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ABSTRACT

Mixed incentives among a population with multiagent teams has
been shown to have advantages over a fully cooperative system;
however, discovering the best mixture of incentives or team struc-
ture is a difficult and dynamic problem. We propose a framework
where individual learning agents self-regulate their configuration
of incentives through various parts of their reward function. This
work extends previous work by giving agents the ability to dynami-
cally update their group alignment during learning and by allowing
teammates to have different group alignment. Our model builds on
ideas from hierarchical reinforcement learning and meta-learning
to learn the configuration of a reward function that supports the de-
velopment of a behavioral policy. We provide preliminary results in
a commonly studied multiagent environment and find that agents
can achieve better global outcomes by self-tuning their respective
group alignment parameters.

1 INTRODUCTION

Cooperation and teamwork are central to the success of many
human endeavours. Recently, there has been increasing support for
the study of cooperation and teams being central to the development
of artificial intelligence (AI) and multiagent systems (MAS) [2, 3].
Similarly to humans, intelligent agents cooperating and working
in teams can enhance their capabilities beyond those of a single
agent. However, recent work has shown that agents defined to
be fully cooperative can be sub-optimal; agents that are not fully
aligned with their teammates can achieve more globally favorable
results [5, 13].

This paper extends a recently proposed model, credo [14]. Credo
regulates how an individual learning agent optimizes for multiple
objectives in the presence of teams. Specifically, credo represents
how much the agent optimizes for the goals of different groups they
belong to: their individual goals, the goals of any teams they be-
long to, and the goals of the entire system. In previous experiments
within multiagent reinforcement learning (MARL) environments,
the credo model showed that the best global outcomes for a pop-
ulation of agents were achieved when agents in a larger group
were somewhat selfish or when agents were mostly aligned with
a smaller sub-team, robust to some amount of selfishness. While
credo was predetermined and fixed in these past experiments, the
results motivate the key research question this paper aims to ad-
dress: can giving agents the ability to dynamically tune their credo
allow them to learn favorable group alignments automatically?
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In this paper, we conceptualize and provide a preliminary ap-
proach that enables agents to self-tune their credo. We provide
theoretical foundations as to the motivation behind self-tuning
credo in the context of different team structures and group align-
ment. Further, we detail our framework that endows agents with the
ability to tune their own credo. The framework borrows implemen-
tation concepts from hierarchical reinforcement learning (HRL) and
meta-learning. Conceptually, each agent has a credo-tuning policy
and a behavioral policy to maintain the decentralized nature of in-
dividual learning agents. The values of an agent’s credo ultimately
shapes their reward function, and thus, the optimization landscape
of their behavioral policy. The dual-layer structure is similar to
high and low-level policies in HRL, while the credo-tuning policy
learning to shape the optimization landscape for the behavioral
policy reflects that of a meta-learning problem.

We present preliminary results in a widely studied MARL en-
vironment, the Cleanup Gridworld Game [23], and outline future
plans for evaluation. We show that, when starting from a known
sub-optimal group alignment (i.e., sub-optimal credo), agents that
tune their respective credos with our framework move to a better
group alignment and learn a more globally favorable joint policy.
While favorable team structures and group alignments have been
explored in our preliminary testing environment, we describe our
plans to test our framework in an environment where these are
not known. The goal of this work is to enable agents to optimize
their behaviors towards the various groups they belong to in any
environment — enabling agents to learn better joint policies while
eliminating the need for researchers and practitioners to engineer
specific team structures and credo parameters. With this paper we
make the following contributions:

e We provide theoretical motivation behind dynamically tun-
ing credo (Section 4.1).

e We conceptualize an agent framework to allow agents to
self-regulate their own individual credo (Section 4.2).

e We present preliminary results demonstrating the efficacy
of our framework (Section 5.4) and outline future work (Sec-
tion 6).

