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ABSTRACT
In combination with Reinforcement Learning, Monte-Carlo Tree

Search has shown to outperform human grandmasters in games

such as Chess, Shogi and Go with little to no prior domain knowl-

edge. However, most classical use cases only feature up to two play-

ers. Scaling the search to an arbitrary number of players presents a

computational challenge, especially if decisions have to be planned

over a longer time horizon. In this work, we investigate techniques

that transform general-sum multiplayer games into single-player

and two-player games that consider other agents to act accord-

ing to given opponent models. For our evaluation, we focus on

the challenging Pommerman environment which involves partial

observability, a long time horizon and sparse rewards. In combi-

nation with our search methods, we investigate the phenomena

of opponent modeling using heuristics and self-play. Overall, we

demonstrate the effectiveness of our multiplayer search variants

both in a supervised learning and reinforcement learning setting.
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1 INTRODUCTION
Monte-Carlo Tree Search (MCTS) is widely know as a powerful

search algorithm for both, single player environments such as Atari,

and two player zero-sum games like the game of Go [24]. In en-

vironments with more players, MCTS is usually combined with

domain-specific heuristics to make search feasible [28].

Multiplayer games with more than two players introduce new

challenges to search-based methods. In particular, the size of the

search tree explodes when move combinations for multiple players

have to be considered [12]. This leads to an exponentially increas-

ing computational complexity of the search, depending on the

number of players. Combinations with MCTS [13] lead to improve-

ments across multiple domains, but perform poorly under limited

resources due to a shallow search depth [2]. Multiplayer search

methods like Parandoid search [27], Best Reply Search [23] and

recent extensions [3] improve the search depth by reducing the

time spent to simulate opponents and expectedly suboptimal moves.
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Additionally, the search can be guided with value estimates [14, 29]

and learned value functions [16, 18].

With this work, we focus on the combinatorial aspect of multi-

player games and investigate learning-based MCTS variants that

effectively reduce the search space to single- and two-player games.

Other players act according to given opponent models, hence drasti-

cally reducing the branching factor. We give insights regarding the

applicability in a Reinforcement Learning (RL) setting and evaluate

our approach in the multiplayer game Pommerman [19].

We provide the following contributions:

• Based on learning-basedMCTS, we propose techniques to re-

duce the search space by transforming competitive n-player

games to single-player and two-player games.

• We compare learning from demonstrations, reinforcement

learning, and different opponent models in terms of resulting

performance and behavior.

• We show that the proposed agent achieves a proficient level

of play in the Free For All (FFA) Pommerman environment.

Our code is available at https://github.com/jw3il/PommerLearn.

We begin by introducing our approach in a general setting. Next,

we go over our experiments in the Pommerlearn environment for

both, learning from demonstration data, as well as learning in a

reinforcement learning setting. Afterwards we discuss the results

and the limitations of our approaches. At last, we present related

work and conclude with an outlook for potential future work.

2 APPROACH
When a model of the environment is available, leveraging this

knowledge with model-based algorithms comes with several advan-

tages. Our work builds upon MCTS, a general search method that

aims to find a sequence of moves leading a player to the expectantly

most advantageous states, i.e. states in which the they can win the

game. This requires a model of the environment and a way to eval-

uate states, which could both be provided or learned. By expanding

potential future states, the search can make use of additional game

knowledge to correct decisions where a suboptimal agent alone

would fail. This allows to filter potential dangers instead of hav-

ing to face them. Additionally, search methods usually return a

principal variation, which is the sequence of future moves that are

considered best under the current knowledge. By iterating over this

sequence, it is possible to give a more throughout explanation of

the planned behavior of the agent.
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Figure 1: Exemplary search graphs of Single-Player Search (B) and Two-Player Search (C) next to a Pommerman board (A). The
Single-Player Search allows a deeper search with fully heuristic-based play for all opponents, whereas the Two-Player Search
allows a full exploration of a selected opponent at each step with the downside of achieving a lower search depth.

Search methods require a strategy for selecting and expanding

nodes in a search tree. In our case, this is provided by a neural

network model that predicts value and policy distributions for each

state, as we will detail later. The search focuses on potential future

states that appear to be promising, while also exploring other paths.

We use a variant of the Predictor Upper Confidence Bounds (PUCT)

algorithm [22] to select and expand new nodes. In particular, we

refer to the algorithm adjusted by Silver et al. [26]:

𝑎𝑡 = argmax𝑎 (Q(𝑠𝑡 , 𝑎) +𝑈 (𝑠𝑡 , 𝑎)) , (1)

where 𝑈 (𝑠𝑡 , 𝑎) = 𝑐puct𝑃 (𝑠𝑡 , 𝑎)
√︁∑

𝑏 𝑁 (𝑠𝑡 , 𝑏)
1 + 𝑁 (𝑠𝑡 , 𝑎)

. (2)

