
Work in Progress: Integrating Human Preference and Human
Feedback for Environmentally Adaptable Robotic Learning

Yuxuan Li
University of Alberta
Edmonton, Canada

yuxuan.li@ualberta.ca

Qinglin Liu
University of Science and Technology of China

Hefei, China
qlliu@mail.ustc.edu.cn

Nan Lin
Fuxi Robotics in NetEase

Hangzhou, China
linnan04@corp.netease.com

Matthew E. Taylor
University of Alberta
Edmonton, Canada

matthew.e.taylor@ualberta.ca

ABSTRACT
Researchers have witnessed successful applications of reinforce-
ment learning in robotics, and even better performance is achieved
if expert demonstration is introduced. However, it is considered
difficult to acquire expert demonstration. On the contrary, human
preference and human feedback are easy to collect but challenging
to exploit, especially for high-dimensional tasks. Applying binary
signals like human feedback to such control tasks remains challeng-
ing. In this paper, we explore human feedback as a more simple
form of human knowledge and exploit its ability to shape robotic
behaviours. Additionally, human preference is introduced for sys-
tem identification in a complicated manipulation task for improved
parameter estimation. Alongside a hierarchical structure that com-
prises force control methods, we implement a brand-new control
framework that can adapt to different environments and easily in-
tegrate non-expert human knowledge. Experiments in simulated
environments are conducted to further verify its performance.
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1 INTRODUCTION
Reinforcement learning, as an emerging new method with promis-
ing performance in many control problems, can be generally sum-
marised as the optimisation process of a control policy to maximise
the accumulated rewards defined in a Markov Decision Process
(MDP). Many variations of RL exist for different scenarios. Examples
are POMDP [21] and Hierarchical RL [16].

Involving human knowledge, as one direction in reinforcement
learning, has recently drawn researcher’s attention recently. Com-
pared with traditional reinforcement learning, it is challenging in
several cases, such as no explicit reward function, huge observation
space, low sample efficiency, safety, etc.. Taking expert demonstra-
tion, for instance, learning from demonstration methods [2, 24] is
proven to boost learning efficiency. In addition to exploiting the full
expert demonstration, researchers also proposed methods using
human feedback [11]. Instead of providing expert actions, numeri-
cal values representing human assessment towards certain agent
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behaviours are collected from even non-expert participants. Similar
cases of applying human preferences in the learning process [8]
also show interesting results. However, acquiring a simpler form
of human knowledge is a double-edged sword. Being simpler and
easier means it contains less information to guide the agent pol-
icy, and such methods are challenged by large observation space,
like robotic control tasks. Rare cases have been explored in this
direction. One possible approach to reduce the observation space
and the search space for policies is to design hierarchical control
methods. Hierarchical RL [13, 16] focuses on the idea of dividing
and conquering. By establishing a layer-structured policy, where
each part is designed to solve a sub-task, the original task is solved
by each sub-policy combined. Similar idea can be found in Options
framework [26] and Option Critic [3] where options as sub-polices
are learned with TD learning.

Apart from above learning-based control methods, another im-
portant method in robots is force control. Force control can ef-
fectively improve the stability and safety of this situation. Passive
control and active control are two crucial categories of force control.
For example, in passive control, we embed spring-actuated joints
into robots to exploit its inherent elasticity, therefore to minimise
contact forces. Unlike passive dynamic systems, applying appropri-
ate forces on the robot joint using active control is critical for robots
to perform tasks in complex environments. Proportional-derivative
(PD) control is a common approach to compute control forces to
track the kinematic state of a joint trajectory, but it aims to achieve
a precise position. Compliance control is usually favoured for its
ability to achieve a dynamic relationship between the manipulator
and the environment based on contact forces [18]. For instance,
as two popular active force control methods, impedance control
and admittance control ensure the task being undertaken while
dynamically compensating the position according to operational
space or configuration space. In impedance control, the controller
is a mechanical impedance, and consequently, the controlled plant
is treated as an admittance, while in admittance control, the plant
is position-controlled and behaves as a mechanical impedance. The
parameters of these force control methods can be dynamically ad-
justed, like changing the overall stiffness, adapting the arm to an
external environment, and adjusting the gain of the position con-
trol system for compliance [1, 25]. Our framework uses admittance
control for compliance to complete relatively complex tasks and
ensure the safety of the environment and the robot.
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In this paper, we follow a similar idea of hierarchical control
methods by adding an abstract layer of the robotic control tasks.
This allows us to use human feedback to influence the robotic
behaviour indirectly by planning goals in the abstract layer con-
troller, and therefore to reduce the amount of data required. Further-
more, for the lower level control, a goal-conditioned and parameter-
conditioned policy is applied, combined with admittance control
to reach environment adaptability. Lastly, a system identification
model is added for parameter estimation which also inputs human
preferences for better precision.

