𝑓 < 𝑁 . However, in this work we want our agents to be able to

cope with a spectrum of environments that goes from cooperative,

to competitive, and the mixed. Therefore we extended the interval

of allowed multiplication factors to 0 < 𝑓 < 𝑅+, where 𝑅+ > 𝑁

is an arbitrary value, to enable the agents to play in cooperative

settings too. The range 𝑓 < 1 allows us to face competitive sce-

narios as well. We call this setting as the Extended Public Goods

Game (EPGG). Varying the multiplication factor, we are defining

a set of environments on which we train our RL agents. For ev-

ery interaction, a different environment is sampled from the set of

available ones. In these environments, the agents have access to the

information regarding the amount of coins they are endowed with

and the value of the multiplication factor. With these observations,

we expect agents to learn to cooperate when the multiplication

factor is bigger than the number of players, and to learn to defect

with a certain probability when the value is smaller. In particular,

agents should learn to defect with probability 1 whenever 𝑓 = 0.

The main objective of our work is to study the effect of emergent

communication on uncertain observations when agents are trained

on a set of cooperative, competitive and mixed environments. In

particular, we want to observe the effects of these ingredients when

the uncertainty is imposed on the degree of alignment of incentives.

For this purpose, we introduce the possibility of observing the

multiplication factor with uncertainty.

4 METHODS
In this section we describe the framework we adopt to tackle the

learning process in the EPGG setting, i.e. Multi-Agent Reinforce-

ment Learning, and the architectures we use, dwelling on the im-

plementation of how agents deal with uncertainty and the commu-

nication protocol.



𝑓 = 0.5 Player 𝑋

𝐶 𝐷

Player 𝑌
𝐶 2, 2 1, 5

𝐷 5, 1 4, 4

𝑓 = 1.5 Player 𝑋

𝐶 𝐷

Player 𝑌
𝐶 6, 6 3, 7

𝐷 7, 3 4, 4

𝑓 = 2 Player 𝑋

𝐶 𝐷

Player 𝑌
𝐶 8, 8 4, 8

𝐷 8, 4 4, 4

𝑓 = 3.5 Player 𝑋

𝐶 𝐷

Player 𝑌
𝐶 14, 14 7, 11

𝐷 11, 7 4, 4

Figure 2: Normal form games for two players with 4 coins each.

4.1 Multi-Agent Reinforcement Learning
When mapping the EPGG to the MARL framework, we structure

the interactions in the following manner. At the beginning of each

episode 𝑡 (i.e., interaction), a multiplication factor 𝑓𝑡 is sampled from

a given set 𝐹 = {𝑓0, . . . , 𝑓𝐾 } of factors, where 𝐾 is the total number

of available values (for additional information see Section 5). The

state of agent 𝑖 (with 𝑖 = 0, . . . , 𝑛), is defined by the sampled mul-

tiplication factor and the endowment: 𝑠𝑖,𝑡 = (𝑓𝑡 , 𝑐𝑖,𝑡 ).1 Under no
uncertainty, the agents receive the precise value of the multiplica-

tion factor, otherwise they observe 𝑓𝑡 with added noise (Section 4.2)

i.e.
ˆ𝑓𝑡 . We study distinctly two scenarios: the one without communi-

cation among agents, and the one with. We implemented both the

communication policy 𝜋𝐶 and the action policy 𝜋𝐴 of the agents as

multi-layered perceptrons with one or two hidden layers, and tanh
nonlinearities. Agents are trained independently, for 500 epochs, us-

ing the REINFORCE algorithm with baseline [47]. The environment

is implemented using the PettingZoo library [45], and is available,

together with the experiments.
2

No communication scenario. In this setting, after receiving the

observation, all the agents act simultaneously. The input of the

action policy is only defined by the observation the agent gets:

𝜋𝐴𝑖
: 𝑂𝑖 ×𝐴→ [0, 1], where 𝑂𝑖 is the set of possible observations

for agent 𝑖 . After acting, every agent receives a reward 𝑟𝑖,𝑡 from the

environment, which is equal to the utility function of the EPGG pre-

sented in Equation 1, and therefore depends on the current value of

the multiplication factor 𝑓𝑡 , the endowment 𝒄𝑡 and the current joint
action of the agents 𝒂𝑡 : 𝑟𝑖,𝑡 = 𝑢𝑖,𝑡 (𝒂𝑡 , 𝑓𝑡 , 𝒄𝑡 ). Since different scenar-
ios bring different rewards, we normalized the rewards between

0 and 1. The normalization of the reward for the agents playing

in a specific scenario is computed by dividing the current reward

received by the maximum possible reward the agent could have

received in that scenario.