Here, 𝑎𝑡 refers to the selected action at time step 𝑡 , and Q(𝑠𝑡 , 𝑎)
is the action value for action 𝑎 of state 𝑠𝑡 . The action values of a

node are updated by calculating a simple moving average of all

backpropagated value estimates of its subtree. The term 𝑈 (𝑠𝑡 , 𝑎)
describes the utility function for a particular action. It is given by the

product of its policy estimate 𝑃 (𝑠𝑡 , 𝑎) and the total number of visits

of its parent divided by the number of visits 𝑁 (𝑠𝑡 , 𝑎) of the selected
action. This prioritizes actions that have a higher policy estimate or

were chosen less frequently. The denominator 1 + 𝑁 (𝑠𝑡 , 𝑎) is used
to avoid division by zero, and so that the nodes do not have to be

fully expanded over each action. The scalar 𝑐puct is a weighting

parameter which controls the amount of exploration compared to

the greedy action selection of choosing the highest Q-value.

Extensions of MCTS to games with more than two players come

with conceptual and practical challenges. In particular, the search

space grows exponentially with the number of players if all of them

are considered in the search.

To address this issue, we propose two simple yet effective meth-

ods that reduce multiplayer games to single and two-player games.

They allow for the application of AlphaZero-like frameworks with-

out major adjustments. We describe the methods in the following

sections and provide a visualization with Fig. 1.

2.1 Single-Player Monte-Carlo Tree Search
A straightforward approach for simplifying the search is to trans-

form the multi-player environment into a single-player environ-

ment by treating the opponents as part of the environment. Instead

of modifying the environment’s dynamics, we simplify the search

space by using deterministic opponent models for other players.

This also builds the basis of our second approach, which we will

introduce in the next section. Instead of searching through all ac-

tions of all players, we limit the search to our player agent. In Fig. 1

(B), this is the red player. The search tree is expanded solely using

the actions of this player. To execute a step in the deterministic

environment, we then gather actions for other players with their

deterministic opponent models. With all actions, the environment

advances from state 𝑠0 to the next state 𝑠1. Using this method, an

n-player game effectively reduces to a single-player game.

The quality of the resulting policy depends on the given oppo-

nent model. If the opponent model differs from the actual behavior

of the opponents, the paths that are explored during search can get

highly inaccurate and diverge from potential future trajectories in

the real environment. Convergence guarantees towards optimal

behavior are lost and a higher search depth could even lead to

deteriorations of the resulting policy.

Despite these unfavorable preconditions, our hypothesis is that

this approach can allow to assess the current situation in order

to make good decisions with respect to immediate dangers and

the near future. The better the opponent model fits the behavior

of our opponents, the better we can exploit their behavior. As we

simulate a single agent, we can perform many simulation steps

that, although being inaccurate, could help to estimate the value

of the available actions. If one would use an optimal player as the

opponent model, our agent would plan how to act in the worst-case

scenario, irrespective of the actual behavior of the opponents.

Given an action space A, the maximum branching factor per

step is |A| as we only expand moves of one agent.



Algorithm 1: Single-player MCTS for multiplayer games.

Shown is a single tree search update iteration (simulation).

1 Function SP_MCTS(𝑡𝑟𝑒𝑒 , 𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷 , 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷𝑠):
2 𝑛𝑜𝑑𝑒, 𝑠𝑡𝑎𝑡𝑒 ← SelectLeafNode(𝑡𝑟𝑒𝑒)

3 𝑎𝑐𝑡𝑖𝑜𝑛 ← SelectAction(𝑛𝑜𝑑𝑒)

4 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷] ← 𝑎𝑐𝑡𝑖𝑜𝑛

5 for 𝑖𝑑𝑥 ∈ 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷𝑠 do
6 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑖𝑑𝑥] ← OpponentModel(𝑖𝑑𝑥 , 𝑠𝑡𝑎𝑡𝑒)

7 𝑠𝑡𝑎𝑡𝑒′ ← EnvironmentStep(𝑠𝑡𝑎𝑡𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

8 𝑟𝑒𝑠𝑢𝑙𝑡 ← Evaluate(𝑠𝑡𝑎𝑡𝑒′, 𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷)
9 𝑡𝑟𝑒𝑒′, 𝑛𝑜𝑑𝑒′ ← ExpandTree(𝑡𝑟𝑒𝑒 , 𝑛𝑜𝑑𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑢𝑙𝑡 )

10 return BackpropagateSP(𝑡𝑟𝑒𝑒′, 𝑛𝑜𝑑𝑒′)

This search method is summarized in Alg. 1. The function Se-

lectLeafNode corresponds to the node selection phase in MCTS

and selects a leaf node by following Eq. (1), SelectAction then

selects a new action in this leaf. After gathering the remaining

actions with the given opponent models, performing a step in the

environment yields a new state. This state is evaluated from the

perspective of the player agent and the results are stored in a new

node which is appended to the tree. Finally, the value from the

new node is backpropagated without depth-wise negation using

BackpropagateSP, returning the updated tree.