To summarise, our contributions are as follows:
(1) We propose a simple yet effective hierarchical control frame-

work allowing human feedback and human preference to
shape rather complicated, high-dimensional control policy
behaviours.

(2) We propose a predefined high-level MDP as an abstract
layer to exploit feedback provided by non-expert humans in
robotic tasks, thereby simplifying the problem and strength-
ening the utility of human feedback.

(3) We propose a new loss function that allows learning-based
system identification models to take human preferences for
further fine-tuning and show human participation can im-
prove performance with experiments in simulated environ-
ments.

2 RELATEDWORK
In this paper, integration of human feedback and human preference
into the control loop is the main topic. Hence, human knowledge
in learning process and hierarchical control are the two important
fields where previous related work can be found. Furthermore, we
will also look into parameter estimation as it can improve control.

2.1 Human knowledge in shaping behaviours
Having prior knowledge provided by an expert is more effective and
efficient than searching for a solution from scratch. Expert human
knowledge has been exploited in multiple ways to boost learning
speed, like behaviour cloning [22], teacher-student learning frame-
work [5, 32], and inverse reinforcement learning [4]. However, these
methods are challenged in certain scenarios, such as the fact that
expert knowledge is difficult to acquire. Similar situations may be
encountered due to equipment limitations in precision, high cost,
lack of accurate knowledge of the environment, etc.

To gather human knowledge more easily, using human feedback
has been proposed. For example, Know et al. proposed TAMER [11],
where simple scalar human feedback signals are treated as an esti-
mation of reward, hence a reward model is established. Macglashan
et al. choose to view human feedback differently, as an estimation
of the advantage value [17], where COACH is proposed. These
methods are tested in several environments to show satisfactory
performance and later works even push the boundary to a new
level by going deep in neural networks, like Deep TAMER [29] and
Deep COACH [2], where image-based input is used. Other forms of
feedback are also explored. Comparison-based human preference
serves as an interesting example. Lee et al. [14] show video clips to
human participants to collect human preferences and thus succeed
in several robotic manipulation and control tasks.

However, feedback-based methods are sometimes confronted
with the fact that they require a huge amount of human feedback,
if no further information is provided, and even fail in a very compli-
cated environment, such as high-dimensional robotic manipulation
tasks. Hence, little work has been done in applying human feedback
to shape robotics behaviours in manipulation tasks, especially in
an unstructured environment with dynamic multi-contacts. One
close example can be seen in a case study [12], where Knox et al.
applied the TAMER framework in robot navigation with pretrained
policies.

2.2 Parameter estimation
System identification is a procedure where we manage to estab-
lish an understanding of the environmental dynamics model based
on observed data. Thus, applying system identification could con-
tribute to control methods that require a dynamics model. One of
the special cases is that we want to estimate unknown parameters
of dynamics. Data driven methods are also established for reinforce-
ment learning related scenarios. Chebotar et al. proposed SimOpt
framework [7] to bridge the difference between the simulator and
the real world through Relative Entropy Policy Search [20] based
parameter searching. Similar practice could be found in Grounded
Simulation Learning [9], where Evolutionary Strategies is applied in
dynamics model parameter estimation and a humanoid robot learnt
to walk. Zhu et al. innovated [31] the parameter search process by
introducing Greedy Entropy Search to reduce the search space. Yu
et al. proposed online system identification [30] by pre-training a
system identification model and verified its ability against domain
randomisation. Yet many state-of-the-art methods are proposed,
most methods view the problem as pure dynamics fitting or param-
eter searching, which is computationally costly. Involving human
knowledge into parameter estimation is a new direction that might
be promising in boosting performance.

