
Using Incomplete and Incorrect Plans to Shape Reinforcement
Learning in Long-Sequence Sparse-Reward Tasks

Henrik Müller
L3S Research Center
Hannover, Germany
hmueller@l3s.de

Lukas Berg
L3S Research Center
Hannover, Germany
lukas.berg@l3s.de

Daniel Kudenko
L3S Research Center
Hannover, Germany
kudenko@l3s.de

ABSTRACT
Reinforcement learning (RL) agents naturally struggle with long-
sequence sparse reward tasks due to the lack of reward feedback
during exploration and the problem of identifying the necessary
action sequences required to reach the goal. Previous works have
used abstract symbolic task knowledge models to speed up RL
agents in these tasks by either splitting the task into easier to solve
subtasks or by creating an artificial dense reward function. These
approaches are often limited by their requirement of perfect sym-
bolic knowledge models, which cannot be guaranteed when the
abstract symbolic models are provided by humans and in real world
tasks. We introduce Exponential Plan-Based Reward Shaping, which
is able to leverage the ability to learn from experience of RL to com-
pensate deficiencies in incomplete and incorrect abstract symbolic
plans and use them to solve difficult tasks faster, while guaran-
teeing convergence to the optimal policy. Our approach is able to
work with plans that miss important steps, include unnecessary
extra steps, contain steps that refer ambiguously to both important
and useless states, or encode an incorrect order of steps. We use
action representations designed by human experts to automatically
compute plans to capture the high-level task structure. The abstract
symbolic subgoals defined by the plan are used to create dense
reward feedback, which signals important states to the RL agent
that should be achieved and explored to reach the goal. We show
the theoretical advantages of our approach for plans with many
steps and show its effectiveness empirically on multiple tasks with
different kinds of incomplete or incorrect knowledge.

KEYWORDS
Reinforcement Learning, Potential-Based Reward Shaping

1 INTRODUCTION
Reinforcement learning (RL) agents are able to solve many difficult
problems, but are limited in their practical application by their poor
sample complexity. The learning process is especially slow for long-
sequence sparse-reward tasks. These kinds of tasks require complex
sequences of actions before any non-zero reward is achieved. They
often only reward a set of goal states, which are difficult to discover
by chance. The RL agent therefore lacks meaningful reward feed-
back for most of its experiences with the environment and even if
the agent finds a goal state it is challenging to assign the positive
feedback correctly to the relevant parts of the required long action
sequence.

One frequent strategy to help solve these kinds of problems is
to use prior human knowledge in the form of symbolic models.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

Figure 1: Visualization of the Household environment. The
agent (red arrow) has to pick up the green key to unlock the
green door, pick up the blue key to unlock the blue door,
recharge itself on the charging station (purple square) and
move into the goal (red square). The unlocked doors (yellow
squares) can be traversed freely.

They can add structure to the task and guide the exploration of the
environment. In hierarchical RL this knowledge is used to split the
task into many easier to learn sub-tasks [14]. These approaches
usually require some correct sequence of sub-tasks to be encoded
in the symbolic model. Otherwise they would have to work with
the complete combinatorial space of sub-task orderings, which in
most tasks would be computationally infeasible. But even if the
symbolic model fulfills the correctness requirement, the hierarchical
RL approaches are limited by their task decomposition and lose
their guarantee of convergence to the optimal policy if not all low-
level primitive actions are also available at the higher levels, which
is computationally expensive [4]. Another class of approaches is
based on creating artificial reward signals from symbolic models.
Directly redefining the reward function is difficult for humans as
the expected scenarios do not have to exactly match the scenarios
the agent will encounter and explore, which can lead to undesired
side effects in the learned behavior [16]. Instead approaches with
easier to define symbolic models like abstract high-level plans have
been explored that automatically shape the reward based on the
symbolic model [12, 20]. Nonetheless, these kinds of approaches
are usually limited by (implicitly) assuming perfect symbolic plans.

In real world tasks imperfect knowledge will lead to incomplete
and incorrect symbolic models. Take for example the household
robot navigation task from [14] shown in Figure 1 . The robot has
to pick up the green and blue keys to unlock the corresponding
doors, charge itself at the charging station before moving into the
red square. A human expert might not be able to differentiate the
keys, but may know that any of the keys should be able to unlock
the door. The expert could therefore specify to pick up any of the

https://alaworkshop2023.github.io/

keys and leave it to the agent to try the keys. The agent would
then have to learn from its experience, which key can be used to
advance in the plan. The human expert might also lack knowledge
of the initial charge of the agent and therefore does not know if
the agent should charge itself after unlocking the first or second
door, or if it has to charge itself at all to reach the goal. The plan
could therefore contain the charging too many times, or only at the
wrong positions in the plan, or not at all.

In this paper, we capture the high-level task structure through
STRIPS plans automatically computed from abstract symbolic ac-
tion representations designed by human experts. The STRIPS plans
offer a natural way to decompose the task into a set of abstract
symbolic subgoal states that are needed to reach the goal. We add
an artificial dense reward signal to the reward function that re-
wards achieving these subgoals through potential-based reward
shaping [27]. Intuitively, there is no incentive to incorporate incor-
rect knowledge as potential-based reward shaping can guarantee
to not change the learned optimal policy and we can rely on the
ability of RL to learn from experience to overcome imperfections
of the abstract plan.

Although potential-based reward shaping is guaranteed to even-
tually converge to the optimal policy independent of the potential
function and the quality of the knowledge encoded therein, we
explore whether it can still accelerate the convergence of RL agents
given incorrect or incomplete knowledge. In the hierarchical RL
agent ASGRL [14] plan-based reward shaping (PBRS) [12] was used
as a baseline and shown to be unreliable in accelerating the con-
vergence of the RL agent when used with incomplete and incorrect
knowledge. As a result of our work, we are the first to show that
PBRS is in fact able to work with incomplete and incorrect knowl-
edge on the same level as ASGRL if the used potential function is
implemented correctly with respect to the specific requirements of
PBRS. We then extend our experiments to more complex environ-
ments, where PBRS fails due to an inherent problem of scaling to
plans with larger numbers of steps, as we prove theoretically. We
propose a novel reformulation of the potential function that allows
us to work with incomplete and incorrect plans of any length.