Communicative scenario. In this setting, before acting, a subset 𝑍

of agents (hence, 0 < |𝑍 | ≤ 𝑛) communicate by sending a message

sampled from the output layer of their communication network.

The observations received from the environment define the input

of the communication policy 𝜋𝐶𝑖
: 𝑂𝑖 ×𝑀 → [0, 1] where𝑀 is the

set of possible messages, whose size is a training hyperparameter.

Basing ourselves on previous work in emergent communication,

we choose to work with a discrete message set. This choice is based

on the idea that a discrete policy could be naturally interfaced with

natural language [19, 26]. After receiving the observation from

the environment, the communicating agent 𝑖 send a message𝑚𝑖,𝑡 .

1
We note that in our experiments the agents’ endowments are all fixed to the same

constant value 𝑐𝑖,𝑡 = 𝑐 , and thus have no effect on the equilibria of the game.

2
See https://github.com/nicoleorzan/marl-emecom.

Figure 3: Representation of the setup with two learning
agents and communication, where Agent 0 has complete
observation of the multiplication factor 𝑓 , and sends mes-
sages to Agent 1 who observes the factor with uncertainty.

The messages of all the communicating agents are concatenated,

and represent, together with the observations, the input to the ac-

tion policy 𝜋𝐴𝑖
: 𝑂𝑖 ×𝑀 |𝑍 | ×𝐴→ [0, 1]. From this point onwards,

the episode proceeds as in the non-communicative scenario. Algo-

rithm 1 presents the learning algorithm employed in the case with

communication.

Algorithm 1: Training with communication policies

𝒅𝒆𝒇 𝒊𝒏𝒆: 𝑁 set of agents; 𝑍 set of communicative agents;𝑀

message set for every agent; 𝐴 action set for each agent;𝑂𝑖
observations set for agent 𝑖; 𝑓 sampled multiplication

factor; 𝝈 vector of uncertainties;

𝜋𝐶𝑖
: 𝑂𝑖 ×𝑀 → [0, 1] communication policy of agent 𝑖;

𝜋𝐴𝑖
: 𝑂𝑖 ×𝑀 |𝑍 | ×𝐴→ [0, 1] action policy of agent 𝑖;

for 𝑒 = 0; 𝑒 < 𝐸𝑝𝑜𝑐ℎ𝑠; 𝑒 + + do
for 𝑏 = 0;𝑏 < 𝐵;𝑏 + + do // batch size

𝑓 ← env.sample();

ˆ𝑓𝑖 ← 𝐺 (𝑓 , 𝜎𝑖 );
for 𝑖 = 1; 𝑖 < |𝑁 |; 𝑖 + + do

if 𝑖 in 𝑍 then
m𝑖 ← 𝜋𝐶𝑖

( ˆ𝑓𝑖 );

𝒎 ← concat (m𝑖 );

𝑎𝑖 ← 𝜋𝐴𝑖
( ˆ𝑓 ,𝒎);

update 𝜋𝐶𝑖
and 𝜋𝐴𝑖

for every agent

4.2 Uncertainty
In the EPGG, uncertainty is introduced as Gaussian noise over

the observation of the multiplication factor: the observed
ˆ𝑓𝑖,𝑡 is

https://github.com/nicoleorzan/marl-emecom


randomly sampled from the distribution
ˆ𝑓𝑖,𝑡 ∼ 𝑁 (𝑓𝑡 , 𝜎𝑖 ), where 𝑓𝑡

is the multiplication factor of the environment at training step 𝑡 ,

and 𝜎𝑖 is the uncertainty of agent 𝑖 .