2 PRELIMINARIES

We model our base environment as a stochastic game G = (N, S,

{A}ieN,{R}ieN, Py, Z). N is our set of all agents that learn on-
line from experience (with size N € N) and S is the state space,
observable by all agents, where s; is a single state observed by
agent i. A = A; X ... X AN is the joint action space for all agents
where A; is the action space of agent i. R = R; X ... X Ry is the
joint reward space for all agents where R; is the reward function of
agent i defined as R; : S X A X S — R, a real-numbered reward for
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taking an action in an initial state and resulting in the next state.
P : S x A A(S) represents the transition function which maps a
state and joint action into a next state with some probability and y
represents the discount factor so that 0 < y < 1. X represents the
policy space of all agents, and the policy of agent i is represented
as 7; : S — A; which specifies an action that the agent should take
in an observed state.!

We use “common interest” to refer to when agents share their
reward and a team is a set of individual agents that can have some
degree of common interest for team-level goals. Given a population,
multiple teams with different preferences and interests that are not
in zero-sum competition may co-exist. The collection of all teams
is referred to as a team structure. We denote the set of all teams as
7, the teams agent i belongs to as 7;, and a specific team as T; € 7;.

The credo model presented in [14] relaxes the assumption that
teammates are fully aligned though common interest to allow set-
tings where agents may only partially optimize for a team’s goal. For
example, an agent may optimize their policy for the performance of
one or multiple teams, while also being somewhat oriented towards
it’s own personal goals. This is done by decomposing an agent’s
reward function to be a combination of their individual environ-
mental reward IR; = R;, the rewards i receives from each team
they belong to TRz}VTi € 7;, and the reward i receives from the

system of |[N| agents SR;. TRl.Ti and SR; can be implemented with
any function to aggregate and distribute rewards.

Each agent has a credo vector of parameters where the sum of all
T ¢F'f\

parameters is 1, represented cr; = (¢, $;'.. s 9;

, wj), where i/
is the credo parameter for i’s individual reward IR;, gzﬁlT’ is the credo

parameter for the reward TRl.Ti from team T; € 7;, and w; is the
credo parameter for the reward i receives from the system SR;. The
parameter notation is organized by increasing order of group size,
so that cr; = (self, ..., teams, . .., system), where [self] < |teams| <
[system|. An agent’s credo-based reward R{" is a weighted combina-
tion of that agent’s credo parameters and reward from that group.
Expanded in Section 4.2, in this work we implement functions for
TRiTi and SR; specially designed for the self-tuning scenario that
maintain consistency with the original implementation in [14].

3 RELATED WORK

Humans have developed with an inherent bias towards teamwork.
However, humans are only able to reliably maintain social rela-
tionships with a maximum number of individuals, causing them
to form smaller groups [4]. Analyzing between-team behaviors
is often done in organizational psychology (OP), focusing on the
concept of social identification or people’s perceptions of their
goals [12, 19]. Team members may need to balance tendencies for
their own personal goals with the goals of their team or the en-
tire system [1, 25]. Humans are continuously learning; thus, this
balance of how humans optimize for goals is likely to be dynamic
instead of static.

In Al the concept of multiple non-conflicting teams within a
larger system has been primarily explored for task completion [7,
20], and more recently been used in social dilemma scenarios [13].
Furthermore, agents optimizing their behavior while balancing

'We can also allow for randomized policies.

between personal and group-level goals has been of growing in-
terest to the AI community [5, 11]. One such example of this is
ad hoc teamwork which relies on the ability to assess the goals
of an individual or group to best optimize a cooperative utility
function [10, 17].

A previously proposed model, credo, considers how agents opti-
mize for various goals in the context of multiple non-conflicting
teams within a larger system [14]. Credo defines how agents op-
timize for various groups they belong to, namely themselves, any
teams they belong to, and the entire system. While credo showed
how groups with mixed motives or some degree of selfishness can
significantly outperform fully cooperative populations, all agents’
credo parameters were initialized the same and kept constant through-
out experiments. Other work has studied concepts of dynamic re-
ward sharing and the emergence of coordination; however, that
work relied on random perturbations of reward sharing parameters
and did not consider the existence of defined team structures [6].

In this paper, we propose an agent framework where agents are
able to self-tune their individual credo parameters for groups they
belong to. Our model builds on hierarchical reinforcement learning
(HRL) concepts to define multiple policies within a single indi-
vidual learning agent. Given a population of credo-tuning agents,
we hope to develop continuously evolving policies that overcome
sub-optimal team definitions, recover favorable joint policies, and
preserve cooperation across multiple learning entities.