Our results show that our method improves over the perfor-
mance of the state-of-the-art hierarchical RL agent ASGRL designed
specifically to be able to use incomplete and incorrect knowledge.

We summarize our contributions as follows:

• We introduce the Exponential Plan-Based Reward Shaping
(EPBRS) algorithm and demonstrate that its higher efficiency
and better scalability compared to ASGRL [14], the current
state-of-the-art technique to tackle the challenge of incom-
plete or incorrect plan knowledge.

• We empirically show that EPBRS is able to alleviate a wide
range of types of incomplete or incorrect knowledge in its
plan and is able to work with plans of any length.

• We prove the theoretical advantages of EPBRS for longer
plans and verify them empirically on three different environ-
ments.

2 RELATEDWORK
Prior human knowledge can be used for reinforcement learning
to modify the reward function to specify tasks and to improve the

sample efficiency. The knowledge can be encoded in many different
representations like policy sketches [3], knowledge graphs [1, 2, 31],
natural language instructions [10], or different specifications of
(temporal) logic [6, 8, 19, 21, 23, 28].

Our work focuses on task knowledge specified as symbolic plans.
Recent works in this direction include [9, 18, 20, 24, 25, 29, 30].
In contrast to these works we focus on incorrect and incomplete
plans. In other previous works iterative refinement through con-
tinuous human feedback was used to overcome initial inaccuracies
in the knowledge [5, 15]. We instead focus on the learning capa-
bilities of RL agents to overcome the possible shortcomings of the
human provided knowledge due to the costs of repeated human
involvement.

Hierarchical RL agents are often used to solve long-sequence
sparse-reward tasks due to their ability to simplify tasks by splitting
them and solving the sub-tasks [17, 22, 25, 26]. Our method instead
opts for non-hierarchical RL agents to avoid the large complexity
of sub-task combinations when faced with incorrect knowledge.

3 BACKGROUND
3.1 Reinforcement Learning
A task in reinforcement learning is modeled as a Markov Decision
Processes (MDP). AnMDP𝑀 is defined as a tuple𝑀 = (𝑆,𝐴,𝑇 , 𝑅,𝛾),
where S and A are the state and action space respectively.𝑇 (𝑠, 𝑎, 𝑠 ′) :
𝑆 × 𝐴 × 𝑆 → [0, 1] is the probability of reaching state s’ from
state s after executing action a. The reward function 𝑅(𝑠, 𝑎, 𝑠 ′) :
𝑆 × 𝐴 × 𝑆 → R assigns a numerical reward to a state transi-
tion from s to s’ with respect to the executed action a. A policy
𝜋 (𝑠, 𝑎) : 𝑆 × 𝐴 → [0, 1] defines how the agents should act in the
environment through the probability distribution over all actions
in every state. The decay factor 𝛾 ≤ 1 is used to define the ex-
pected discounted return𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 and the value function
𝑉 (𝑠) = E𝐴𝑡∽𝜋 (𝑆𝑡) [

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 |𝑆0 = 𝑠]. The reinforcement learning
agent learns a policy that maximizes the expected discounted return,
where the optimal policy has the maximum expected discounted
return 𝐺∗.

3.2 Classical Planning
The additional domain knowledge input by a human user or domain
expert is specified through STRIPS-like planning models. A plan-
ning model is a tuple 𝑃 = (𝐹,𝐴, 𝐼,𝐺). The set of fluents F contains
the symbolic high-level variables used to describe the environment
states. Every state corresponds to a truth assignment of all the bi-
nary fluents such that the symbolic state space is defined as 𝑆𝑃 = 2𝐹 .
We assume that the grounding of the model’s fluents in the low-
level environment states is given, as our method is agnostic to the
implementation of the low-level fluent detection.

The set of actions A specifies the knowledge of the task structure
splitting the task into high-level actions. An action 𝑎 ∈ 𝐴 is a tuple
𝑎 = (𝑝𝑟𝑒𝑐, 𝑎𝑑𝑑, 𝑑𝑒𝑙), where the precondition of the action 𝑝𝑟𝑒𝑐 ⊆ 𝐹

defines the assignment of (a subset of) fluents needed to be able
to execute the action. The add effects 𝑎𝑑𝑑 ⊆ 𝐹 and delete effects
𝑑𝑒𝑙 ⊆ 𝐹 specify the fluents that are respectively set true or false
after executing the action.

The initial state 𝐼 ∈ 𝑆𝑃 and the goal state 𝐺 ⊆ 𝐹 are used to
define the starting point and the target state of the plan. Without

any loss of generality we assume that the goal state can be uniquely
defined through a set of fluents.

We use the STRIPS-like planning model to automatically ex-
tract a high-level plan. The plan defines the possible sequences
of actions that reach a valid goal state from the initial state. The
sequential execution of the specified actions leads to a trajectory
𝜔 = (𝑧0, 𝑧1, ..., 𝑧𝑔) of high-level states. Any high-level symbolic
state, that is part of any goal-reaching trajectory 𝜔𝑖 in the plan, is a
subgoal the agent should reach when solving a task and can be used
in the low-level exploration as an intermediate landmark that can
help reach the goal. In addition to the set of subgoals, it is possible
to define a (partial) order over the subgoals. For any two subgoals
𝑠𝑖 , 𝑠 𝑗 we write 𝑠𝑖 ≺ 𝑠 𝑗 if 𝑠𝑖 is achieved before 𝑠 𝑗 in all trajectories.

3.3 Potential-Based Reward Shaping
Long sequence, sparse reward RL tasks terminate with a reward
of one once a sequence of specific high-level actions has been
fulfilled. For all other transitions the agent gets a reward of zero.
This lack of reward feedback creates very challenging tasks for RL
agents due to the difficulties of assigning the reward correctly to
the important parts within a long sequence of actions. The most
notorious example is the Atari game Montezuma’s Revenge, where
the first non-zero reward is only obtained after collecting a key
following a long sequence of actions. To get to the key, the agent
has to navigate through the level climbing three ladders and a rope
while avoiding to run into an enemy.

