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ABSTRACT
Value alignment problems arise in scenarios where the specified

objectives of an AI agent don’t match the true underlying objective

of its users. The problem has been widely argued to be one of the

central safety problems in AI. Unfortunately, most existing works

in value alignment tend to focus on issues that are primarily related

to the fact that reward functions are an unintuitive mechanism to

specify objectives. However, the complexity of the objective speci-

fication mechanism is just one of many reasons why the user may

have misspecified their objective. A foundational cause for mis-

alignment that is being overlooked by these works is the inherent

asymmetry in human expectations about the agent’s behavior and

the behavior generated by the agent for the specified objective.

To address this lacuna, we propose a novel formulation for the

value alignment problem, named goal alignment that focuses on a

few central challenges related to value alignment. In doing so, we

bridge the currently disparate research areas of value alignment

and human-aware planning. Additionally, we propose a first-of-

its-kind interactive algorithm that is capable of using information

generated under incorrect beliefs about the agent, to determine the

true underlying goal of the user.
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1 INTRODUCTION
Value alignment, as presented in [12], is the problem of ensuring

that an AI agent’s pursuit of its specified objectives will maximize

or satisfy the true underlying objective of its human user. Usually

studied in the context of scenarios, where such misalignments

could have catastrophic consequences, the problem has been widely

argued to be one of the most important problems related to AI

safety [5, 27]. While there is a general consensus that the primary

cause of the value misalignment problem is the user’s failure to

correctly anticipate the outcomes of their specification, current

works tend to focus on addressing only some aspects of the problem.

In particular, most works within value alignment tend to focus on

decision-theoretic settings, where the objectives are specified as

reward functions and try to address problems closely connected to

the nature of this representation scheme (cf. [11, 12, 19]).

We argue that, the extant literature on value alignment overlooks

the fundamental problem that any information user provides to

the system is going to be skewed by their beliefs about the agent

model, which may be different from the agent’s own model. Which

in turn means that the user’s expectation about the behavior the
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Figure 1: A diagrammatic overview of the objective specifica-
tion process as contextualized in a generalized Human-aware
AI framework. Humans ascribe a domain model and initial
state to the agent whichmay be different from the truemodel.
Now the human identifies a goal specification whose inclu-
sion in the agent’s model they believe will result in plans
they would prefer. Note that the human is generating the
model updates based on a potentially incorrect understand-
ing of the system’smodel and using possibly faulty reasoning.
The resulting outcomes from pursuing that goal using the
robot model could be very different from what the human
expected.

agent would exhibit in response to a particular goal specification

could be drastically different from what might actually be followed.

Arguably, this asymmetry between the user’s expectations about

agent behavior and the agent’s true behavior is one of the main

factors that gives rise to the misalignment in the first place. As such,

for a system to correctly use any information provided by the user

it must try to re-interpret it in the light of this inherent difference

between the user and the agent.

Thus in this paper, we will present a new formalization of the

value alignment problem that accounts for this asymmetry between

the user and the AI agent. We will do so by first removing many of

the extraneous parts of the problem that are artifacts of the setting

rather than the true nature of the value misalignment problem. In

fact, we will focus on one of the most basic sequential decision-

making setting, namely deterministic goal-directed planning. This

setting will transform the value alignment problem to a goal align-
ment problem, which will be specifically grounded in a scenario

where the user’s belief could be different from the agent model.

https://ala2023.github.io/


To achieve this, we will build on and generalize a framework

called Human-Aware AI [33], that was originally introduced to

generate explainable behavior. The framework uses psychological

concepts of mental models [25], to model and understand human-

AI interaction. Figure 1, shows how we could build on the human-

aware AI framework to understand how goal misspecification may

arise. As clearly illustrated, the human is specifying a goal to an

agent to elicit a behavior they would deem desirable. However, if

their beliefs about the agent model are different from the true agent

model or if their reasoning process is faulty, it could lead to the

human providing goals that may result in completely unexpected

behaviors. This also means that if the agent hopes to identify and

try to satisfy the true objectives of the user, it must identify the

existing differences between the user’s beliefs and the agent model

and use this difference to reason about the intended behavior.