4 SELF-TUNING CREDO

In this section we provide motivation for allowing agents to self-
tune their credo parameters (Section 4.1) and detail our framework
that allows agents to do this (Section 4.2).

4.1 Motivation

The main motivation behind allowing agents to self-tune their credo
parameters is to recover a more favorable joint policy despite a sub-
optimal group environment. For example, Figure 1, adapted from the
original credo paper [14], shows a 33% increase in mean population
reward in the Cleanup gridworld game when a population of six
agents were 80% cooperative and 20% selfish compared to fully
cooperative (Scenario 1). Both scenarios highlighted in Figure 1
achieve the highest mean population reward because agents tend
to learn better joint policies under certain combinations of team
structure and credo definitions.

Defining a team structure that best supports how individual
agents learn is a difficult problem. Recent work has used a fully
cooperative population (i.e., shared reward function) to compare re-
sults with; however, the credo model has shown how a fully aligned
population may be sub-optimal. Providing agents with the ability
to self-tune their credo parameters allows agents to regulate their
internal reward function through group alignment. For example,
credo-tuning agents defined in one large cooperative population
may discover the benefits of being slightly selfish on their own and
converge to Scenario 1 in Figure 1. The pressures to tune credo
and recover different reward signals are highly correlated with the
size of the reward-sharing group. In this section, we detail how
features of group size impact reward signals (Section 4.1.1) and how
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Figure 1: Mean population reward for every credo parameter
in the Cleanup environment from [14]. These experiments
have |77| = 3 teams of two agents each. Two scenarios achieve
the highest reward: when credo has slight self-focus paired
with high system-focus (green star) and when team-focus is
high (yellow stars).

tuning credo can be leveraged to recover stronger reward signals
(Section 4.1.2).

4.1.1 Reward Signals and Group Size. Consider a scenario with
a fully aligned cooperative population of N agents with only be-
havioral policies (i.e., only one group, the entire system). In this
setting, all agents share rewards at every timestep. Thus, if agent
i collects a reward of r at time ¢, all agents receive a reward of £
(assuming no other agent collects a non-zero reward from the envi-
ronment). The size of the reward-sharing group has two impacts
on the reward function and agents’ abilities to perform effective
credit assignment.

Probability of non-zero reward approaches one: Starting
with three common assumptions in reinforcement learning (RL),
assume agents 1) are initialized with random policies, 2) fully ex-
plore the state space in the limit, and 3) each have equal probability
of collecting a non-zero reward from the environment P(r); (i.e.,
P(r); = P(r); for any agents i and j). The probability of any agent
collecting a non-zero reward is: 1 — P(r)N. The derivative of this
is positive, f'(1 — P(r)N) = N - P(r)N~1; thus, agents in a reward-
sharing group are monotonically more likely to receive a non-zero
feedback signal at any timestep as the size of that group increases.
This probability approaches 1 as N — oo in the limit.

Variance of non-zero reward approaches zero: Agents re-
ceiving non-zero reward for their actions causes them to assign
credit to these actions. More positive reward for certain state-action
pairs will result in them executing these state-action pairs more
often in the future, and vice versa for negative reward. However,
while the probability of receiving a non-zero reward approaches
1 as N increases, the derivative f” (ﬁ) = —# implies the value of
this non-zero reward monotonically approaches 0 as N increases.
With a large group, the reward that each agent receives at every
timestep will be a function of the expected number of agents that

obtain rewards at any timestep. As N — oo, the variance of this
reward approaches zero. Thus, agents would be unable to perform
effective credit assignment if the size of their reward-sharing group
is too large.

4.1.2  Recovering a Stronger Reward Signal. The previous subsec-
tion describes a scenario where agents lose the ability to perform
effective credit assignment if the size of a reward sharing group is
too large (assuming agents fully share rewards). The credo model
removes the assumption that agents fully share rewards to analyze
situations where agents can learn from multiple types of groups
they belong to. Thus, regulating credo could allow agents to recover
meaningful feedback signals from their actions in environments
where credit assignment becomes challenging (i.e., if the reward-
sharing group is too large).