2.3 Hierarchical Force Control
Performing interactive tasks while maintaining a range of manip-
ulator contact forces in complex environments is challenging but
necessary. To achieve the above relationship is to design a controller
like a spring and a damper act as elastic actuators [19]. Maintaining
contact force also needs to adapt to uncertain external environmen-
tal parameters. A vision servo-based adaptive controller for motion
and force tracking [6] and combining fuzzy logic with traditional
sliding mode control [23] are proposed to deal with this problem.
Hierarchical control methods are widely used to effectively reduce
the search space and complexity of tasks and improve adaptability
in an unstructured environment. For example, Jiang et al. proposed
a hierarchical control system for soft arms based on the Jacobian
model and Q-learning. Using inherent passive compliance of the
arm could allow it to perform tasks like a human [10]. Lee et al.
proposed a two-level control architecture based on deep reinforce-
ment learning to minimise the interaction forces and the control
torques for imitation [15].

3 PRELIMINARIES
In this paper, we consider the control problem as a traditional
Markov Decision Process (MDP), which is denoted by a quintuple



denoted by𝑀 = {S,A,T , 𝑟 , 𝛾}, where S denotes the agent’s state
space,A is the agent’s action space, T : S ×A ×S → [0, 1] is the
environmental dynamics transition probability, 𝑟 : S ×A ×S → R
is the function that gives an immediate reward,𝛾 is a discount factor.
Furthermore, a goal-conditioned version of MDP is defined as a
sextuple 𝑀𝑔 = {S,A,T , 𝑟 , 𝛾,G}, where G is the goal space and
other notations remain the same as MDP. Alongside a MDP and a
goal-conditioned MDP, we consider a problem that comes with an
inherent hierarchical structure. Specifically, it could be treated as
two problems. One is the abstract problem𝑀𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 and the other
is the actual problem𝑀

𝑔

𝑎𝑐𝑡𝑢𝑎𝑙
. Expectedly, an abstract problem is

a high-level abstraction of the task that avoids dealing with too
many details and shrinks the state space. By solving the abstract
problem, we shall find a high-level planning route specified by 𝑔,
which shall be used as input for the policy of the actual problem
(e.g. a specific manipulation task), hence A𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 = G𝑎𝑐𝑡𝑢𝑎𝑙 .

In accordance to a problem with hierarchical structure, we con-
sider a hierarchical control policy 𝜋𝐻 , which maps from current
state 𝑠𝑡 to an action 𝑎𝑡 . The hierarchical control policy consists of
a 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 and a 𝜋𝑎𝑐𝑡𝑢𝑎𝑙 , which represents a high-level policy for
the abstract problem and a low-level policy for the actual problem.
The high-level policy 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 : 𝑆𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 → G𝑎𝑐𝑡𝑢𝑎𝑙 , maps the
observation of the abstract problem to a goal. Thus the low level
policy is 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 : S𝑎𝑐𝑡𝑢𝑎𝑙 × G → A𝑎𝑐𝑡𝑢𝑎𝑙 .

Abstract
Problem

Actual
Problem

System Identification
Model

Human

Admittance
Control

PD
Controller

feedback

preferencegoal

parameter

trajectory

Figure 1: The diagram illustrates the overview of the pro-
posed framework integrating human feedback (denoted by
𝑓 ) for the abstract problem and human preference (denoted
by 𝑦) for system identification model.