Reward shaping can help solve sparse reward tasks by utilizing
external knowledge to add intermediate feedback into the reward
function. Reward shaping creates a new shaped reward function
𝑅′(𝑠, 𝑎, 𝑠 ′) = 𝑅(𝑠, 𝑎, 𝑠 ′) + 𝐹 (𝑠, 𝑎, 𝑠 ′).

In potential-based reward shaping [27] the shaping function is
defined by 𝐹 (𝑠, 𝑎, 𝑠 ′) = 𝛾Φ(𝑠 ′) − Φ(𝑠), where Φ(𝑠) is the so-called
potential function. Potential-based reward shaping is the only way
to define a reward shaping function that does not change the op-
timal policy, when no further assumptions on the transition and
reward functions are made.

This does not hold in general for episodic MDPs with finite hori-
zons such as the ones in this paper. As shown in [11] the expected
return of the shaped agent is:

𝐺Φ (𝑠0) = 𝐺 (𝑠0) + 𝛾𝑛Φ(𝑠𝑛) − Φ(𝑠0)

𝐺 (𝑠0) =
𝑛−1∑︁
𝑖=0

𝛾𝑖𝑅(𝑠𝑖)

The potential of the first state is the same for all trajectories starting
in the same state and therefore will not bias the optimal policy given
the initial state. On the other hand, the potential of the terminal
state reached after n steps depends on the chosen state trajectory.
The number of steps until termination 𝑛 can also change depending
on the trajectory. With trajectories reaching a terminating (goal)
state having a smaller 𝑛 than 𝑛𝑚𝑎𝑥 when the agent terminates
after a fixed number of steps. The potential of the last step of any
trajectory into a terminal state therefore has to equal zero, as not
to change the optimal policy. Notably this also applies to the forced
termination of an episode after the maximum number of steps has
been reached.

Figure 2: Schematic overview of Plan-Based Reward Shaping
[7]

3.4 Plan-Based Reward Shaping
Plan-based reward shaping [12] is a method to use STRIPS plans
for potential-based reward shaping. In plan-based reward shaping
the potential function is defined as the highest step in the plan
achieved so far. This creates a mapping from the low-level states
to the symbolic steps in the plan as shown in Figure 2. The map-
ping is done by the 𝑠𝑡𝑒𝑝 function, which is defined through the
grounding function of the fluents, the subgoal set, and the partial
order of subgoals. It extracts the assignment of the fluents for the
given low-level state that are used in the planning model. The 𝑠𝑡𝑒𝑝
function determines based on the fluent assignment if the current
state matches any subgoal that has yet to be achieved. As the 𝑠𝑡𝑒𝑝
function keeps track of the achieved steps, it can also be used for
non-Markovian tasks. If the order for a subset of subgoals is not
specified, their completion is allowed in any order. Otherwise the
𝑠𝑡𝑒𝑝 count is strictly defined by the ordering information.

With this, the plan-based potential-function over the low-level
states is defined as:

Φ(𝑠) = 𝑠𝑡𝑒𝑝 (𝑠) (1)
Plan-Based Reward Shaping has to fulfill the following charac-

teristics based on [13] for the shaped reward function to be useful
for the agent:

𝑅′(𝑠, 𝑠 ′) = 𝑅(𝑠, 𝑠 ′) + 𝛾Φ(𝑠 ′) − Φ(𝑠) > 0 (2)

𝑅′(𝑠, 𝑠) = 𝑅(𝑠, 𝑠) + 𝛾Φ(𝑠) − Φ(𝑠) ≤ 0 (3)
𝑅′(𝑠, 𝑠𝑔) = 𝑅𝐺 + 𝛾Φ(𝑠𝑔) − Φ(𝑠) ≥ 0 (4)

where 𝑠 is any state, 𝑠 ′ is a non-terminal state reached from 𝑠

with one action that fulfills a new landmark, 𝑠𝑔 is a terminating
goal state with a reward 𝑅𝐺 > 0, and 𝑅(𝑠, 𝑠 ′) = 𝑅(𝑠, 𝑠) = 0 in a
sparse reward task. The shaping function should modify the reward
function to simultaneously incentivize reaching a new subgoal and
penalize remaining at the same step in the plan. Additionally the
total reward for reaching the goal is required to stay positive. The
step count and as such the potential is greater or equal to zero in
any non-terminal state for plan-based reward shaping. As shown
previously in Potential-Based Reward Shaping the potential of all

terminal states including the goal has to be zero as not to change
the optimal policy. The shaping function will therefore be negative
when reaching the goal.

Simple arithmetic operations lead to the following inequalities
for the plan-based potential function:

𝛾 >
Φ(𝑠)
Φ(𝑠 ′) (5)

(𝛾 − 1)Φ(𝑠) ≤ 0 (6)

𝑅𝐺 ≥ Φ(𝑠) (7)
The first condition creates a limit on the number of steps that

can be supported by plan-based reward shaping with regard to
the reward decay factor 𝛾 . This condition starts to fail for large
potential values in the latest steps of the plan and causes negative
rewards when achieving a new landmark. Changing 𝛾 to allow for
longer plans can also change the optimal policy and is therefore
undesirable when utilizing potential-based reward shaping. Notice
that the length limitation is only on the number of steps that can be
specified in the plan, not on the number of actions in the environ-
ment. The second condition is trivially fulfilled for non-negative
potential functions. The last condition limits the total value of the
potential function to the reward value of reaching a terminal state.
For the long-sequence sparse reward tasks that are the focus of this
paper the only non-zero reward 𝑅𝐺 is achieved for entering any
goal state.

Adding the potential of zero for terminal states and the limit on
the maximum value of the potential function leads to the complete
definition of plan-based reward shaping:

Φ(𝑠) =
{
0 , if s is a terminal state
𝑅𝐺

𝑠𝑡𝑒𝑝 (𝑠)
|𝑃 | , otherwise

(8)

where |𝑃 | is the total number of steps in the plan.