In summary, the primary contributions of this paper are as fol-

lows:

• We formalize and define the problem of Human-aware goal
alignment; a formulation of the value alignment problem that

explicitly accounts for the asymmetry between the user’s

expectations and the agent’s decisions.

• We establish the lower bound complexity of the human-

aware goal alignment problem.

• We introduce, a first-of-its-kind interactive goal elicitation

algorithm, that can use information generated from incorrect

model beliefs.

• We provide an empirical evaluation demonstrating the com-

putational characteristics of our algorithm.

2 BACKGROUND
We will be focusing on deterministic goal-directed planning prob-

lems. Such problems can be represented using a tuple of the form

M = ⟨𝐷, 𝐼,𝐺⟩ [8]. Under this notation, 𝐷 corresponds to the do-

main model of the planning problem, which is further defined by

using a tuple, 𝐷 = ⟨𝐹,𝐴⟩, where 𝐹 is a set of propositional fluents

that are used to define the state space of the planning problem and

𝐴 provides the set of actions that can be executed by the agent. Each

state possible under the given planning problem can be uniquely

identified by the set of fluents that are true in that state, thus the to-

tal number of possible states is equal to 2
|𝐹 |

. Finally, 𝐼 corresponds

to the start state and 𝐺 captures the partial goal specification, such

that any state 𝑠 ⊇ 𝐺 is considered a valid goal state.

Now each action 𝑎 ∈ 𝐴 is further defined by the tuple, 𝑎 =

⟨pre+ (𝑎), add (𝑎), del(𝑎)⟩, where pre+ are the preconditions that

need to be satisfied to execute 𝑎, while add and del denote the

add and delete effects related to the action. We will use T to cap-

ture the effects of executing an action at a given state T (𝑎, 𝑠, 𝐷)
defined as:

=

{
(𝑠 \ del(𝑎)) ∪ add (𝑎), if pre+ (𝑎) ⊆ 𝑠
undefined otherwise

Overloading the notations a little bit, we will also use T to capture

the consequence of executing a sequence of actions < 𝑎1, 𝑎2, .., 𝑎𝑘 >,

i.e.,

T (< 𝑎1, 𝑎2, .., 𝑎𝑘 >, 𝑠, 𝐷) =
T (𝑎1,T (< 𝑎1, 𝑎2, .., 𝑎𝑘 >, 𝑠, 𝐷), 𝐷) .

A solution to a planning problem takes the form of a plan, where

a plan is a sequence of actions whose execution in the initial

state would result in a goal state, i.e., 𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ is a plan

if T (𝜋, 𝐼M , 𝐷M ) ⊇ 𝐺M . We can additionally, associate a cost with

each action, however, to keep the formulation simple we will simply

assume that each action has a unit cost and 𝐶 (𝜋) = |𝜋 |. We will

refer to a plan 𝜋 as being optimal if there exist no other valid plans

that cost less than 𝐶 (𝜋).

3 RELATEDWORK
The recognition of potential dangers of misspecification of agent

objectives has a long history within AI [36, 37], and builds on ideas

from even earlier philosophers. However, the modern form of the

problem was effectively established by [12], where they formalize

the notion of assistive games to help optimize for the human’s

unspecified objective. Apart from the formalization, one of the core

technical contributions of the paper was the development of an

algorithm to help generate more informative traces. However, as we

will see such information would be influenced by not only their in-

ability to perform correct introspection (commonly acknowledged

in the literature), but also their misunderstandings about the agent

itself. Other prominent works in this direction include works on

reward design [11], works that try to query the human about pre-

ferred behavior [19] and other works on generating informative

traces [7]. There are also works that investigated the moral aspects

of value alignment [18, 24], however, we will treat the problem of

developing moral agents as being orthogonal to the problem of

aligning objectives.