Consider again the results from the original credo paper shown
in Figure 1. Agents defined in a fully aligned population (one team
of six agents) fail to converge to the most efficient joint policy;
however, agents are able to recover a better joint policy when agents
are 20% selfish (Scenario 1). Agents that can self-regulate their credo
parameters may recover better joint policies despite a sub-optimal
environment that can impose credit assignment challenges, such
as poorly defined team structures or group alignment.

4.2 Self-Tuning Credo Framework

This section details how we extend the credo-based reward function
design and our proposed self-tuning credo framework.

4.2.1 Extending Credo. Recall from Section 2 that agent i’s credo

is defined as a vector of parameters that sum to 1, represented

T, . -
cr; = (Y, ¢lTl s 9 " w;), where 1/ is the credo parameter for i’s

individual reward IR;, ¢ZT‘ is the credo parameter for the reward

TRiTi from team T; € 7;, and w; is the credo parameter for the
reward i receives from the system SR;. In this paper, we define
agent i’s credo-based reward function R;" to be calculated as:

T

LT-T Rl_Ti I B
T,eT; 2jeT; ¢jl ZJEij
Different from the original implementation, Equation 1 allocates
team and system rewards based on the ratio of an agent’s credo
parameter for that group compared to the sum of credo parameters
of other agents in that group. This is necessary modification for the
scenario when agents may have different credo parameters for the

same group. To maintain consistency with past work, we modify

Ricr =y;iIR; + SR;. (1)

TRiTi and SR; to be the weighted sum of agents’ rewards and their
credo parameter for that specific group:

T\ 4T
TR = 3" ¢TR;(S,4;,5),
jeT,

SRi= ) wR;(S,A},S).
JEN
This ensures all rewards that are collected from the environment
are re-allocated to the various groups and scaled according to all
credo parameters. These modifications are equivalent to the previ-
ous credo setting when all agents have the same credo, but expand



the reward function dynamics to when teammates may not have
the same credo for a team.

4.2.2  Agent Architecture. Anoverview of our proposed agent frame-
work is given in Figure 2. The architecture of the agent is a multi-
level policy inspired by HRL, where each layer influences the learn-
ing problem of the other. The “low-level” policy, 7;, is a typical
behavioral policy that takes actions a; conditioned on an observed
state s; within an environment. At each timestep, rewards are shared
with other agents according to the agent’s credo parameters cr;.
The “high-level” policy, 7;", modifies the agent’s credo parameters
at a slower time scale. Conditioned on the previous credo param-
eters, crj, and the corresponding low-level policy’s reward over

E > 1 episodes, Rf , the high-level agent produces updated credo
parameters, cr}. The top-layer policy operates at a slower time scale
than the low-level behavioral policy to allow the low-level policy
to gain experience with a particular credo and stabilize learning.

Both policies learn from experience using RL. They both aim
to individually maximize their sum of discounted future rewards
and neither policy directly observes the other (i.e., they are both
individual learning policies). However, each policy directly influ-
ences the optimization landscape of the other. The behavior of the
low-level policy determines the reward feedback for the high-level
policy; if the behavioral agent fails to gain reward, the high-level
credo-tuning policy fails to get positive feedback. Concurrently, the
credo output of the high-level policy shapes the reward function of
the low-level policy for the next set of E episodes.

As mentioned in Section 4.1.1, tuning the amount of shared
reward within groups regulates 1) the probability of an agent re-
ceiving a non-zero reward from a group with more teammates, and
2) the variance of their reward signal. Thus, the high-level credo
policy shapes the influence of these two aspects with respect to all
groups referenced in the credo vector to guide the learning process
of the low-level behavioral policy (self, any teams, and system).

5 EVALUATION

This section outlines our implementation details, experimental envi-
ronment and setup, and presents preliminary experimental results.