When uncertainty is present, we allow agents to handle it with

or without using a model. Without a model, the noisy observation

is directly provided as part of the input of the agents, and we let

the neural networks to inherently model the uncertainty. Other-

wise, agents keep a probabilistic model of the observed factors via a

Gaussian Mixture Model (GMM)
3
: we keep a history of all the mul-

tiplicative factors observed during the training, and we use those

to fit the GMM. Afterwards, the vector of predicted probabilities

for each component of the mixture is provided as part of the input

to the agent’s network.

Figure 3 depicts the adopted setup in the case of two learning

agents with communication, and uncertainty for agent 1.

4.3 Communication
In order to facilitate the agents to use the communication channel

we bias the loss function of the communication policy as suggested

by Eccles et al. in [12]. To this end, we add a loss term which is

minimized when the average entropy of the message policy is high

𝐻 (𝜋𝐶𝑖
), and the entropy of the message policy conditioned on the

input 𝐻 (𝜋𝐶𝑖
|𝑜𝑖 ) reaches a target value 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 (a hyperparameter):

𝐿𝑝𝑠 (𝜋𝐶𝑖
, 𝑜𝑖 ) = −E(𝜆𝐻 (𝜋𝐶𝑖

) − (𝐻 (𝜋𝐶𝑖
|𝑜𝑖 ) − 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 )2), (3)

where 𝐻 (𝜋𝑖
𝐶
) is estimated over batches of messages during train-

ing. To bias for positive listening we add a term to the loss of the

action policy, which is maximized when the actions of an agent

are highly influenced by the messages they receive. We do this by

computing the divergence between the agent’s policy conditioned

on the received messages𝑚𝑡 , and the unconditioned one, where

the message is replaced by the empty vector 0:

𝐿𝑝𝑙 (𝜋𝐴𝑖
, 𝑜𝑖 ,𝑚𝑖 ) = −

∑︁
𝑎∈𝐴𝑖

|𝜋𝑖𝐴 (𝑎 |𝑜𝑖 ,𝑚𝑖 ) − 𝜋
𝑖
𝐴 (𝑎 |𝑜𝑖 , 0) | (4)

In order to quantify the information exchanged by the agents,

we implement measures to detect signaling and listening behaviors,

following the methods proposed by [33]. In particular we measure

the mutual information, which quantifies the correlation between

messages and actions. Given a message policy and an action policy,

the mutual information between messages and actions is:

𝑀𝐼 =
∑︁
𝑎∈𝐴

∑︁
𝑚∈𝑀

𝑝 (𝑎,𝑚) log 𝑝 (𝑎,𝑚)
𝑝 (𝑎)𝑝 (𝑚) , (5)

where 𝐴 is the set of actions available to the agents, and 𝑀 is

the set of messages. Probabilities are computed empirically during

training, averaging over the messages and actions of the epoch.

If messages and actions come from the same agent, this measure

takes the name of speaker consistency, and allows us to determine

how much the actions and the messages of the agent are aligned.

If instead they come from different agents, we are observing how

much the messages send by one agent influence the actions taken

by another. In this case, the metric takes the name of instantaneous

3
We implement the GMM module using Scikit-Learn’s Gaussian Mixture class [39].

coordination, and it measures positive listening for the agent that

takes the actions [33].

5 RESULTS
We want to observe the behavior of the system when agents are

trained on a pre-specified set of multiplication factors that contains

values defining cooperative, competitive and mixed situations. The

values have been chosen so that the expected utility is equal under

either the cooperative or competitive actions, given that the under-

lying game is not known to the agents during their interactions.

Therefore the dominant strategy ex-ante is to select among the

cooperative or defective actions uniformly at random.

The value of the endowment is fixed to 4 coins for all the agents.

In every scenario involving uncertainty, experiments are run both

with and without the GMM module for the uncertain agents. The

results shown come from averages of 100 experiments on each

considered scenario.