None of these works explicitly try to model the role played by the

human and agent asymmetries in causing this misalignment in the

first place. Human-aware AI [33], was a framework that was origi-

nally developed in the context of generating explainable behavior.

The framework hypothesizes that potential asymmetries between

the human and the AI agent can cause a mismatch between the

decisions chosen by the system and what the human would have

expected. Such mismatches would cause the human to be confused

as to why the agent may be following a particular action, which in

turn would require the agent to explain its current decisions to the

user. In general, these works identify three broad classes of asym-

metries between the user and the agent [31], namely asymmetry

in knowledge about the task, asymmetry in inferential capabilities,

and asymmetry in vocabulary. The explanation methods developed

under the aegis of human-aware AI (cf. [32, 34, 35]) tend to focus

on identifying and addressing these asymmetries so that the agent

and the user can reconcile their differences in expectations about

the right course of action for a given problem. In many ways, the

goal of this work is to invert the process. We are trying to identify

and leverage asymmetries to reconstruct and then try to meet the

original expectations the human had, from the information they

provide. In this sense, our work is also closely related to a method

called explicable planning [40], where the system tries to generate

behavior that matches user expectations. However, in explicable

planning, the final goal is usually provided and the objective of the



planning process is to generate plans that closely match behaviors

that the human expected. In our case, we will not try to match the

generated behavior with what the human expects, but rather focus

only on ensuring that the outcomes we generate satisfy what the

user expected (the behavior that generates that outcome may look

nothing like what the user expected).

A parallel thread of work in value alignment that is orthogonal

to the efforts outlined in this paper is that of formulating the set

of values that the agent needs to be imbued with (cf. [20, 23, 29] ).

These works build on notions of values as determined in the wider

psychological and social sciences literature [9, 28]. Our method

is completely compatible with these efforts, as our objective is to

ensure how these values, once identified, can be enforced in the

agent. Our framework as of right now makes no commitments as

to what goals or objectives are specified by the user.

Another closely related set of works is that of model elicitation [1,

10], preference elicitation [4, 21], resolving reward uncertainty [38,

39], goal refinement [22] and the technique of knowledge tracing

[6] as applied in the context of intelligent tutoring systems. All these

works are trying to solve a closely related problem, in that they are

trying to acquire some model information from a user or another

agent. However, such works are fundamentally incompatible with

our setting as none of the works in these areas currently allow the

system to leverage information generated by users under potentially

incorrect beliefs about the system.

4 MOTIVATING EXAMPLE
Consider an intelligent robotic assistant that is being used to help

in daily household chores of its users. The robot is expected to take

task specification, along with any optional guidance from its users

and is expected to fulfill the user’s requirements. Let us assume

that in this case, the robot is aware that the goals that the user

may specify may be incomplete. As a specific example, consider

a case where the user asks the robot to prepare a cup of tea. If

the robot were to simply opt for the optimal plan, it would have

simply reached out to the tea leaves closest to it and made tea with

it. Which in this case turns out to be some low-quality tea leaves

left at the bottom of the kitchen cupboard. However, if the robot

was to follow this plan, the prepared tea wouldn’t have satisfied the

user’s expectations since when asking for a cup of tea the user was

actually hoping to get tea made with good quality tea-leaves. The

user may have just forgotten to specify the quality or overlooked

the possibility that the tea could have been made with poor quality

tea-leaves.

Now the robot on its own can’t come up with what the human

may have really wanted, and querying them about all other pos-

sibilities might be extremely difficult. Thankfully, in this case the

human may have or is willing to provide additional instructions

about the task. Let’s assume the simplest case where the human

provides an entire plan on how to make the tea. Let’s assume that

the plan provided involves the robot fetching a ladder, putting it

next to the cupboard, climbing on the ladder and fetching good

quality tea leaves, then making the tea. This is not a plan the robot

can execute on its own, since unbeknownst to the user, the robot

can’t climb ladders. However, assuming this plan, at least in the

human model, captures what they really want could give the robot

clues about the true human goal. Once this is determined, the robot

can independently figure out how to achieve the goal.