5.1 Implementation

Low-level Behavioral Policy: We implement the behavioral poli-
cies of our agents with Proximal Policy Optimization (PPO) [16].
The PPO implementation in [14] used an older version of the RLIlib
library (version 0.8.5) which made interconnecting the credo-tuning
framework infeasible. Thus, we adapted the same architecture as
the agents in [14] to the current version of RLIlib (version 2.1.0) to
incorporate the credo-tuning agent architecture shown in Figure 2.2

High-level Credo Policy: As a preliminary construction, and to
reduce sample complexity, we implement the high-level credo pol-
icy as a Q-Learning agent with e-greedy exploration (¢ = 20%) [24].
Consistent with the original credo paper, we define agents to belong
to only one team, making credo vectors with three parameters (i.e.,
cri = (Yi, i, wi)). We limit possible agent credos to intervals of
0.2, creating a state space of 21 possible states (shown in Figure 1
from [14]). With three credo parameters, the agent can choose from
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Figure 2: Overview of the proposed credo-tuning agent frame-
work. Each agent has two policies that operate at different
time scales: a low-level behavioral policy that acts within an
environment and a high-level credo-tuning policy that op-
erates every E > 1 episodes. The credo-tuning policy shapes
the optimization landscape for the behavioral policy while
the learned behavior impacts the reward function for the
credo-tuning policy.

any of seven actions. The action space consists of either increas-
ing/decreasing any combination of credo parameters (six actions)
or doing nothing (one action). For example, if cr; = (0.2,0.0,0.8),
the agent can take an action to decrease self-focus and increase
system focus (by increments of 0.2) to result in cr} = (0.0, 0.0, 1.0).
If the agent chooses an action that would increase any credo param-
eter above 1.0 or below 0.0, no action is taken and cr; = cr;. The
behavioral policies are updated with cr} for the next E episodes.

5.2 Environment

We perform our preliminary evaluation in the Cleanup Gridworld
Game [23]. Cleanup is a temporally and spatially extended Markov
game representing a sequential social dilemma. We keep the un-
derlying environment unchanged from previous setups [8] except
for the team and system reward functions. Agent observability is
limited to an egocentric 15 X 15 pixel window and consuming an
apple yields +1 reward. Apple regrowth rate is dependent on the
cleanliness of an adjacent river. To be successful in cleanup, agents
must learn to balance actions of consuming apples and cleaning
the river (which returns no positive reward). Agent rewards are
determined by their credo cr; which is updated at regular intervals.
Consistent with the original credo paper, we set the size of each
team to be two agents |T;| = 2, creating |7 | = 3 disjoint teams
from the population of N = 6 agents [14]. Agents are implemented
with PPO behavioral policies, Q-learning credo policies, and exper-
iments last for 3.2 x 10® environment steps and credo parameters
are updated every 96,000 environment steps.
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5.3 Experiment

We design an experiment to evaluate if credo-tuning agents can
overcome a sub-optimal initialization to recover a joint policy
that achieves higher mean population rewards (Scenario 1 or 2
in Figure 1). We initialize agents to be fully system-focused (i.e.,
crj = (0.0,0.0, 1.0)). The low-level behavioral policy trains, and the
high-level credo policy updates cr;, every 96 episodes (rollouts of
six workers with 16 environment copies each). This is equivalent to
initializing agents with credo parameters in the bottom left corner
of Figure 1; however, agents’ credo policies are now able to adjust
the agent’s credo parameters.

This setting directly evaluates our discussion in Section 4.1.1.
One of the key findings in previous work is that some amount
of mixed incentives can achieve more favorable global outcomes
than a fully cooperative population [5, 14]. In Cleanup, agents that
are slightly self-focused or fully team-focused (Scenario 1 and 2
respectively in Figure 1) learn a better global joint policy through
division of labor. In these settings, agents divide labor and learn
to specialize into roles of four apple picking agents and two river
cleaning agents. When agents are fully system-focused, they spe-
cialize into the sub-optimal joint policy of three apple pickers and
three river cleaners.

We hypothesize that a full system-focused group learns this
sub-optimal joint policy due to more a difficult credit assignment
problem. Agents in Scenario 1 of Figure 1 learn the best joint pol-
icy by recovering slightly stronger reward signals by being 20%
self-focused. The design of this experiment evaluates the ability
for credo-tuning agents to recover stronger reward signals and
converge to a better joint policy. Intuitively, this can be thought of
as agents learning to configure their credo parameters such that
they converge to high-reward areas of Figure 1.