2.2 Two-Player Monte-Carlo Tree Search
The main limitation of our single-player search is that the play be-

havior of our opponents remains deterministic, alternative moves

are not considered, and it cannot converge to an optimal strategy

during the search if there is a discrepancy between the opponent

model and the actual opponent behavior. To overcome these lim-

itations to some extend, we propose an approach which we call

two-player search. This approach expands our single-player search

by exploring the moves of a selected opponent in each step, e.g.

the green agent in Fig. 1 (C). Instead of following the determin-

istic opponent model, the move nodes for this opponent can be

fully expanded. The selected opponent makes use of the same prior

policy for move selection as our agent. All remaining opponents

perform actions according to their given models. Note that the se-

lected opponent can change across steps in the simulation. Ideally,

one would select the opponent that, when allowed to deviate from

the given opponent model, results in the most reduction in our

agent’s estimated value. This can be seen as an instance of Best

Reply Search (BRS) [23] where the opponent with the best reply is

assumed to be known. For simplicity, we choose the closest agent.

While BRS skips moves of opponents that are not selected, BRS+ [6]
uses move orderings to select valid moves. We use opponent models

to advance other opponents during the search. In the example in

Fig. 1 (C), our approach additionally expands the actions of the

green player. Like in vanilla MCTS, the values of the green player

are negated and then backpropagated to the red player. The other

opponents are seen as a part of the environment during this step.

The two-player search expands moves for selected opponents,

thus leading to a higher branching factor compared to the single-

player search. Given an action space A, the maximum branching

factor per step is now |A|2. This is magnitudes smaller than the

Algorithm 2: Two-player MCTS for multiplayer games.

Shown is a single tree search update iteration (simulation).

1 Function TP_MCTS(𝑡𝑟𝑒𝑒 , 𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷 , 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷𝑠):
2 𝑛𝑜𝑑𝑒, 𝑠𝑡𝑎𝑡𝑒 ← SelectLeafNode(𝑡𝑟𝑒𝑒)

3 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 ← GetActiveAgent(𝑛𝑜𝑑𝑒)

4 𝑎𝑐𝑡𝑖𝑜𝑛 ← SelectAction(𝑛𝑜𝑑𝑒)

5 if 𝑎𝑔𝑒𝑛𝑡𝐼𝐷 = 𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷 then // player node
6 𝑟𝑒𝑠𝑢𝑙𝑡 ← Evaluate(𝑠𝑡𝑎𝑡𝑒 , 𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷)

7 else // opponent node and step
8 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑎𝑔𝑒𝑛𝑡𝐼𝐷] ← 𝑎𝑐𝑡𝑖𝑜𝑛

9 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑝𝑙𝑎𝑦𝑒𝑟𝐼𝐷] ← GetLastAction(𝑛𝑜𝑑𝑒)

10 for 𝑖𝑑𝑥 ∈ 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷𝑠 \ {𝑎𝑔𝑒𝑛𝑡𝐼𝐷} do
11 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑖𝑑𝑥] ← OpponentModel(𝑖𝑑𝑥 , 𝑠𝑡𝑎𝑡𝑒)

12 𝑠𝑡𝑎𝑡𝑒′ ← EnvironmentStep(𝑠𝑡𝑎𝑡𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

13 𝑟𝑒𝑠𝑢𝑙𝑡 ← Evaluate(𝑠𝑡𝑎𝑡𝑒′, 𝑎𝑔𝑒𝑛𝑡𝐼𝐷)
14 𝑡𝑟𝑒𝑒′, 𝑛𝑜𝑑𝑒′ ← ExpandTree(𝑡𝑟𝑒𝑒 , 𝑛𝑜𝑑𝑒 , 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑢𝑙𝑡 )

15 return Backpropagate(𝑡𝑟𝑒𝑒′, 𝑛𝑜𝑑𝑒′)

maximum branching factor of complete enumeration with |A|𝑛 for

𝑛 agents and of BRS with (𝑛 − 1) |A|2.
The pseudocode is shown in Alg. 2. We alternately select a new

action for the player agent and a selected opponent and expand the

tree accordingly. After selecting both actions, the opponent models

fill in the remaining actions to perform a step in the environment.

Note that this uses regular backpropagation with negated values.

2.3 Combination with Learned Models
Based on the idea of AlphaZero [26], we leverage an agent model

𝑓𝜃 (𝑜) = (p, 𝑣) to predict move probabilities p and a value 𝑣 for

a given observation 𝑜 . These predictions are used to guide the

previously described search approaches. In the PUCT formula (see

Eq. 1), 𝑃 (𝑠𝑡 , 𝑎) evaluates to p and 𝑣 is used to update 𝑄 (𝑠𝑡 , 𝑎) upon
expanding non-terminal nodes. The loss is defined as

𝑙 = 𝛼 (𝑧 − 𝑣)2 − (1 − 𝛼)𝜋⊺ log p , (3)

where 𝑧 is the target value and 𝜋 the move probability according to

the search. The total loss consists of both the value loss, that is given

as a mean squared error, and the policy loss, that is formulated as a

cross-entropy loss. Hyperparameter 𝛼 weights the value loss, Silver

et al. [26] suggested using a low weight to reduce the chance of

overfitting to the value target. We iteratively update the model with

the AdamW optimizer [11].