4 EXPONENTIAL PLAN-BASED REWARD
SHAPING (EPBRS)

The main problem with the original definition of plan-based reward
shaping is a result of the linear growth of its potential. The neg-
ative on-step rewards 𝐹 = 𝛾Φ(𝑠) − Φ(𝑠) will increase in absolute
value proportionally to the potential for any definition of a positive
monotonic potential function. But the rewards for completing a
new step in the plan 𝐹 = (𝛾 − 1)Φ(𝑠) + 𝛾𝑐 (where 𝑐 is the constant
difference between the potentials) do not increase but instead de-
crease in value with growing potential. Due to this, the agent will
get a negative reward feedback sooner when exploring to reach
another subgoal if the current best subgoal is later in the plan and
if more subgoals precede it in the plan order.

We therefore propose to reformulate the plan-based potential
function to grow exponentially with the number of completed steps.
The exponential plan-based potential allows for both the negative
on-step rewards and the positive on-subgoal rewards to increase
proportionally with the number of fulfilled steps in the plan.

We propose to formulate the exponential plan-based potential
as follows:

Φ(𝑠) =
{
0 , if s is a terminal state
𝑅𝐺

𝑏𝑠𝑡𝑒𝑝 (𝑠)

𝑏 |𝑃 | , otherwise
(9)

where 𝑏 > 1 is the constant base parameter, the step function is
used as before to track the highest step in the plan achieved at the
current state, and |𝑃 | is the total number of steps in the plan.

Whenever a new landmark is reached, the agent gets an exponen-
tially larger reward. The quotient normalizes the largest possible
potential to prevent that too large negative shaped rewards from
reaching terminal states drown out the external reward signal.

Applying our reformulation to the three conditions previously
defined in Equation 2, Equation 3, and Equation 4 leads to:

𝑏 >
1
𝛾

(10)

𝛾 ≤ 1 (11)
𝑅𝐺 ≥ Φ(𝑠) (12)

The first condition no longer prohibits plans with too many steps.
It instead sets a lower bound for the base parameter 𝑏 to be used
in the computations with regard to the decay factor 𝛾 . Equation
11 is trivially fulfilled as any positive potential function will lead
to negative rewards when the potential does not change between
steps. The last condition gives the reason for the normalization of
the exponential potential with its maximum value and scaling it
with the external reward awarded for reaching the goal.

On a more practical note, we now introduce a corollary to give
an intuition for the impact of the chosen potential function on the
exploration incentives. Due to our focus on monotonically increas-
ing potential functions we expect positive rewards for achieving a
higher potential in a new landmark and negative rewards for every
step in which no new landmark is reached. Staying at one potential
for an infinite time without achieving a new landmark will lead
to a negative total shaping reward. In the following we focus on
the exploration incentive created by the reward shaping. To be
precise, the number of steps 𝑛 an agent can take after achieving
a new subgoal in the transition from state 𝑠𝑖 to state 𝑠𝑖+1 without
reaching a new subgoal thereafter for which the decaying sum of
shaping rewards is still positive:

𝛾Φ(𝑠𝑖+1) − Φ(𝑠𝑖) +
𝑛∑︁

𝑘=1
𝛾𝑘 (𝛾Φ(𝑠𝑖+1) − Φ(𝑠𝑖+1)) ≥ 0 (13)

Solving for 𝑛 leads to the following general formula for any
arbitrary potential-based reward shaping:

𝑛 = log𝛾

(
Φ(𝑠𝑖)
Φ(𝑠𝑖+1)

)
− 1 (14)

Using the default plan-based reward shapingwe get the following
formula:

𝑛 ≤ log𝛾

(
Φ(𝑠𝑖)

Φ(𝑠𝑖) + 𝑐

)
− 1 (15)

where 𝑐 is the constant difference between two consecutive sub-
goals.

Using the exponential plan-based reward shaping we get the
following formula:

𝑛 = log𝛾

(
1
𝑏

)
− 1 (16)

The default plan-based reward shaping leads to a decreasing
number of steps 𝑛 with an incentive to explore for later subgoals
where the potentials are larger. The exponential plan-based reward
shaping reformulation on the other hand offers the same fixed

number of steps 𝑛 independent of the current step in the plan.
Instead the base factor for the calculation is proportional to the
number of steps with a net positive cumulative shaped reward. This
leads to the same exploration incentive for all steps in longer expert
defined plans.

5 INCOMPLETE AND INCORRECT PLANS
Weuse abstract symbolic plans to encode the external human knowl-
edge of how to solve the task. Requiring perfect plans is infeasible
in practice. We rely on human experts to define the domain and
task knowledge, who may not be able to capture the task descrip-
tion or environment completely, or may only posses knowledge of
a closely related task. Additionally, more complex environments
require more knowledge to be solved and can therefore require
longer plans. To obtain a longer plan, one might have to include
knowledge that is less certain to be correct introducing extra steps
that are not needed to solve the task. Nonetheless, building on the
knowledge should offer an advantage when learning how to act in
an environment that does not offer much (reward) feedback by it-
self. Incorrect or incomplete definitions of the planning model only
decrease the expected use of the encoded knowledge for solving
the task.

There are many ways in which a plan can be incomplete or
incorrect:

(1) The plan might lack important steps needed to solve the
task, or might contain steps that are either not needed or
are not achievable. While the first problem just decreases
the amount of help the plan offers for solving the task, the
second problem requires that planned steps can be skipped
dynamically during training.

(2) The definition or detection of important steps can be incom-
plete. As such the fluents for a step may not only include
correct useful states, but also some states that are useless for
helping to solve the task. The agent then has to be able to
either learn a diverse set of states for every step as in [14]
or be able to learn from experience which states that fulfill
the same subgoal are useful, which is the strategy used in
our approach.

(3) Even if the plan contains all the correct and useful landmarks,
the order defined by the plan might not be achievable in the
task environment. As a result, the agent has to be able to
dynamically skip some steps that are not (easily) achievable
in the defined order and to learn them implicitly when they
are missing in the plan.