5.4 Preliminary Results

This section shows preliminary results of the experiment detailed in
Section 5.3. In the credo tuning experiment, all agents are initialized
in the Cleanup environment with cr; = (0.0, 0.0, 1.0). Each agent’s
behavioral policy updates every 96,000 environmental timesteps (96
episodes), at which point the high-level credo policy modifies the
agent’s credo parameters. The behavioral policy never observes the
credo parameters but instead experiences changes to their reward
function over the next batch of episodes. We compare credo tuning
to two configurations where credo remains static. In the static team-
focus experiment, agents maintain cr; = (0.0, 1.0, 0.0) for the entire
experiment and fully share rewards with their teammates. In the
static system-focus experiment, agents maintain cr; = 0.0, 0.0, 1.0)
for the entire experiment and share rewards with all agents (i.e., a
fully cooperative system). In all experiments, there are six agents
that are divided into three disjoint teams of two agents each (i.e.,
N =6, |7| = 3, and |T;| = 2). We execute four trials of each
experiment configuration.

We observe the same patterns with the static experiments as
in previous work [13, 14]: full team-focus performs significantly
better than full system-focus. However, we found that updating the
PPO agents from RLIib 0.8.5 to RLIib 2.1.0 modified their learning
curves so that agents learn more gradually (despite no changes
to the algorithm configurations). Thus, while our direct learning
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Figure 3: Reward curves in the Cleanup environment for each
experiment in our evaluation. Results are the mean across
4 trials for each experiment reported with 95% confidence
intervals. The static team-focus environment has been shown
to achieve the highest mean population reward in Cleanup
with different credos (Figure 1 Scenario 2). This shows that
credo-tuning agents that are initialized with system-focus
credo can increase their mean population reward to improve
towards the level of team-focused agents.
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Figure 4: Inverse Gini index curve in the Cleanup environ-
ment for each experiment in our evaluation. Results are the
mean across 4 trials for each experiment reported with 95%
confidence intervals. Static system-focus credo is defined to
have full equality and is always 1. This shows that credo-
tuning agents converge to slightly higher equality than the
static team-focused experiment.

curves are not comparable to past work, the overall result remains
consistent and we extend the duration of the experiments from
1.6 X 108 to0 3.2 x 108 environment steps.

5.4.1 Reward. Figure 3 shows the mean population reward and
95% confidence intervals obtained by the population of agents in
the three different credo scenarios: static system-focus, static team-
focus, and credo-tuning agents that were initialized to be system-
focused. The y-axis shows mean population reward and the x-axis
shows timesteps of the experiment. Consistent with past work, we
find that static agents that are fully team-focused (blue) perform
significantly better than static system-focused agents (red). This is
due to team-focused agents converging to a more efficient division
of labor joint policy with two river cleaning agents and four apple
picking agents, whereas system-focused agents converge to three
agents each cleaning the river or picking apples.

Recall from Figure 1 that full team-focus credo is one setting that
achieves the highest reward in this configuration; thus, we treat
full team-focus as an upper-bound result in this domain. The goal
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Figure 5: Amount of apples consumed (top) and cleaning
beam actions (bottom) by each agent for one trial of the
credo-tuning experiment with agents initialized with system-
focused credo (green line in Figures 3 and 4). Agents are
labeled so that a((Tp) is agent 0 on team 0. Teammates are
colored with different shades of the same color. Whereas
system-focused agents converge to a joint policy of three
apple pickers and three cleaning agents, credo-tuning agents
recover the better joint policy of four apple pickers and two
cleaning agents autonomously (same as fully team-focused
agents) and generate more reward (Figure 3).

of credo-tuning agents is not to overtake the team-focus credo, but
converge to credo parameters that achieve higher reward than their
initialized settings (i.e., fully system-focused credo; red line). The
green line in Figure 3 shows the mean population reward and 95%
confidence intervals for the credo-tuning agents initialized with
full system-focus credos. Through the first 800,000 timesteps of
the experiment, the credo-tuning agents (green) learn along the
same trajectory as the system-focused agents (red). However, giving
agents the ability to modify their credo parameters leads to the
population achieving roughly 21% more mean population reward
than the system-focus credo by the end of the experiment (320
for credo-tuning agents compared to 264 for static system-focus
agents). This shows the ability for credo-tuning agents to achieve
more mean population reward despite a known sub-optimal team
and credo parameter initialization.