3 EXPERIMENTS IN POMMERMAN
Pommerman [19] is a multi-agent environment inspired by the

video game series Bomberman. Up to four bomber agents move

across a discrete grid-world and try to defeat their opponents by

placing bombs. In the FFA mode, each agent plays on their own

and observes the the whole board except for hidden power ups.

In the team and radio modes, there are two teams of two agents

each. Agents can only observe their local surroundings up to a

distance of 4 blocks from their current position, horizontally or

vertically. In the radio mode, agents can additionally use a discrete

communication channel and send six bits per step. The FFA mode



Table 1: Overview of used agents.

Abbreviation Description

SimplePy SimpleAgent from the Python environment.

SimpleCpp SimpleUnbiasedAgent from pomcpp2.

RawNet Chooses the action with the highest Q-value

of the player model.

SP-MCTS Our approach with the single-player search.

TP-MCTS Our approach with the two-player search.

has been used in a preliminary competition in 2018 [19], the teams

mode at NeurIPS 2018 [20] and the radio mode at NeurIPS 2019
1
.

The Pommerman environment is very challenging, mainly be-

cause it is a multiplayer game, its long time horizon of up to 800

steps and partial observability. With four players and |A| = 6 ac-

tions, exhaustively exploring the search tree for 10 steps in order to

see a newly placed bomb explode would require evaluating around

(64)10 ≈ 1.34𝑒31 states. Given the environment’s time limit of 100

milliseconds per move, there is a need for more efficient solutions.

3.1 Training Setup
We implement our approach on top of CrazyAra [4], an AlphaZero-

like MCTS framework that includes several extensions. Our agent

model 𝑓𝜃 uses a RISEv2 mobile architecture [5] adapted for the game

Pommerman. The input of the model is of board size 11 × 11 with
23 feature channels that encode the agent’s observation. Further

details are provided in our repository. The learning target 𝑧 is the

outcome of an episode and either win (1), draw (0) or loss (−1).
Custom intermediate rewards and discounting are not used.

Each training iteration is performed in a supervised manner

on given datasets according to the loss in Eq. (3) with 𝛼 = 0.1 to

avoid overfitting to the value target. We perform data augmenta-

tion to mirror and rotate all observations jointly with the targets

to improve the sample efficiency. Depending on the experiment,

the datasets either originate from expert demonstrations or from

samples generated by our search approaches.

The official Pommerman environment [19] is implemented in

Python and provides baseline agents called SimpleAgent. Our ap-
proach is implemented in C++ and makes use of a faster reimple-

mentation of the Pommerman environment [30]. This includes an

agent called SimpleUnbiasedAgent that improves upon the pro-

vided C++ SimpleAgent and reduces the decision bias depending

on the agent’s id.
2
Most of the results presented in the following sec-

tions use this reimplementation and the FFAmode, but we conclude

with preliminary results in the Python environment. An overview

of the considered agents is presented in Tab. 1.

3.2 Learning from Demonstrations
To investigate the effectiveness of our search approaches, we first

study their combination with learning from demonstrations. We

generate a data set with one million samples of SimpleCpp agents

playing FFA games with random start conditions for up to 800 steps.

1
https://nips.cc/Conferences/2019/CompetitionTrack.

2
We found that the C++ SimpleAgent behaves differently depending on its agent id

and start position, resulting in varying average win rates.
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Figure 2: TP-MCTS SL outperforms SP-MCTS SL for higher num-
ber of simulations. When random initialized models are
used, SP-MCTS has consistently higher win rates than TP-MCTS.
Shown are the win rates of SP-MCTS and TP-MCTS against
SimpleCpp in the FFA mode. The suffix SL indicates that the
search uses amodel trained on demonstrations. The standard
deviation of five runs is highlighted in the shaded area.

This includes samples from the perspective of each player, i.e. we

collect four trajectories per episode. The model is trained using our

loss from Eq. (3) with Supervised Learning (SL), where the target

policy equals the actions chosen by the agents. The resulting model

is used as the player agent in conjunction with the search methods

SP-MCTS and TP-MCTS. For these experiments, we set the opponent

models to SimpleCpp with random seeds. Thus, the search cannot

foreshadow the exact moves that will be selected by the actual

opponents, but captures their overall behavior.

Fig. 2 shows the win rate of our approaches over 1000 games

against SimpleCpp opponents for increasing simulations per step.

For zero simulations, we use the respective RawNet agent that

chooses an action based on the maximum probability of the root

nodes’s policy distribution without any look-ahead. The results

are averaged over five models trained on the same data set with

different seeds. Note that with four agents in the FFA mode, a win

rate of 25% indicates equal performance if there are no draws. We

include the results for randomly initialized models as a baseline.