When working with incomplete and incorrect plans Exponential
Plan-Based Reward Shaping builds on the strengths of reinforce-
ment learning. It can leverage its experience interacting with the
environment to determine which steps help or hinder progress-
ing the plan. Moreover it learns to dynamically skip steps that are
useless for the completion of the task, and will eventually find the
optimal policy under the convergence guarantee of reinforcement
learning, even if the plan contains no useful landmarks at all. No-
tably, convergence to the optimal policy cannot be guaranteed in a
hierarchical reinforcement learning system like ASGRL [14] unless
all low-level primitive actions are also available at the higher levels,
which is computationally expensive [4].

Figure 3: Visualization of the Mario Environment [14] and
the Minecraft Environment

Additionally, we do not require that the elements of the planning
model accurately match their corresponding parts in the low-level
task. The detector for the fluents does not have to be perfect. The
high-level plan actions do not have to be executable in the low-level
environment. The initial and goal states of the planning model do
not have to match the initial and goal states of the MDP.

6 EXPERIMENTAL SETUP
6.1 Environments
We empirically evaluate our method on three different environ-
ments. The shorter, less complex task will be referred to as mario
environment and mirrors the respective environment used in [14].
In addition, we also use two more complex tasks referred to as
household environment and minecraft environment. The more
complex tasks allow for longer and more complex plans and are
used to verify the scalability of our method with regard to the length
of the plan. All tested methods have access to the same plans and
therefore to the same external task knowledge.

6.1.1 TheMario environment. This environment is a representative
example of a sparse-reward task. In this modified version the agent
has to open the door on the upper level with two keys from the

lower level, one of which is hidden in a box. The agent can move
between the levels either on a ladder that breaks after the first
use, or through a tube that can only be traversed downwards. The
optimal sequence of actions would therefore be to move down
through the tube, pick up both keys, and move back up on the
ladder to unlock and enter the door.

The expert lacks knowledge of the tube and the hidden key. The
plan therefore contains instructions to only use the ladder to move
between the levels, which would lead to being stuck on the lower
level, and to pick up only the visible key. The agent then has to
overcome the actively harmful high-level instruction and learn the
missing symbolic states from experience.

6.1.2 The Household environment. The household environment
shown in Figure 1 originates from the implementation of [14]. A
robot has to navigate through multiple rooms to reach the goal
state. First, it has to pick up the green key to unlock the green door,
then pick up the blue key to unlock the blue door, and recharge
itself on the charging station before moving into the goal.

We consider two plans for the household environment. The first
plan correctly specifies the steps and their order, but the human
expert does not know that only one of the keys can unlock each
door and specifies a plan where any of the keys can be used. The
second plan is an extension of the first plan with ten additional
useless steps in the first room, which guide the agent to initially
move downwards, then left and back upwards, stopping in front
of the orange key that cannot be used to unlock any door. All of
these additional steps are not needed to complete the task and
will be skipped entirely in optimal trajectories. This plan is used to
highlight scaling problems with regards to the length of an incorrect
plan. We will refer to the environment in combination with the
second plan as over-planned household.

6.1.3 The Minecraft environment. This environment is based on
the Minecraft-inspired 2D crafting-game used in [3]. We use a more
challenging definition closer to the resource progression originally
used in the game Minecraft.

The agent can collect wood, stone, and iron, but can only carry
one of each item at once in its inventory. The goal of the agent
is to collect grass for which it gets a reward of one. This requires
the agent to progress through a sequence of tools: First crafting
a wooden pickaxe to collect stone, then a stone pickaxe to collect
iron ore, and lastly a pair of shears in order to safely harvest grass
without destroying it. The environment contains four different
crafting stations: At the workbench the agent can turn wood into
planks. The tool shed can be used to turn planks into sticks, which
are needed to craft the pickaxes. The anvil can be used to craft all
of the tools, and the furnace can be fueled with wood to smelt iron
ore into an iron ingot, which is needed to craft the shears. If the
agent at any point enters the lava lake it will die and the episode
will terminate immediately with a reward of zero.

The human expert knows all the required abstract steps, but
does not know that the inventory of the agent is limited to one
of each item and only specifies the following order of steps. The
agent should collect the four needed pieces of wood first, then craft
the three needed planks, and then craft the two needed sticks. The
agent will have to either learn extra steps to get rid of the current
version of the item in its inventory by completing later crafting

steps before obtaining another version, or skip the repetitions and
learn them implicitly when they are needed later in the plan. After
these incorrectly ordered steps the remaining steps are ordered
correctly and can be achieved in their order in the environment.

6.2 Algorithms
6.2.1 Q-Learning. This baseline implements the standard, unmod-
ified tabular Q-Learning algorithm and learns directly from the
sparse unmodified reward signal.

6.2.2 ASGRL. This baseline uses the implementation of [14]. It is a
state-of-the-art hierarchical reinforcement learning algorithm. AS-
GRL is designed to alleviate the sparse reward signals by utilizing
so-called landmark sub-goals to split the task into easier sub-tasks.
It then learns to solve the task by utilizing multiple policies that are
able to move the agent from one landmark to the next. A diversity
objective is used to incentivize a diverse set of states fulfilling a land-
mark to overcome incomplete knowledge. As in the original paper
we use the history-based meta-state representation for ASGRL. We
use their non-curriculum setting as it has shown superior perfor-
mance in all of our experiments compared with curriculum ASGRL.
We use 𝑘 = 3 for ASGRL in all experiments for all (sub-)policies to
be able to cover all possible landmark states.

6.2.3 Plan-based Reward Shaping. This baseline is an implementa-
tion of plan-based reward shaping as originally described in [12] in
combination with the Q-Learning baseline algorithm. We use the
modified potential function as defined in equation 8 with the same
𝑠𝑡𝑒𝑝 function as our approach.

6.2.4 Exponential PBRS. Our approach.

6.3 Hyperparameters
The hyperparameters for all algorithms are based on the ones used
in [14].

We use𝛾 = 0.99 for all environments. The algorithms have a limit
of 2,000 steps per episode before being truncated, the individual
sub-policies in ASGRL have a limit of 700 steps per episode each,
and the training is limited to 500,000 steps total for all experiments.
We use a replay buffer of successful trajectories to sample uniformly
from during training to focus important experiences.