5.4.2  Reward Equality. Since certain roles in the environment do
not produce reward and teammates are able to define different
credos, it is important to consider population equality to examine if
tuning credo leads to significant inequality among the population.
We model population reward equality as the inverse Gini index,
similar to past work [11, 13]:
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Figure 6: Credos of all six agents over time in the same credo-
tuning trial as Figure 5. Each plot shows the credo parameters
for a different agent shown in Figure 5. Each y-axis represents
credo parameter space and each x-axis represents timesteps.
We observe heterogeneous credo parameters emerge across
the population; however, a; becomes more self- and team-
focused as it switches roles to become an apple picking agent.
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where values closer to 1 represent more equality. Figure 4 shows
our equality results, where the y-axis shows the mean inverse Gini
index with 95% confidence intervals and the x-axis is the number of
timesteps. Since the static system-focus scenario defines agents to
fully share rewards, the inverse Gini index is always equal to 1. After
some initial learning, we find that the credo-tuning agents converge
to a setting where the population has higher mean equality than
the static team-focused setting. While this is likely impacted by
the credo intialization and is worthy of further exploration, we
find that credo-tuning agents discover a setting that achieves high

reward while maintaining high equality across the population.

Equality =1 - ) @)

5.4.3 Division of Labor. We now analyze the credo-tuning experi-
ment specifically. Figure 5 shows the amount of apples consumed
(top) and cleaning beam actions (bottom) by each credo-tuning
agent in one trial where the agents are initialized to be fully system-
focused (green line in Figures 3 and 4). Despite being initialized
as system-focused, these agents have team membership to one of
three teams (Ty, T, or T2) to modify their credo towards. Agents are
labeled so that ag(Ty) represents agent 0 on team 0 and teammates
in the plots are colored with different shades of the same color.



Similar to the known result of static system-focused agents
shown in past work [14], the agents in the credo-tuning exper-
iment initially specialize into roles of three apple picker and three
river cleaning agents. However, the advantage of agents being able
to tune their credo causes the a4(T2) agent to learn to pick apples
in the second half of the experiment. This recovers the global joint
policy of four apple picker agents and two river cleaning agents
(joint policy of the static team-focused agents) despite agents being
initialized with full system-focused credo. This causes an increase
in mean population reward from the static system-focused scenario
towards the full team-focused scenario. While the mean population
reward level of team-focused agents is not quite reached, these
agents recover the same global joint policy; thus, while we are
unable to make certain claims, perhaps longer training time would
see convergence to the reward level of the team-focused population
(blue in Figure 3) given this joint policy.

5.4.4 Tuned Credo Parameters. Figure 6 shows how the credo pa-
rameters for each agent in the trial shown in Figure 5, modified by
each agents’ high-level credo policy. Each plot is titled and colored
according to the agent’s label and color in Figure 5. The y-axis of
each plot shows the credo parameter values and the x-axis of each
plot shows timesteps of the experiment. The results for each credo
parameter are a sliding window mean of every 10 samples; thus,
some results appear between two discrete credo steps (such as 0.1
being between 0.0 and 0.2).

Figure 6 shows that two teammates that converge to complimen-
tary roles of one river cleaner and one apple picker, ap and a; (blue;
Tp), maintain periods of non-zero team focus. This allows the agents
to share some of the reward gained by their teammate while shar-
ing the majority of their apples through the system-focus reward
channel. The other team that divides labor between two roles over
the entire experiment, az and a3 (red; T7), have heterogeneous credo
parameters amongst their team. While the cleaning agent az main-
tains higher system-focus, the apple picking agent a3 has slightly
higher self-focus to keep some amount of the reward they collect to
themselves. The agent that changes roles to become an apple picker,
a4 on T, maintains a period of being self- and team-focused, before
1.5% 108 timesteps. At this time, their teammate (a5 (T3)) develops a
credo where they do not share rewards through the team parameter,
instead maintaining high system-focus before becoming slightly
self-focused. After a period where their teammate is not contribut-
ing to the team reward when ay is slightly team-focused, the agent
switches behaviors to become an apple picking agent. This may
indicate why a4 becomes an apple picker with some amount of
self-focus (i.e., increasing their personal reward).