We can see in Fig. 2 that for the randomly initialized models,

SP-MCTS highlighted in blue greatly outperforms TP-MCTS high-

lighted in green. This is because TP-MCTS uses the given model

to guide the search of the closest opponent. Our agent tries to ex-

ploit the mistakes of its opponents. If the opponent model is poor,

the agent gets overconfident in taking bad actions and the search

results do not transfer well to the real environment.

This is consistent with the comparably good results of TP-MCTS
SL when the expert model is used. While SP-MCTS SL outperforms

TP-MCTS SL for a low number of simulations, TP-MCTS SL achieves

higher win rates for 250, 500 and 1000 simulations per step. The

win rate for zero simulation steps of the learned model is greater

than 25%, which indicates that its combination with action filtering

https://nips.cc/Conferences/2019/CompetitionTrack
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Figure 3: In reinforcement learning, both SP-MCTS versions
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already performs better than SimpleCpp. With a high number of

simulations, TP-MCTS SL can reach a sufficient search depth and

benefit from an increased exploration of the opponent’s actions.

To summarize, the result for the model initialized with expert

demonstrations are promising and we see that both search ap-

proaches greatly improve the performance of a randomly initialized

model. We now investigate whether these models can be improved

by iteratively training on samples generated by the search.

3.3 Optimization with Reinforcement Learning
As the next step, we aim to improve the models from the previ-

ous section with RL. We simulate FFA games against SimpleCpp
opponents for 100 000 steps and use the search’s results as the learn-

ing target for the policy and value functions. The resulting model

is then used in the next iteration and the process is repeated. As

before, all agent and opponent models are set to SimpleCpp. We

train our agent for 50 iterations with 250 simulations per step. This

setting has been chosen as a trade-off between required simulation

time and win rate based on the previous experiments.

During our experiments, we noticed that the results highly de-

pend on the amount of noise introduced by exploration within the

search. With the regular policy target 𝜋 , the agents get stuck in

local optima with low win rates after around 15 iterations. In the

following, we focus on a configuration with a modified policy target

𝜋 ′ = 0.5 · 𝜋 + 0.5 · 1{𝜋 = max𝜋}, as we found the corresponding

results to be more insightful. This reduces the noise introduced by

the search and in turn increases the probability of choosing the

best action with the highest visit count by 50%.

The results in Fig. 3 are averaged over five runs using the mod-

els from the previous section. We can see that the win rate of
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Figure 4: SP-MCTS SL becomes more passive during reinforce-
ment learning over time, reflected by the higher use of idle
actions. Shown is the action distribution of SP-MCTS SL during
training with RL at iterations 0, 15, 25 and 50. The standard
deviation of five runs is highlighted by the error bars.

SP-MCTS and TP-MCTS increases, suggesting improvements of the

corresponding models. However, the win rate of SP-MCTS reaches
its peak at around 15 iterations and starts to slowly decline after-

wards. While the win rate of SP-MCTS SL slightly increases from

80% to 90%, the win rate of TP-MCTS SL decreases over time. In-

vestigating the resulting policies reveals that the agents learn to

play passively with RL, i.e. they wait for their opponents and evade

bombs when necessary. This strategy is unexpected but expedient,

as SimpleCpp opponents are suboptimal and often put themselves

in unfavorable situations.

This is particularly visible in the SP-MCTS SL configurationwith a
win rate of around 90% after training with RL. We show our agent’s

action distribution for selected training iterations in Fig. 4. For

iteration 0, this is the action distribution of the original SL models.

It can be seen that the model gradually shifts from an initially active

policy with few idle actions to a policy that predominantly idles.

While the results show that this is a successful strategy against

SimpleCpp, the passive behavior will fail against better opponents.
The decreasing win rate of TP-MCTS SL is consistent with these

findings. While SP-MCTS SL assumes the opponents to behave like

SimpleCpp, TP-MCTS SL uses its own policy to expand the moves of

the closest opponent. By selecting idle with a higher probability, the

opponent model diverges more and more from the actual opponent

playing behavior and the win rate of this approach decreases.

3.4 Learned Opponent Models
In the previous sections, we investigated our search methods in

combination with supervised and reinforcement learning. However,

we still used the heuristic SimpleCpp as the opponent model dur-

ing planning. As SimpleCpp is clearly suboptimal, this may lead to

problems when applying the agent against opponents with strate-

gies that differ significantly. Consequently, we explore the usage of



Table 2:Win rate, tie rate, search depth, search runtime per step and environment steps for our approaches with 1000 simulations
and different opponent models against SimpleCpp opponents for 1000 games. All results are averaged over five models.