4 PRELIMINARIES AND METHODOLOGY
4.1 Applying human feedback on an abstract

problem
Human feedback is usually considered as vague scalar values that
describe human’s judgement of the agent’s behaviour. Similar to
COACH [29] and TAMER [11], human feedback is defined as 𝑓 ∈
{−1, 0, 1}, where −1 shows human discourages certain behaviour,
0 means human is indifferent and 1 suggests human encourages
the behaviour. Rare cases of its application in a complicated high-
dimensional manipulation task have been researched, given the

fact that it may require significantly large amounts of feedback. In
this work, we explore the potential of human feedback in shaping
behaviour in a high-dimensional task by applying human feedback
to an abstract problem, hence reducing the policy search space.
Similar to COACH, we interpret human feedback as an estimation
of advantage and update the policy by:

L = 𝛼∇ log(𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 (𝑎𝑡 |𝑠𝑡 )) · 𝑓𝑡 , (1)

where 𝑓𝑡 is human feedback, 𝜋 is a differentiable policy and 𝛼 is
the learning rate.

4.2 Human Involved Parameter Estimation
For the actual problem, we assume that there are unknown param-
eters 𝜙 that describe the environmental dynamics, which could
influence the performance of low level policy 𝜋𝑎𝑐𝑡𝑢𝑎𝑙

𝜙
. Furthermore,

estimating parameters will also boost its performance when trans-
ferred to a new environment. In order to estimate 𝜙 , we pre-train a
system identification model 𝑆𝐼 : 𝜏 → 𝐷𝑖𝑠𝑡 (𝜙), which maps from a
trajectory slice 𝜏 : (𝑠𝑡−ℎ, 𝑎𝑡−ℎ, 𝑠𝑡−ℎ+1, 𝑎𝑡−ℎ+1 ...𝑠𝑡−1, 𝑎𝑡−1) of length
ℎ, to the distribution of 𝜙 . The pre-training is practiced on a dataset
D = {(𝜏𝑖 , 𝜙𝑖 ) |𝑖 = 1, ..., 𝑁 } following the Alg. 1 and a mean square
loss.

Algorithm 1: Train System Identification Model
Data: System identification model 𝑆𝐼 parameterised by 𝜉 ,

trajectory dataset D, learning rate 𝛼 , trajectory slice
length ℎ, batch size 𝑙

// Training

1 for 𝑖 ← 0, 1, 2, ... do
2 Sample batch {(𝜏 𝑗 , 𝜙 𝑗 ) | 𝑗 = 1, ..., 𝑙} from D
3 Update system identification model 𝑆𝐼 by MSE Loss
4 end

With a pre-trained system identification model 𝑆𝐼 , during policy
execution, we may further involve human participant into this
process and ask the human participant its preference 𝑦𝜙0,𝜙1 (𝜙) ∈
{−1, 1} over 𝜋𝑎𝑐𝑡𝑢𝑎𝑙

𝜙0
and 𝜋𝑎𝑐𝑡𝑢𝑎𝑙

𝜙1
. After that, based on the human

preference, 𝑆𝐼 is updated by human preference loss as Eqn. 2

LHP = −[𝑙𝑜𝑔(𝐷𝑖𝑠𝑡𝜙 (𝜙1)) (𝐷𝑖𝑠𝑡𝜙 (𝜙1) + 𝑝 · 𝑦𝜙1,𝜙2 (𝜙1))+
𝑙𝑜𝑔(𝐷𝑖𝑠𝑡𝜙 (𝜙2)) (𝐷𝑖𝑠𝑡𝜙 (𝜙2) + ·𝑦𝜙1,𝜙2 (𝜙2)))],

(2)

where 𝑝 is the encourage percentage controlling the confidence
in the human preference. Inherently, this is a weighted cross en-
tropy loss, where human preferred parameter candidate will be
encouraged and the other ones are discouraged. If we take one
step further to ask a human participant to give it preference over
𝑁 video clips, i.e., 𝑦𝜙0,𝜙1,...𝜙𝑁

(𝜙) ∈ {− 1
𝑁−1 , 1}, the loss could be

accordingly rewritten as Eqn. 3:

LHP = −Σ𝑁𝑖=1𝑙𝑜𝑔(𝐷𝑖𝑠𝑡𝜙 (𝜙𝑖 )) (Σ
𝑁−1
𝑖=1 𝐷𝑖𝑠𝑡𝜙 (𝜙𝑖 ) +𝑝 ·𝑦𝜙0,...,𝜙𝑁 −1 (𝜙𝑖 ))

(3)
Notably, human preference comes with inevitable error and

sometimes we don’t need to estimate the parameter to full pre-
cision. Therefore, estimating parameters by discretisation is also an



Algorithm 2: Fine-tune System Identification Model by
Human Preference
Data: System identification model 𝑆𝐼 parameterised by 𝜉 ,

learning rate 𝛼 , encourage percentage 𝑝 , trajectory
slice length ℎ, candidate parameter set Φ

// Finetune

1 for 𝑖 ← 0, 1, 2, ... do
2 Execute policy with 𝜙0, 𝜙1 sampled from Φ

3 Sample trajectory slice 𝜏
4 Asking for human preference 𝑦
5 Update system identification model 𝑆𝐼 by Eqn. 2 or Eqn.

3
6 end

attractive option. In that case, we need to have a finite candidate
parameter set Φ = {𝜙0, 𝜙1, ..., 𝜙𝑁 } and the System Identification
Model is accordingly set to predict a discrete distribution.

4.3 Low Level Controller Design
For our low level controller, we implemented a force control based
controller and later extended it to a learning-based version. While
the robotic arm is an open-chain articulation with the fixed root, its
configuration can be expressed by its joint positions 𝑞 ∈ R𝑛 , joint
velocities ¤𝑞 ∈ R𝑛 and joint accelerations ¥𝑞 ∈ R𝑛 in generalized
coordinates. The equations of motion describe the dynamic system
as follows:

𝑀 (𝑞) ¥𝑞 + 𝑐 (𝑞, ¤𝑞) = 𝜏 + 𝜏𝑒𝑥𝑡 (4)
where𝑀 (𝑞) is the mass matrix and 𝑐 (𝑞, ¤𝑞) is Coriolis and gravita-
tional forces. 𝜏𝑒𝑥𝑡 is the sum of external forces that includes contact
force and other external perturbations. To deduce the PD controller,
the control force 𝜏 is calculated using a stable proportional deriva-
tive (SPD) formulation [27]:

𝜏 = −𝑘𝑝 (𝑞𝑛 + ¤𝑞Δ𝑡 − 𝑞𝑛+1) − 𝑘𝑑 ( ¤𝑞𝑛 + ¥𝑞𝑛Δ𝑡) (5)

where both 𝑘𝑝 and 𝑘𝑑 are diagonal matrices that indicate the gains
and damping coefficients. SPD computes the control forces using
the next time step state 𝑞𝑛+1, which can be expanded as 𝑞𝑛 + Δ𝑡 ¤𝑞𝑛
via Taylor series, so as ¤𝑞𝑛 . The acceleration can be written as:

¥𝑞𝑛 = (𝑀 +𝑘𝑑Δ𝑡)−1 (−𝑐 −𝑘𝑝 (𝑞𝑛 + ¤𝑞𝑛Δ𝑡 −𝑞𝑛+1) −𝑘𝑑 ¤𝑞𝑛 + 𝜏𝑒𝑥𝑡 ) (6)
Then use the explicit Euler method to integrate to the next time
step.

Figure 2: Our admittance control based implementation.

The mathematical expression of a single degree-of-freedom sys-
tem in which a mass interacts with an environment is defined as
𝑚 ¥𝑥 = 𝜏 + 𝜏𝑒𝑥𝑡 , where m and x are the inertia and displacement of

the mass, respectively. The Admittance Control is to design the
control force 𝜏 that will establish a given relationship between 𝜏𝑒𝑥𝑡
and a desired trajectory 𝑥0 and a desired position 𝑥𝑑 . Typically, a
linear second-order relationship of the form