Specifically, if it knew the human’s belief about the robot, it

could try to simulate the plan in the human model and see what

state they expect and try to see what fluents that are true in the

goal state may additionally be part of the true human goal. Now

in this case, this could involve the fluent regarding the use of high

quality tea leaves, but also fluents about the position of the ladder

and whether the robot used it. Now one of the central challenges

involved with this setting is to come up with a method wherein

the robot finds a plan that is guaranteed to satisfy the unspecified

human goal while minimizing the number of times the human is

queried to get more information.

5 GOAL ALIGNMENT PROBLEM
Our setting consists of a robot (we use the term robot as a stand-

in for any autonomous agent) that is expected to perform a task

assigned to it by a human. Now we will start by denoting the do-

main model used by the robot as 𝐷𝑅 = ⟨𝐹,𝐴𝑅⟩, and the initial

state as captured by the robot as 𝐼𝑅 . Now, keeping with the con-

ventions from human-aware AI, the human who assigns the task

may have different beliefs about the robot’s model and the current

state. Such differences could reflect their potential biases about

the robot and their own incorrect and limited understanding of

the task. Let us denote the human’s beliefs about the robot model

asM𝐻 = ⟨𝐷𝐻 , 𝐼𝐻 ,𝐺𝐻 ⟩, where 𝐷𝐻 = ⟨𝐹,𝐴𝐻 ⟩ is domain model

human ascribes to the robot, 𝐼𝐻 the human belief about the initial

state and𝐺𝐻
is the goal specified by the human. The human would

have come up with this goal specification while keeping in mind

their belief about the robot’s capability and the human’s own pref-

erences about the expected outcome. In our earlier example, 𝐺𝐻

would just include the fact that tea has to be made. The assumption

that both the human and the robot share fluents is a common as-

sumption made throughout human-aware planning problems (cf.

[33]), and we can leverage methods like [34] to easily relax this

assumption. The value alignment problem arises when optimiza-

tion of the specific robot objective doesn’t necessarily maximize

the underlying human reward. In our setting, this translates to the

possibility that a plan that achieves the specified goal need not

achieve the underlying human goal. Going back to our example, the

goal specification that a tea needs to be made is misaligned because

there are plans that are valid to that goal and which do not satisfy

other considerations the human could have, like the fact that the

tea needs to be made with high-quality tea leaves. More formally,

we will define the goal-misalignment problem as follows

Definition 1. A goal specification 𝐺𝐻 is said to be misaligned
with the human goal 𝐺∗ for a robot domain model 𝐷𝑅 and initial
state 𝐼𝑅 , if there exists an action sequence 𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ such that
T (𝜋, 𝐼𝑅, 𝐷𝑅) ⊇ 𝐺𝐻 , but T (𝜋, 𝐼𝑅, 𝐷𝑅) ⊉ 𝐺∗

Traditionally one of the main sources of information used to

address value alignment problems (cf. the setting presented by

[12]), are potential traces provided by humans that satisfy their

underlying objectives. The use of such information generally entails

the assumption that, while the human may not be able to correctly

specify their objectives, they can still recognize when a state that

satisfies their objectives is reached and potentially reason about



how to reach such states. In our case, this information is contained

within the human-specified plan 𝜋𝐻 , that the human believes the

robot can follow to achieve the goal
1
. In our example, this would

correspond to the plan provided by the user involving the use of

ladders.

In theory, the simplicity of the setting dissipates almost all of

the traditional challenges that are identified by current solutions

to the value alignment problem. For one, goals are a much simpler

structure to specify objectives than rewards are. The complexity

of rewards as a specification mechanism is the primary focus of

many approaches like [11] and [19] and there is empirical evidence

showing people are bad at specifying effective reward functions.