Model Method Opponent Model Win Rate Tie Rate Search Depth Search Time [ms] Environment Steps

SL

SP-MCTS
SimpleCpp 0.78 ± 0.03 0.07 ± 0.02 17.91 ± 7.60 35.30 ± 7.57 188.99 ± 3.20
RawNet 0.76 ± 0.03 0.10 ± 0.02 21.46 ± 22.09 266.62 ± 138.13 191.02 ± 2.91

TP-MCTS
SimpleCpp 0.91 ± 0.01 0.06 ± 0.01 11.57 ± 6.05 36.89 ± 7.52 246.40 ± 5.93
RawNet 0.92 ± 0.01 0.06 ± 0.01 12.14 ± 7.17 164.61 ± 64.46 254.79 ± 11.26

SRL SP-MCTS
SimpleCpp 0.94 ± 0.01 0.02 ± 0.01 21.39 ± 7.45 37.34 ± 6.74 275.23 ± 9.40
RawNet 0.90 ± 0.01 0.04 ± 0.01 25.52 ± 10.37 315.74 ± 139.75 288.47 ± 10.26

RL SP-MCTS
SimpleCpp 0.82 ± 0.01 0.07 ± 0.00 21.98 ± 8.65 36.49 ± 6.52 331.99 ± 7.38
RawNet 0.71 ± 0.03 0.08 ± 0.01 28.30 ± 11.73 309.40 ± 140.20 316.81 ± 9.46

RawNet opponent models within this section. As the combination

of our model learned from demonstrations with our simple action

filter is apparently better than SimpleCpp, agents using RawNet
opponent models should be capable of adapting to better players.

Tab. 2 shows the results of our search approaches for SimpleCpp
and RawNet opponent models against SimpleCpp opponents. The
search uses 1000 simulations to be comparable to the results from

Fig. 2. We focus on SP-MCTS in the RL setting due to the weak per-

formance of TP-MCTS and show the results for the models initialized

from zero (RL) and the ones initialized with SL and refined with

RL (SRL). For both, we use the models after 15 training iterations

due to the peak in Fig. 3. All experiments were performed for each

of the five respective models and we report the mean results. Ties

include episodes that are not done.

For the SL models, we can see that the win, tie rates and envi-

ronment steps are nearly unaffected when using RawNet instead

of SimpleCpp for both of our approaches. However, it is notice-

able that the search depth increases slightly and the search time

increases drastically. We hypothesize that the increase in search

depth is caused by the better opponent behavior, i.e. episodes within

the search do not end as quickly as RawNet is a stronger opponent.

However, as the actual opponents are still SimpleCpp, this is not
reflected in the real environment, as visible in similar numbers of

environment steps. The increase in search time can be explained by

our prototypical implementation of the RawNet opponent models.

While the model inference for SP-MCTS and TP-MCTS is executed

in batches, we currently use batch size one for RawNet opponent
models within the search. This drastically increases the time to eval-

uate the opponent models per step. With an halved search depth in

TP-MCTS, the search time also decreases greatly as there are fewer

inference calls of the opponent model.

For the SRL and RL models, we notice that the win rate slightly

decreases when using RawNet opponent models. However, the SRL

model yields higher win rates than SP-MCTS with the SL model and

is comparable to TP-MCTSwith the SL model. The win rate of the RL

model without training on demonstrations is similar to the initial

SL model for SP-MCTS. For the SRL and RL models, there is high

increase in environment steps compared to the SL models. This

indicates that the agents play more passively.

We conclude that in most cases, the RawNet opponent model has

a neglectable effect on the win rate against opponents that were

seen in training. With a more efficient implementation, it could be

Table 3: Win rate and tie rate of our approaches against
SimplePy opponents in the official environment for 100
games. We use 1000 simulations for SimpleCpp and 250 simu-
lations for RawNet. All results are averaged over five models.

Model Method Opponent Model Win Rate Tie Rate

SL

SP-MCTS
SimpleCpp 0.78 ± 0.04 0.12 ± 0.02
RawNet 0.67 ± 0.06 0.25 ± 0.04

TP-MCTS
SimpleCpp 0.66 ± 0.05 0.32 ± 0.05
RawNet 0.61 ± 0.06 0.34 ± 0.06

SRL SP-MCTS
SimpleCpp 0.65 ± 0.09 0.30 ± 0.09
RawNet 0.63 ± 0.05 0.32 ± 0.04

RL SP-MCTS
SimpleCpp 0.74 ± 0.03 0.22 ± 0.03
RawNet 0.72 ± 0.04 0.23 ± 0.03

a good alternative to hand-crafted heuristics. The best agents are

TP-MCTS with the SL model and SP-MCTS with the SRL model.

3.5 Evaluation in the Official Environment
Finally, we evaluate our approach in the official Python environ-

ment [19] to investigate whether our previous results transfer to

the Python environment and the SimplePy opponent. The starting

positions are randomized to reduce their influence on the results.

As the previous section showed a high search time when using

RawNet, we restrict the number of simulations to 250 in this case

to stay below the official time constraint of 100 ms.