5.1 Two-Player Games
In the scenario consisting of two-players, we define the following

set of multiplication factors: 𝐹 = {0.5, 1.5, 2.5, 3.5}. In this game, for

rational agents it is dominant to defect when 𝑓 ∈ {0.5, 1.5}, and to

cooperate when 𝑓 ∈ {2.5, 3.5}. Hereafter we refer to 𝑓 ∈ {2.5, 3.5}
as cooperative games, to 𝑓 = 0.5 as the competitive games and to

𝑓 = 1.5 as the mixed-motive one. We perform experiments for three

different training scenarios: 1) both agents have full observability

of the environment; 2) one agent receives uncertain observations of

the multiplication factor; 3) both agents receive uncertain observa-

tions on the multiplication factor. Table 1 summarizes the probabil-

ity of cooperation resulting from the different experiments.Below

we discuss the main findings, and we show the plots representing

the returns for the agents in the different scenarios. In these plots

we also add three baselines, displayed as horizontal lines: the re-

turns the agents would obtain if they always cooperate (dashed

red line), always defect (dashed blue line), cooperate or defect with

probability 0.5 (dashed green line).

Figure 4 shows the returns during training in the scenariowith no

uncertainty and with communication, grouped per multiplication

factor. In the communication scenario, we allow both agents to

send and receive messages. The results for the setting with and

without communication are the consistent for the cooperative and

competitive games: in the cooperative games the agents converge

to cooperation, which is the strictly dominant strategy equilibria

and Pareto optimal profile, and allows to maximize the benefit

of the whole group. The same happens when 𝑓 = 0.5, where as

expected the agents converge to defection. When faced with the

mixed-motive game, the non-communicating agents converge to

the defection as well, while in the communication scenario the

probability to cooperate reaches 0.32 (i.e., they avoid full defection,

but fail to reach the Pareto optimal behavior): here the social welfare

of the group (i.e. the sum of returns over all the agents) increases

over the dominant strategy profile.

Figure 5 depicts the returns during training in the scenario where

one agent is uncertain (agent 1), and no communication is allowed.

The uncertainty value is fixed to 𝜎 = 2. As expected, adding uncer-

tainty over the observations of one agent worsens its performance:



(a) 𝑓 = 0.5 (b) 𝑓 = 1.5 (c) 𝑓 = 2.5 (d) 𝑓 = 3.5

Figure 4: The returns during training for two agents and no uncertainty, in the communication setting.

(a) 𝑓 = 0.5 (b) 𝑓 = 1.5 (c) 𝑓 = 2.5 (d) 𝑓 = 3.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.5 (g) 𝑓 = 2.5 (h) 𝑓 = 3.5

Figure 5: The return during training, in the scenario with one uncertain agent (agent 1, with 𝜎 = 2), in the non-communication
case (upper row) vs communication case (lower row).

the agent cannot disentangle the situations in which it is preferred

to cooperate from the ones in which it is preferred to defect. Mod-

eling uncertainty in this case does not change the outcome. The

certain agent (agent 0), as expected, keeps converging to the ra-

tional behaviors. We introduce a unidirectional communication

step in this scenario, where the certain agent is allowed to send

messages to the uncertain one. We notice the following effects: 1) in

the cooperative games, communication helps the uncertain agent to

recover the optimal strategy, and act cooperatively with probability

0.97; in this scenario modeling uncertainty does not provide any

additional benefit; 2) in the competitive and mixed games, commu-

nication allows the certain agent to exploit the uncertain agent,

mainly in the case in which no GMM module is used. We argue

that explicitly modelling the uncertainty of the environment can

provide the agent with additional information, and it is therefore

less likely to be deceived.

This second claim is supported as well by Figure 7, that shows the

trend of the instantaneous coordination and speaker consistency

(Equation 5) during training (in the three scenarios). We observe

that the instantaneous coordination is higher when one agent is

uncertain and no modeling over uncertainty is allowed (Fig. 7b):

here, the only way to recover information is to listen to the received

messages and act accordingly. However, the uncertain agent gets

easily deceived in this way, as shown by the speaker consistency

metric (i.e., agent 0 is not acting in line to its own messages).