For the Q-Learning agents that are used in all baselines we use
𝜖-greedy to balance exploration and exploitation. We use the an-
nealing on success of both 𝜖 and the learning rate used in ASGRL
for all our algorithms.

For the Q-Learning agents the value of 𝜖 is annealed from 1.0
to 0.05 by a factor of 0.95 whenever the final goal state is reached
and the learning rate is annealed from 1.0 to 0.1 by a factor of 0.95
whenever the final goal state is reached. The same parameters are
used for each skill-policy in ASGRL with individual updates on skill
success. The 𝜖2 for the ASGRL meta-controller is annealed from 1.0
to 0.05 by a factor of 0.9 whenever the final goal state is reached.

7 RESULTS
We evaluate all algorithms on all four tasks with regard to their
ability to solve the long-sequence sparse-reward tasks and their
sample efficiency. We measure the success rate and sample effi-
ciency during the training. Each algorithm was evaluated every

Figure 4: Comparison of tested algorithms for the respective environments. Solid lines represent the mean of ten runs per
algorithm. The shaded areas show the standard error of the mean.

five training episodes on whether they are able to reach the goal
with a low exploration probability 𝜖 = 0.05. We report the mean
and standard error of the mean of ten repeated runs with different
seeds for every algorithm in every experiment.

7.1 The Mario Environment
The mario environment is the simplest environment we experiment
with. Contrary to the results of [14], Q-Learning already performs
well in the Mario environment if the same annealing of the learning
rate and 𝜖 as for ASGRL is used instead of a fixed decay after every
episode. The environment is small enough that the Q-Learning
agents are able to find the goal state reliably by chance within the
first 250,000 steps. The success rate and convergence speed of the
plan-based reward shaping methods and ASGRL are usually slightly
better than for the pure Q-Learning baseline, as they are able to
leverage their high-level plan to guide the exploration. Both PBRS
and ASGRL are able to learn the missing steps in their plan through
their Q-Learning agents.

7.2 The Household Environment
The household environment is larger and therefore more difficult
to solve. The Q-Learning baseline without any external symbolic
knowledge is only able to solve the task reliably in 40% of the runs
at the end of the computation budget of 500,000 steps. Initially
at around 200,000 steps, more of the Q-Learning agents are able
to find the goal in some evaluation runs, but they struggle with
assigning the reward correctly to the relevant parts of their action
sequence. Due to this the Q-Learning agents end up with a large
standard error of the mean as the individual runs either learn to
reliably solve the task or are unable to solve the task at all. The
ASGRL agents are able to solve the task more reliably than the
Q-Learning baseline. The decomposition into sub-tasks helps to
stabilize the learning by augmenting the reward function with
the subgoal information, which helps to find the relevant parts of
the action sequence. The plan-based reward shaping methods are
both able to reliably solve the task at the end of the training. The
exponential Plan-Based Reward Shaping converges faster, as it is

Figure 5: Comparison of the different values for the base
parameter 𝑏 used in exponential PBRS in the household en-
vironment. The solid lines show the means of ten repeated
runs with different seeds and the shaded areas display the
standard error of the mean.

better suited for the longer plan. The linear Plan-Based Reward
Shaping initially avoids the later steps in the plan, but is able to still
solve the task due to the theoretical guarantees of potential-based
reward shaping. All of the plan-based agents are able use the plan
to improve their evaluation success rate even with the ambiguous
definition of the needed keys to unlock the doors.

7.3 The Over-Planned Household Environment
When we use the extended plan in the over-planned household
environment, ASGRL converges slightly slower due to the addi-
tional learning to achieve the extra steps. In contrast to the plan-
based reward shaping agents ASGRL is biased to fulfill as many
subgoals as possible before reaching the goal and will not learn
to ignore the useless extra steps at the beginning of the plan. The
linear plan-based reward shaping has an evaluation success rate of
zero over the entire training duration as it is does not scale well
to plans with many steps. The later steps in the longer plan have
a shorter horizon where they offer a positive exploration reward.
Therefore, the linear plan-based reward shaping instead starts to
punish reaching the later landmarks and tries to avoid them. The
exponential plan-based reward shaping is able to scale to plans
with many steps and reaches the best evaluation success rate dur-
ing training of all tested algorithms. Moreover it is guaranteed to
converge towards the optimal policy ignoring the useless added
steps in the plan.

7.4 The Minecraft Environment
The Minecraft environment is the most difficult task we experi-
ment with. The lava lake creates an easy to reach way to terminate
the episode without any reward feedback. Random exploration is
therefore much more challenging as the agent does not only have to
achieve a long sequence of specific high-level actions, but also has

to avoid entering the lava lake by chance. The Q-Learning agent
is therefore unable to reach the final goal in any evaluation runs
during the entire training. The ASGRL agent requires the plan to be
valid for at least one trajectory that reaches the goal to avoid having
to explore all combinations of subgoals. ASGRL is therefore unable
to succeed at all in the Minecraft environment as the plan encodes
an order of steps that is not achievable in the environment. The
exponential Plan-Based Reward Shaping agent is the only tested
agent that is able to use the provided incorrect plan to be able to
learn to solve the task. It is able to skip the early steps that cannot
be achieved in the environment and is able to instead learn them
implicitly when they are needed to progress in the plan. Notably, all
ten trial runs are able to reliably solve the task after 150,000 steps
with an evaluation success rate close to 1.0. The linear Plan-Based
Reward Shaping agent once again struggles with the length of the
plan and is not able to solve the plan. Only at the end of the training
one of the runs is able to solve the task unreliably. The agent still
appears to be able to make some use of the incorrect and long plan
to simplify solving the task.