The results against SimplePy agents in the FFA mode are shown

in Tab. 3. In contrast to our previous evaluation against SimpleCpp
in Tab. 2, SP-MCTS outperforms TP-MCTS by a noticeable margin

for the SL models. While the results of SP-MCTS are similar to our

previous evaluation, the win rate of TP-MCTS strongly decreases. A

potential reason for that could be the difference between the actual

opponent behavior and the one considered during planning. The

search might assume that opponents play too well, resulting in

an overly defensive play style. This is also indicated by the high

reduction in the win rate when using the RawNet opponent model

in SP-MCTSwith the SL models. Another indicator for the defensive

playing style is the high tie rate and the high similarity of the results

to the SRL models. Interestingly, the RL models outperform the SRL

models in this setup. It could be that they generalize better against

other opponents because they were not trained on demonstrations.
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Figure 5: Visited board positions of the SP-MCTS SL (A) and RL agents (B) against SimplePy in the official environment. Subfigure
(C) complements this with the number of unique positions visited within 20 steps. While the SP-MCTS SL agents show active
movement behavior, the agents trained with RL are very passive. The results are averaged over 5 models with 100 games each.

We notice that the tie rates of all agents are very high, especially

for the agents with lower win rates. Most of these ties are caused

by episodes that do not terminate within the environment’s limit

of 800 steps. In turn, the average number of environment steps per

episode also increases greatly to up to 490 ± 230 steps for SP-MCTS
with the RL model. We omit the steps in the table, their overall trend

for the individual models and methods is similar to the previous

results. Despite the reduced win rates, our agents still loose very

few games due to a defensive play style.

Recent related work with learning-basedMCTS and reward shap-

ing reports a win rate of around 0.7 against SimplePy opponents
in the FFA mode [32]. Our approaches reach competitive win rates

without reward shaping. Additionally, the RL agent was trained

from scratch and did not use learning from demonstrations.

We show further details regarding the movement behavior of

the SP-MCTS SL and RL agents with SimpleCpp opponent models

in Fig. 5. Subfigures (A) and (B) show the average steps on the

individual board positions per game. For the visualizations, we

rotated the board according to the agents’ starting positions such

that they always start at the upper left corner. This allows us to see

how much the agents explore the map, irrespective of their starting

position. In Fig. 5 (A), we can see that the SP-MCTS SL agent actively
explores the map while avoiding the border, except for the tiles

close to its starting position. This is reasonable, as agents at the

border have fewer options for evasion. The noticeable ring across

the map at distance one to the border is due to the randomization

of the map. Only destructible objects and passages are placed at

these positions, ensuring that the agents can reach each other. In

Fig. 5 (B) and (C), we can see that the SP-MCTS RL agents stay very

close to their starting positions and rarely move across the map,

confirming that they develop a very defensive playing style.

4 DISCUSSION
Next, we discuss the insights and limitations of our approach. One

major insight is that in Pommerman, focusing on the win rate alone

is not enough. While a high win rate is an indicator for subjectively

good agent behavior, further analysis of the behavior of the agents

is required to assess the quality of their policies.

We have shown that no custom reward shaping is necessary

to significantly improve agent models with our search methods.

Our approach SP-MCTS can reach proficient level of play in the FFA

environment and even compensate for a bad model. TP-MCTS can
outperform SP-MCTS with a higher number of simulations, but only

when a good model is given. Our evaluation with SimplePy oppo-

nents suggest that there might not be a single opponent model that

allows the agents to perform well in all cases. If the real opponents

show suboptimal behavior that is not captured by the opponent

model, our approaches become overly defensive. One limitation of

our experiments is that we only considered deterministic opponent

models andmodels trained on SimpleCpp agents. Instead, one could
collect samples from the best available agents and train models to

imitate their behavior. We expect that combining these models with

our search approaches could further increase their playing strength.

Stochastic opponent models could be considered by expanding mul-

tiple different opponent actions into individual nodes or merging

different opponent trajectories into a single node with the expected

or worst-case behavior. This would greatly increase the sample

complexity, but could reduce wrongful exploitation when facing

different opponents and make the search more applicable to real-

istic scenarios. Another direction for future work lies in the way

opponents are selected by TP-MCTS. In our case, we always expand

the actions of the closest opponent. Extensions could predict the

most dangerous opponent or selectively expand opponents based

on a computational budged. Finally, we think that combining more

computationally expensive search methods [3, 6] with learned op-

ponent models poses an interesting direction for future research.

While RL improved the win rate of some configurations, the

resulting behavior did subjectively deteriorate. In particular, the

agents trained via RL were predominantly passive. Providing a

fine-grained reward signal might be necessary to learn the desired

behavior, at the cost of introducing additional bias. Another interest-

ing aspect of RL would be to investigate pure self-play, e.g. having

four learning SP-MCTS agents play against each other. Preliminary



experiments not discussed in this paper suggest that self-play agents

also develop a passive playing style, further strengthening the need

for intermediate rewards when using RL. A different approach to

stabilize training in a self-play setting could be to anticipate the

learning of other agents in the environment [7]. One problem that

emerges without self-play is that high win rates lead to unbalanced

data sets. We experimented with resampling techniques to draw

samples for each value and action target with equal probability, but

this did not lead to noticeable improvements. To avoid overfitting

on specific opponents, population-based approaches with different

opponents would also be worth investigating.