The returns during training for the scenario with two uncer-

tain agents (and 𝜎 = 0.5) are shown in Figure 6. Again, adding

uncertainty lowers the ability of the two agents to distinguish the

situations in which it is rational to cooperate or defect. This hap-

pens especially when 𝑓 ∈ {1.5, 2.5} since here the introduction of

uncertainty makes it more likely that the agents believe they are

playing a different game that the true one. We introduce a bidirec-

tional communications step in this scenario: here both agents send

and receive messages. We observe that the main effect of commu-

nication is to improve the cooperation in the two aforementioned

intermediate environments, while it has almost no impact on the

other two. However, when 𝑓 ∈ {1.5, 2.5}, it is the combined effect

of communication and uncertainty modeling that has the highest

impact in aiding cooperation. In particular, in the mixed motive

scenario, those move the equilibria of the game from complete de-

fection, to cooperation with average probability 0.65, and to 0.92

when 𝑓 = 2.5 (see Table 1). As Figure 7 shows, speaker consistency



(a) 𝑓 = 0.5 (b) 𝑓 = 1.5 (c) 𝑓 = 2.5 (d) 𝑓 = 3.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.5 (g) 𝑓 = 2.5 (h) 𝑓 = 3.5

Figure 6: The returns during training, in the scenario with two uncertain agents (𝜎 = 0.5), in the non communication case (upper
row) vs communication case (lower row).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: Instantaneous coordination for the cases: full com-
munication and no uncertainty (top row), one uncertain
agent (central row), two uncertain agents (bottom row).

signals that in this setting both agents send reliable messages (Fig.

7f). The instantaneous coordination shows a non-zero amount of in-

formation transfer as well (Fig. 7c). We also observe how the agents

cooperate with higher probability in the mixed motive scenario,

when uncertainty and communication are present (the average co-

operation probability is 0.65), with respect to the scenario with full

observability (average cooperation probability 0.32). This effect is

worth investigating further, and will be part of our future work.

5.2 Three-Players Games
We run experiments for the three-players scenario, for which we de-

fine the following set of multiplication factors: 𝐹 = {0.5, 1.5, 2.5, 3.5,
4.5, 5.5}. This values are chosen following the criterion defined at

the beginning of Section 5. In this setting, the dominant strategy

for rational agents is to defect when 𝑓 ∈ {0.5, 1.5, 2.5}, and coop-

erate when 𝑓 ∈ {3.5, 4.5, 5.5}. Here, we refer to 𝑓 ∈ {3.5, 4.5, 5.5}
as cooperative games, to 𝑓 ∈ {1.5, 2.5} as mixed-motive ones and

to 𝑓 = 0.5 as the competitive one. We perform experiments for

three different scenarios: 1) agents have no uncertainty on 𝑓 ; 2) two

agent receives uncertain observations of 𝑓 ; 3) three agents receive

uncertain observations of 𝑓 .

The experiments on these three setting are consistent with the

two players scenarios. The experiments on the first setting result in

the exact same behavior that we find for two-agents and no uncer-

tainty: agents converge to cooperation in the cooperative games and

to defection in the competitive one, while in the mixed-motive ones

cooperation is almost zero when no communication is included,

and this increases when agents communicate (see Table 2). When

two agents are uncertain (𝜎 = 2), again they struggle to distinguish

when it is convenient to cooperate from when it is convenient to

defect. This uncertainty slightly affects the certain agent as well,

which can no longer perfectly converge to the dominant strategies.

Adding the communication step (from the certain agent to the un-

certain ones) allows the certain agent to deceive the others when



Cooperation probabilities for the two-agents scenarios: non-communication (NC) and communication (C), with uncertainty
modeling (UM) and without, averaged over 80 runs. When more agents have the same characteristics, the average measure is
reported. The bold values highlight the principal outcomes.