𝑀𝑑 ( ¥𝑥𝑑 − ¥𝑥0) + 𝐷𝑑 ( ¤𝑥𝑑 − ¤𝑥0) + 𝐾𝑑 (𝑥𝑑 − 𝑥0) = 𝜏𝑒𝑥𝑡 (7)

is considered, where the positive constants 𝑀𝑑 , 𝐷𝑑 , and 𝐾𝑑 rep-
resent the desired inertia, damping, and stiffness,respectively. In
Admittance Control, the plant is position-controlled and can be im-
plemented using the SPD controller (5) mentioned above as shown
in Fig.2. Furthermore, for better future adaptation with fine-tuning,
instead of using fixed hand-coded force control methods, we prac-
tice imitation learning to learn a goal-conditioned and parameter-
conditioned neural network based policy 𝜋𝑎𝑐𝑡𝑢𝑎𝑙 (𝑞 |𝑠, 𝜙), together
with admittance control to ensure force within a safe range, follow-
ing Alg. 3.

Algorithm 3: Learning 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

Data: Position controlled system 𝑃 , Goal space G,
Environment candidate parameter set ≨,
differentiable 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 , replay buffer 𝑅, batch size 𝑁

// Imitation Learning

1 for 𝑖 ← 0, 1, 2, ... do
2 Randomly sample goal 𝑔 and environmental parameter 𝜙
3 Set simulator with environmental parameter 𝜙
4 Collect trajectory 𝜏 using 𝑃 under goal 𝑔
5 Pushing 𝜏 into 𝑅
6 Update 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 by MSE loss, with 𝑁 -sized batch

sampled from 𝑅

7 end

5 EXPERIMENTS

(a) (b)

Figure 3: (a) Desk wiping environment. The robot arm is try-
ing to move the cleaning sponge to the desired next goal(red
dot). (b) Pushing environment. The robot arm with a gripper
is trying to push the cube object to the desired goal(red dot).

5.1 Experiment Setting
Our experiments are conducted in the Mujoco [28] simulator, fea-
turing a UR5e robot arm with a piece of cleaning sponge attached



as the end effector, shown in Fig 3(a). The task is to control the
robot to clean the desktop within a desired range of contact force
and distance to the desktop, i.e., while we want to keep contact
between the sponge and the desktop, we also want the robot to
apply a proper force to the sponge to wipe as human beings, within
safety range, thus a proper estimation of desktop height is required.
The second task, shown in Fig. 3(b), is aimed to push the object to
the desired position. The initial position and the target position of
the object are randomly set within the reach of the robot arm on the
table. We want to keep the object as close to the target location as
possible. The threshold is set to 20mm, which is less than 50mm in
size. The main parameter we want to estimate is the object mass, to
ensure we could tweak the force controller and successfully move
the object.

(a)

(b)

Figure 4: (a) High level policy performance over episodes
comparison with Pretrained COACH. (b) Parameter estima-
tion error of Online System Identification, our method, and
our method but with standard cross entropy loss with differ-
ent ground truth desk heights.

5.2 High Level Planner Evaluation
In this subsection, we intend to show a prototype combining feed-
back to solve abstract problems as to report its validness of migrat-
ing it for goal planning. In the desktop wiping setting, the abstract
problem is defined as a grid world, where we want to control the

agent to move and traverse all the grids,i.e., successfully wipe the
whole desktop. Accordingly, the actual problem would be how to
control the robot arm to a desired position, within a safe range
of force applied to the sponge. Noticeably, there exists a certain
linear coordinate transformation between the grid world to the
actual world coordinate system on the desktop. Furthermore, the
grid world may not strictly align with the actual world, especially
when the 𝜋𝑎𝑐𝑡𝑢𝑎𝑙 fails to reach the goal. In that case, a reset of the
grid world state is required.

The performance over different episodes of an agent learning
to traverse the grid world guided by human feedback is shown in
Fig. 4 (a). While directly applying feedback to a policy that’s pre-
trained with limited wiping demonstration trajectories (Pretrained
COACH) is shown that human feedback cannot properly guide the
policy, our methods established a pretrained goal-conditioned low
level policy and thus successfully learnt to traverse the grid on
the abstract problem and the policy 𝜋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 can successfully plan
trajectory points and finish the task. Furthermore, without a proper
hierarchical structure, the Pretrained COACH even shows worse
performance overtime, suggesting that binary human feedback
directly applied to the policy can be even misleading.