Lastly, we focused on the FFA mode. Extensions of our approach

to the team and radio mode would be interesting. Initial results

show that our agent performs well against a team of SimplePy
opponents, but struggles against docker agents from previous chal-

lenges. To deal with the partial observability in form of the now

limited view, agent models leveraging recurrent neural networks

and learned communication can be explored. We think that includ-

ing bomb kicks in the demonstration data set, e.g. by considering

samples from different agents, could greatly help our agents to

react appropriately when facing these opponents. It would also be

interesting to combine our approaches with learned environment

models, especially to avoid hand-crafting environment dynamics

that can handle the limited view in the team and radio modes.

5 RELATEDWORK
The combination of RL and tree search has been extensively stud-

ied in the domain of games, in particular board games. One break-

through in this field is the work by Anthony et al. [1], which applied

tree search and reinforcement learning to learn the game of Hex.

This approach was later followed and popularized in the AlphaZero

[25] algorithm by learning the games Go, Shogi and Chess from

zero knowledge. AlphaZero has then been re-implemented and

extended for Go [31] and multiple chess variants [4]. Later works

in the form of MuZero [24] emphasized the environment model by

learning a model that is used for planning rather than relying on

the actual environment itself.

Planning approaches using tree search have also been success-

fully applied in multiplayer games with more than two players

[12, 13]. However, they can suffer from a shallow search depth

[2] in practice due to the high combinatorial complexity. Many

approaches increase the search depth by reducing the time spent to

simulate opponents and expectedly suboptimal moves [3, 23, 27]. In

addition to simplifying the search tree, integrating domain knowl-

edge in the form of value heuristics into MCTS has shown to greatly

improve performance in multiplayer games [14, 29]. Petosa and

Balch [18] extend the idea of AlphaZero and apply learned value

estimation in multiplayer games, but iterate over all players during

search. On contrast, Ozair et al. [16] consider opponents to be part

of the environment’s dynamics and learn a latent variable to sam-

ple state transitions for MCTS that include the opponent’s moves.

While they only considered games with up to two players in their

evaluation, the idea should be generally applicable.

Previous work in Pommerman [19] ranges from learning- and

planning-based approaches to the combination of both. Due to the

sparse reward and long time horizon, approaches leveraging model-

free RL struggle to beat simple heuristics without further modifica-

tions of the environment or training procedure [9]. Resnick et al.

[21] suggest to start training close to terminal states, Peng et al. [17]

use pathfinding-based actions instead of direct movement and Gao

et al. [8] employ reward shaping, action filtering and curriculum

learning. However, agents using model-free RL have shown inferior

performance compared to planning-based approaches. Their main

limitations are the time constraints for decision making and the

high branching factor. The winners of the NeurIPS 2018 competi-

tion combine planning with deterministic and pessimistic rollouts

to increase the search depth [15]. Rollouts with more than ten steps

allow the agents to account for explosions of recently placed bombs

during planning. The second-placed agent uses minimax search

with an average search depth of only two steps [20], an extension

of this agent won the subsequent competition held at NeurIPS 2019.

Learning and planning can also be combined. For example, Kartal

et al. [10] use model-free RL but initialize their agent with imita-

tion learning on samples generated by shallow MCTS with random

agents. Yang et al. combine MCTS with a learned model, they initial-

ize their agent with imitation learning and employ reward shaping

and sophisticated action filtering heuristics during search [32].

We observe that, although they reach proficient levels of play, re-

cent planning-based approaches either suffer from a shallow search

depth or introduce high bias through search heuristics and reward

shaping. In this paper, we explored the feasibility of learning-based

MCTS in the Pommerman environment with opponent models,

given only an environment model, a sparse reward signal at the

end of the episode, and demonstrations from other agents.

6 CONCLUSION
With this work, we proposed two methods based on MCTS that

make use of deterministic opponent models and reduce competitive

multiplayer games to single- and two-player games. This greatly

reduces the complexity of the search space and makes MCTS appli-

cable to complex environments with time constraints. We evaluated

our approach in the game Pommerman without custom reward

shaping. We found that both methods load to high improvements

in terms of win rate against baseline agent heuristics, both when

using an uninitialized model and a model trained on demonstra-

tions. Our two-player search outperforms the single-player search,

but requires more simulations and a good initial model. While the

application of RL based on the samples generated by the search

leads to improved win rates in most cases, we found that the agents

develop a passive playing style. We think that intermediate rewards

might be necessary to learn a more active policy in a RL setup.

Future work could investigate how our approaches perform if

demonstrations from better agents are used to train the initial mod-

els. To further explore the RL setup, the next step would be to inte-

grate reward shaping. It would also be interesting to expand upon

the opponent selection in our two-player search, e.g. by predict-

ing the most dangerous opponent in each step. Another promising

direction would be to consider MCTS with stochastic opponent

models. To extend our approach to the team and radio modes, the

combination of MCTS with recurrent neural networks and learned

communication between agents could be explored further.
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