7.5 Impact of Base Parameter b
First we evaluate the choice of the base parameter 𝑏 for the calcula-
tion of the exponential in our method on the household environ-
ment. For this we run ten repeated experiments per value of 𝑏 and
track the success rate of the policies during training when evaluated
with a low exploration probability 𝜖 = 0.05. The results are shown
in figure 5. Most importantly our formal limit in Equation 10 also
holds empirically. Values for 𝑏 ≤ 1/𝛾 , in this case 1.01, are not able
to solve the task at all within our computation budget of 500,000
steps. Choosing 𝑏 > 1/𝛾 for the other runs leads to fast conver-
gence to evaluation success rates between 0.8 and 1.0. The different
values for 𝑏 show little difference in convergence speed, although
larger values tend to perform better. Overall the differences for the
runs with 𝑏 > 1/𝛾 are small enough to to be related to stochastic
noise introduced by different random seeds and different random
explorations of the 𝜖-greedy RL algorithm.

We therefore choose 𝑏 = 32 for all runs of Exponential Plan-
Based Reward Shaping in all experiments.

8 CONCLUSION
Reinforcement learning in long-sequence sparse reward tasks can
benefit from human knowledge even if the knowledge is incom-
plete or partially incorrect. In this paper, we are the first to show
that plan-based reward shaping (PBRS) is able to work with incom-
plete and incorrect plans if the used potential function fulfills the
set of requirements we formally derived. We prove that PBRS has
an inherent theoretical flaw that prevents it from scaling to more
complex environments with more challenging tasks that require
longer plans. We propose a new formulation of plan-based reward
shaping that can improve reward feedback using longer, incomplete
and incorrect plans in more complex environments. We show its
improved effectiveness for different kinds of incomplete and incor-
rect plans in multiple environments and when scaling up to more
complex tasks with longer plans outperforming the state-of-the-art.
Our method provides robust performance gains in combination
with all different kinds of incomplete or incorrect knowledge.

REFERENCES
[1] Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-

Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and William L. Hamilton. 2020. Learning Dynamic Belief Graphs to Generalize
on Text-Based Games. In Proceedings of the 34th International Conference on
Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran
Associates Inc., Red Hook, NY, USA, Article 256, 13 pages.

[2] Prithviraj Ammanabrolu and Mark Riedl. 2019. Playing Text-Adventure Games
with Graph-Based Deep Reinforcement Learning. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota, 3557–3565.
https://doi.org/10.18653/v1/N19-1358

[3] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular Multitask Rein-
forcement Learning with Policy Sketches. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17).
JMLR.org, 166–175.

[4] Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical
reinforcement learning. Discrete event dynamic systems 13, 1 (2003), 41–77.

[5] Chandrayee Basu, Mukesh Singhal, and Anca D. Dragan. 2018. Learning from
Richer Human Guidance: Augmenting Comparison-Based Learning with Feature
Queries. In Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction (Chicago, IL, USA) (HRI ’18). Association for Computing Ma-
chinery, New York, NY, USA, 132–140. https://doi.org/10.1145/3171221.3171284

[6] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2021.
Foundations for Restraining Bolts: Reinforcement Learning with LTLf/LDLf Re-
straining Specifications. Proceedings of the International Conference on Automated
Planning and Scheduling 29, 1 (May 2021), 128–136. https://doi.org/10.1609/icaps.
v29i1.3549

[7] Kyriakos Efthymiadis and Daniel Kudenko. 2015. Knowledge Revision for Rein-
forcement Learning with Abstract MDPs. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems (Istanbul, Turkey)
(AAMAS ’15). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 763–770.

[8] Mahmoud Elbarbari, Florent Delgrange, Ivo Vervlimmeren, Kyriakos Efthymiadis,
Bram Vanderborght, and Ann Nowe. 2022. A framework for flexibly guiding
learning agents. Neural Computing and Applications (06 2022). https://doi.org/
10.1007/s00521-022-07396-x

[9] Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kael-
bling, Shirin Sohrabi, and Michael Katz. 2022. Reinforcement Learning for Clas-
sical Planning: Viewing Heuristics as Dense Reward Generators. In Proceedings
of the Thirty-Second International Conference on Automated Planning and Sched-
uling, ICAPS 2022, Singapore (virtual), June 13-24, 2022, Akshat Kumar, Sylvie
Thiébaux, Pradeep Varakantham, and William Yeoh (Eds.). AAAI Press, 588–596.
https://ojs.aaai.org/index.php/ICAPS/article/view/19846

[10] Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. 2019. Using Natural
Language for Reward Shaping in Reinforcement Learning. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 2385–
2391. https://doi.org/10.24963/ijcai.2019/331

[11] Marek Grzes. 2017. Reward Shaping in Episodic Reinforcement Learning. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems (São Paulo, Brazil) (AAMAS ’17). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 565–573.

[12] Marek Grzes and Daniel Kudenko. 2008. Plan-based reward shaping for rein-
forcement learning. In 2008 4th International IEEE Conference Intelligent Systems,
Vol. 2. 10–22–10–29. https://doi.org/10.1109/IS.2008.4670492

[13] Marek Grzes and Daniel Kudenko. 2009. Theoretical and Empirical Analysis of
Reward Shaping in Reinforcement Learning. In 2009 International Conference on
Machine Learning and Applications. 337–344. https://doi.org/10.1109/ICMLA.
2009.33

[14] Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. 2022. Leveraging
Approximate Symbolic Models for Reinforcement Learning via Skill Diversity.
In International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA (Proceedings of Machine Learning Research, Vol. 162),
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
and Sivan Sabato (Eds.). PMLR, 7949–7967. https://proceedings.mlr.press/v162/
guan22c.html

[15] Lin Guan, Mudit Verma, and Subbarao Kambhampati. 2020. Explanation
Augmented Feedback in Human-in-the-Loop Reinforcement Learning. CoRR
abs/2006.14804 (2020). arXiv:2006.14804 https://arxiv.org/abs/2006.14804

[16] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca D.
Dragan. 2017. Inverse Reward Design. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6768–6777.