These results show how our framework allows for diverse group
alignments to be learned. In turn, these learned heterogeneous
alignments lead to agents recovering a globally better joint policy
while maintaining high equality.

6 FUTURE WORK

This paper presented an initial framework and evaluation of credo-
tuning agents as a preliminary proof of concept. We will expand
this work in the two main areas of experimental evaluation and
model design.

6.1 Experimental Future Work

We plan on performing a more extensive empirical evaluation of
our framework. We plan on designing more specific experimen-
tal scenarios such as initializing agents to be fully team-focused,
self-focused, or randomly distributed across different credo param-
eters.These experiments will provide insight into the convergence
properties of credo-tuning agents (i.e., if there is one or multiple
convergence points in credo parameters for different team struc-
tures). Furthermore, allowing agents to belong to multiple teams,
and self-regulate their credo for each specific team, is an area of
future research that could provide insights into dynamic team mem-
bership or multi-group alignment [22]. We also plan on expanding
our evaluation to the Neural MMO (NMMO) [18] environment.
NMMO is a large, customizable, and partially observable multia-
gent environment that supports foraging and exploration. Imple-
menting credo-tuning agents in NMMO will help understand the
connections between how agents modify their credo in hunter-
gatherer-type societies and in scenarios where the most beneficial
joint policy may be unknown.

6.2 Model Design

We plan to improve and expand our model design. We implemented
the credo policy using Q-Learning with discrete credo step sizes
of 0.2 to reduce sample and state/action space complexity for the
high-level policy. The state space consisted of a finite set of discrete
states and had a finite set of discrete actions. However, recent work
in single-agent RL has shown significant advances in continuous
control problems where both the state and action spaces consist of
high-dimensional continuous values [26]. Other work has shown
the ability to decompose the Bellman equation into a vectorized
representation to learn the value of different reward parts [9]. We
plan on expanding the development of the high-level credo policy to
incorporate continuous control designs to learn the value of various
reward components (self, team, or system). Furthermore, we plan
to expand the action space to directly output credo parameters
instead of discrete modifications. Progress in this direction will
expand reward function decomposition to the multiagent scenario
while allowing for significantly more credo parameter combinations
among the population.

7 CONCLUSION

This work presented the design of credo-tuning agent framework
influenced by hierarchical reinforcement learning (HRL) and meta-
learning. The dual-tiered architecture draws inspiration from the
multi-layer optimization problems of HRL; however, the influences
on learning dynamics at each layer are more similar to a meta-
learning problem. In meta-learning, learning to learn is the idea in
which an agent learns at two levels, each associated with different
time scales [15, 21]. The ability for the behavioral policy to learn
effective policies and roles among a group is guided by their reward
function’s feedback signals, shaped by their credo. The high-level
credo policy updates these credo parameters at a slower timescale,
changing the low-level behavioral policies optimization landscape
and guiding the learning process through different reward compo-
nents. Dynamically tuning credo allows this meta-learning problem



to evolve online while maintaining the decentralized aspects of in-
dividual learning agents.

The goal of this work is to allow decentralized agents to self-
regulate their credo to overcome sub-optimal initializations of credo
or team structures and recover favorable policies. While previous
work has shown how team structure has a significant impact on
the policies that agents learn, discovering the structure that guides
agents towards globally favorable results may be a hard domain
dependent problem. Our preliminary results have shown how our
multi-tiered learning architecture can allow agents to achieve more
globally favorable results despite being initialized in a known sub-
optimal configuration. The broader implications of this work allow
agents to autonomously recover the learning benefits of teams and
group alignment in any environment. This mitigates the burden of
researchers or practitioners having to engineer team structures or
credo in settings where favorable configurations may be unknown.
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