5.3 Parameter Estimation Evaluation
In this subsection, we estimate the effectiveness of integrating hu-
man preferences into parameter estimation. Serving as a baseline,
we compare our algorithm to Online System Identification [30],
where desktop height in the wiping task and object mass in the
pushing task are to be estimated. Both models consist of four fully
connected hidden layers with size of 256, 128, 64, 32, with hyper-
bolic tangent as its activation function. The input history length
is set to 3 and the encourage percentage is 0.25. As illustrated in
Fig. 1, the human participant will be asked to watch two video
clips, each illustrating 𝜋𝑎𝑐𝑡𝑢𝑎𝑙 parameterised by different candidate
paramtres and then be asked to provide their preference based on
the performance. It could be seen from Fig. 4 (b) that the system
identification gives a slightly more precise prediction after taking
human preferences.

Furthermore, due to the limitation of human reaction speed,
collecting real feedback is rather slow, and we also practised exper-
iments using a faked human (programme-simulated) with different
levels of wrong preferences, from perfectly correct, which means
the percentage of wrong preference is 0, to perfectly wrong, giving
all possible wrong preferences. The experimental results are shown
in Fig. 5. The x-axis of the figure indicates how many steps of pref-
erences judgment have passed, and the y-axis indicates the error
between the estimated parameters and the real environment. For
both environments, it is not only observed that preference input
helps to reduce the prediction error over time; Also, with perfect
preferences, the prediction error can be generally reduced over tens
of steps and with perfectly wrong preferences, and vice versa.

5.4 Ablation Study
In this section, we practice ablation study to verify the effective-
ness of our algorithm design. Recall Eqn. 2, instead of using Cross
Entropy Loss like Christian et al. [8], we exploit human preferences
by a soft cross entropy loss. This is due to the fact that preferences



(a) (b)

(c) (d)

Figure 5: (a)(c) Prediction Error over time with perfect faked human preference on desk height/object mass and we can see the
preference helps to reduce the prediction error over time. (b)(d) Prediction error on desk height/object mass, with different
levels of wrong preference. It is observed the better preference provided, the better prediction precision achieved.

are given to sampled parameter candidates while there are still
other possible parameter candidates. The soft cross entropy loss is
adopted to illustrate the idea that a preferred parameter candidate
may not be a "positive class" or the right prediction but only a
signal to shape its distribution. The results of the ablation study
using standard cross entropy loss are illustrated in Fig. 4(b). It is
shown that generally, the standard CSE would gives worse results
in parameter estimation.

We also conducted experiments to illustrate the benefits of us-
ing admittance control. We use two different low-level controllers
including the SPD Controller and Admittance to manipulate the
robotic arm directly. We let the robotic arm start from the same
initial position and execute the same random trajectory on the table.
At the same time, the data of the torque sensor installed at the end
are collected. In the Mujoco simulation environment, the height of
the table surface is 0.81m. We try to set the desired height of the
trajectory to 0.72m, 0.74m, 0.76m, 0.78m and 0.8m. The mean and
standard deviation of the z-axis force during robotic arm execution
has been shown in Fig.6. We can see that the force exerted by the
end effector on the table can be very large, which may cause dam-
age to the robotic arm or the table in the real world, admittance
control is necessary.

6 CONCLUSION AND FUTUREWORK
In this paper, we are challenged to learn from simple human feed-
back for complicated high-dimensional tasks, and integrate human
preference into system identification for better control. With initial

Figure 6: Admittance control gives smaller contact forces
compared to SPD controller.

results showing the potential of involving human participants into
the control process, the problem remains open to be explored as
much previous work mainly focusing on full expert demonstration.
As one of the possible future directions, we may further improve the
framework by symbolic planning to the abstract policy to give more
environmental adaptability. Lastly, experiments in real-world ro-
botics and larger-scale user study might further reveal the potential
of this work.
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