[17] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. 2022. Deep
Hierarchical Planning from Pixels. https://doi.org/10.48550/ARXIV.2206.04114

[18] Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate,
Tom Melham, and Daniel Kroening. 2021. DeepSynth: Automata Synthesis for
Automatic Task Segmentation in Deep Reinforcement Learning. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 9 (May 2021), 7647–7656.
https://doi.org/10.1609/aaai.v35i9.16935

[19] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. 2018.
Using Reward Machines for High-Level Task Specification and Decomposition
in Reinforcement Learning. In Proceedings of the 35th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 80). PMLR,
2107–2116. https://proceedings.mlr.press/v80/icarte18a.html

[20] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. McIlraith. 2020. Symbolic
Plans as High-Level Instructions for Reinforcement Learning. Proceedings of the
International Conference on Automated Planning and Scheduling 30, 1 (Jun. 2020),
540–550. https://doi.org/10.1609/icaps.v30i1.6750

[21] Yuqian Jiang, Sudarshanan Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter
Stone. 2020. Temporal-Logic-Based Reward Shaping for Continuing Learning
Tasks. CoRR abs/2007.01498 (2020). arXiv:2007.01498 https://arxiv.org/abs/2007.
01498

[22] Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu.
2022. Creativity of AI: Automatic Symbolic Option Discovery for Facilitating
Deep Reinforcement Learning. Proceedings of the AAAI Conference on Artificial
Intelligence 36, 6 (Jun. 2022), 7042–7050. https://doi.org/10.1609/aaai.v36i6.20663

[23] Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. 2021.
Compositional Reinforcement Learning from Logical Specifications. CoRR
abs/2106.13906 (2021). arXiv:2106.13906 https://arxiv.org/abs/2106.13906

[24] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran,
and Prasad Tadepalli. 2021. RePReL: Integrating Relational Planning and Rein-
forcement Learning for Effective Abstraction. Proceedings of the International
Conference on Automated Planning and Scheduling 31, 1 (May 2021), 533–541.
https://doi.org/10.1609/icaps.v31i1.16001

[25] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. 2019. SDRL: Inter-
pretable and Data-Efficient Deep Reinforcement Learning Leveraging Symbolic
Planning. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelli-
gence and Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
(Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 365,
8 pages. https://doi.org/10.1609/aaai.v33i01.33012970

[26] Ludovico Mitchener, David Tuckey, Matthew Crosby, and Alessandra Russo. 2022.
Detect, Understand, Act: A Neuro-Symbolic Hierarchical Reinforcement Learning
Framework (Extended Abstract). In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, Lud De Raedt (Ed.). Inter-
national Joint Conferences on Artificial Intelligence Organization, 5314–5318.
https://doi.org/10.24963/ijcai.2022/742 Sister Conferences Best Papers.

[27] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping. In
Proceedings of the Sixteenth International Conference on Machine Learning (ICML
’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 278–287.

[28] Mathieu Tuli, Andrew C Li, Pashootan Vaezipoor, Toryn Q. Klassen, Scott Sanner,
and Sheila A. McIlraith. 2022. Learning to Follow Instructions in Text-Based
Games. In Advances in Neural Information Processing Systems, Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/
forum?id=StlwkcFsjaZ

[29] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. 2018. PEORL: Inte-
grating Symbolic Planning and Hierarchical Reinforcement Learning for Robust
Decision-Making. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (Stockholm, Sweden) (IJCAI’18). AAAI Press, 4860–4866.

[30] Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H. Ballard, and Peter Stone. 2019.
Leveraging Human Guidance for Deep Reinforcement Learning Tasks. CoRR
abs/1909.09906 (2019). arXiv:1909.09906 http://arxiv.org/abs/1909.09906

[31] Sijin Zhou, Xinyi Dai, Haokun Chen, Weinan Zhang, Kan Ren, Ruiming Tang,
XiuqiangHe, and Yong Yu. 2020. Interactive Recommender System via Knowledge
Graph-Enhanced Reinforcement Learning. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Virtual Event, China) (SIGIR ’20). Association for Computing Machinery, New
York, NY, USA, 179–188. https://doi.org/10.1145/3397271.3401174

https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.1145/3171221.3171284
https://doi.org/10.1609/icaps.v29i1.3549
https://doi.org/10.1609/icaps.v29i1.3549
https://doi.org/10.1007/s00521-022-07396-x
https://doi.org/10.1007/s00521-022-07396-x
https://ojs.aaai.org/index.php/ICAPS/article/view/19846
https://doi.org/10.24963/ijcai.2019/331
https://doi.org/10.1109/IS.2008.4670492
https://doi.org/10.1109/ICMLA.2009.33
https://doi.org/10.1109/ICMLA.2009.33
https://proceedings.mlr.press/v162/guan22c.html
https://proceedings.mlr.press/v162/guan22c.html
https://arxiv.org/abs/2006.14804
https://arxiv.org/abs/2006.14804
https://doi.org/10.48550/ARXIV.2206.04114
https://doi.org/10.1609/aaai.v35i9.16935
https://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1609/icaps.v30i1.6750
https://arxiv.org/abs/2007.01498
https://arxiv.org/abs/2007.01498
https://arxiv.org/abs/2007.01498
https://doi.org/10.1609/aaai.v36i6.20663
https://arxiv.org/abs/2106.13906
https://arxiv.org/abs/2106.13906
https://doi.org/10.1609/icaps.v31i1.16001
https://doi.org/10.1609/aaai.v33i01.33012970
https://doi.org/10.24963/ijcai.2022/742
https://openreview.net/forum?id=StlwkcFsjaZ
https://openreview.net/forum?id=StlwkcFsjaZ
https://arxiv.org/abs/1909.09906
http://arxiv.org/abs/1909.09906
https://doi.org/10.1145/3397271.3401174

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 Classical Planning
	3.3 Potential-Based Reward Shaping
	3.4 Plan-Based Reward Shaping

	4 Exponential Plan-Based Reward Shaping (EPBRS)
	5 Incomplete and Incorrect Plans
	6 Experimental Setup
	6.1 Environments
	6.2 Algorithms
	6.3 Hyperparameters

	7 Results
	7.1 The Mario Environment
	7.2 The Household Environment
	7.3 The Over-Planned Household Environment
	7.4 The Minecraft Environment
	7.5 Impact of Base Parameter b

	8 Conclusion
	References