Table 1: Two agents

Multiplicative Factor

Agents’

f=0.5 f=1.5 f=2.5 f=3.5

Cooperation Probabilities

NC C NC C NC C NC C

Both Certain (avg) 0.00 0.08 0.02 0.32 1.00 0.93 1.00 0.95

Certain Agent 0.00 0.09 0.01 0.17 1.00 0.89 1.00 0.90

Uncertain Agent (𝜎 = 2) 0.17 0.95 0.36 0.96 0.61 0.97 0.80 0.97

Certain Agent 0.00 0.00 0.00 0.03 1.00 0.97 1.00 0.98

Uncertain Agent, UM (𝜎 = 2) 0.36 0.47 0.54 0.64 0.68 0.77 0.84 0.85

Both Uncertain (avg) (𝜎 = 0.5) 0.00 0.10 0.20 0.54 0.76 0.78 0.97 0.93

Both Uncertain, UM (avg) (𝜎 = 0.5) 0.00 0.18 0.16 0.65 0.76 0.92 0.98 0.99

Table 2: Three agents

Multiplicative Factor

Agents’

f=0.5 f=1.5 f=2.5 f=3.5 f=4.5 f=5.5

Cooperation Probabilities

NC C NC C NC C NC C NC C NC C

All Certain (avg) 0.00 0.10 0.00 0.16 0.11 0.21 0.95 0.33 1.00 0.68 1.00 0.73

Certain Agent 0.11 0.00 0.12 0.02 0.24 0.14 0.60 0.78 0.66 0.97 0.67 0.97

Uncertain Agents (avg) (𝜎 = 2) 0.32 0.54 0.39 0.58 0.39 0.60 0.47 0.61 0.48 0.66 0.55 0.68

Certain Agent 0.15 0.10 0.15 0.11 0.25 0.19 0.62 0.56 0.65 0.65 0.65 0.65

Uncertain Agents, UM (avg) (𝜎 = 2) 0.33 0.77 0.40 0.81 0.44 0.82 0.53 0.86 0.58 0.86 0.69 0.86

All Uncertain (avg) (𝜎 = 1) 0.10 0.36 0.15 0.39 0.32 0.46 0.55 0.57 0.62 0.67 0.68 0.71

All Uncertain, UM (avg) (𝜎 = 1) 0.01 0.73 0.07 0.75 0.37 0.78 0.63 0.80 0.88 0.81 0.97 0.82

𝑓 ∈ {0.5, 1.5, 2.5}: in these three scenarios, while the certain agent’s

strategy converges to defection, the others cooperate with higher

probabilities in comparison to the cases where no communication

is involved. In this case, explicitly modelling uncertainty using the

GMM module improves cooperation in all the games.

When all the three agents are uncertain (𝜎 = 1) the observed ef-

fect is the same as in the two uncertain agents scenario. Uncertainty

decreases the ability of agents to distinguish the situations in which

it is rational to cooperate or defect. This effect is evident especially

when 𝑓 ∈ {1.5, 2.5, 3.5}. The combined effect of communication

and the GMM model helps to improve cooperation considerably in

these three games, as well as in the competitive one. Moreover, we

observe again that the agents cooperate with higher probability in

the mixed motive scenarios, when uncertainty and communication

are present, with respect to the scenario with full observability.

6 CONCLUSION
In this paper we investigated the effects of emergent communica-

tion on independent learning agents trained on a spectrum of envi-

ronments with different incentive alignments, and in the presence

of uncertainty. We observed how learning agents with the same

amount of uncertainty can use the combined effect of communica-

tion and uncertainty modeling to improve the cooperation of the

whole group, overcoming the defection equilibria of mixed-motive

scenarios. This resulted in the improvement of the social welfare

of the group. Moreover, we showed that in asymmetric uncertainty

cases communication can be employed by the certain agents to

deceive the others. We believe that the employment of emergent

communication in mixed cooperative-competitive multi-agent sys-

tems provides a good boilerplate for the development of reliable

artificial agents, and therefore reliable human-AI communication.

As future work, we plan to investigate the learning dynamics in

larger settings, investigate the effect of social structures (e.g., repu-

tation and norms [24]) and different communication frameworks

(e.g., graph neural networks [22]). Our long term goal is to work

towards the development of hybrid scenarios (i.e., involving both

human and artificial agents).
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