On the other hand, there is psychological evidence that argues that

people tend to perform planning in terms of goals and subgoals

[30]. As such, people would have a much easier time specifying

goals than rewards. Similarly, for a deterministic task, a single plan

is sufficient to reach the goal. Unlike [12], we need not worry about

using inverse-reinforcement learning algorithms to identify the

more general reward function that may be implied by the trace.

However, the clarity of the setting also affords us the opportunity

to see the more foundational problems that are frequently shrouded

by the complexity of the setting. First off, even in this rather simple

setting, the human’s ability to effectively specify objectives depend

on their correct understanding of the robot’s capabilities and their

ability to correctly anticipate the kind of plans that the robot may

come up with in response to this new goal. This could even include

cases where the limitations of the inferential capabilities of the

human prevent them from correctly anticipating the effects. This

inability to correctly model the robot lies at the heart of the value

alignment problem, in fact, [17] presents a human interaction with

a modern AI agent to that of interacting with an alien intelligence.

Now coming back to the plan 𝜋𝐻 , even if we allow for the possi-

bility that in the human mental model that the plan could achieve

the true goal, there is no reason to believe that the robot can execute

it or even that executing it will result in the same goal state. In our

running example, the robot can’t execute the specified plan as it

will not be able to execute the climb ladder action. As a starting

point, we will assume that what the human really cares about is

the final outcome of a plan, and thus effectively only the goal state

matters. Thus a new possibility may be to try to not follow the spec-

ified plan, but rather try to recreate the final state expected by the

human. Here again, we run into a new problem, as the robot may

not be exactly able to generate the state that results from executing

the plan in the human mental model. In our running example, let’s

assume there are fluents corresponding to what tools the robot used.

In this case, it will not be able to exactly replicate the final state as

it can’t climb the ladder and thus can’t turn the fluent related to

the ladder being used true. Note that this is completely consistent

with cases where the human may have trajectory level constraints,

as they can be compiled down into goal state fluents (cf. [2]). Now

let the unknown goal the human has, be𝐺∗ and they only partially

specified it to the robot, i.e., 𝐺𝐻 ⊆ 𝐺∗. Thus, the central challenge

1
Equivalently, we could also consider cases where the human may provide a plan they

could execute themselves to achieve the goal. In such case, the remaining problem

definition and solution approach remain the same except that we will be using the

human model of themselves (𝐷𝐻
) instead of their model of the robot (𝐷𝑅

) to analyze

the plan.

is how does the system determine if it can achieve 𝐺∗, and if so

how does it come up with a plan that satisfies the goal 𝐺∗.
However, the fact that the human provided the robot with a plan

gives us information about what𝐺∗. For one, we can assert that𝐺∗

must be a subset of what the human believes would have resulted

from executing the plan (T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 )). The problem of course

is how does one identify the exact subset. The fact that goals are an

intuitive structure for humans means that we can directly query the

human about them. Unfortunately, queries designed to directly get

𝐺∗ (say by asking, ‘are you sure you only need me to achieve𝐺𝐻 ?’)
are bound to fail. This is because the difference between𝐺𝐻

and𝐺∗,
is not just a result of them forgetting some fluents, but a reflection

of their beliefs about the task. For example, in the tea-making task,

the human would never remember to specify that the tea needs to

be made with water because they would never be able to imagine

doing it in any other way. However, the robot could on the other

hand ask the human whether they care about any given fluent (for

example, ’would you mind if the tea was not made with water?’).
Thus we will introduce a function O𝐺∗ : 𝐹 → [0, 1] that will return
1 if a given fluent is part of𝐺∗. Note that the central computational

challenge we have is to find plans that will achieve the goal while

minimizing the queries to humans. Now with all the components

specified, we are ready to formally define the central problem.

Definition 2. A human-aware goal alignment (HAGL) is
specified by the tuple H = ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 , 𝐷𝐻 , 𝐼𝐻 , 𝜋𝐻 ,O𝐺∗ ⟩, where
there exists an unknown goal 𝐺∗, such that T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 ) ⊇ 𝐺∗
and 𝐺𝐻 ⊆ 𝐺∗ and ∀, 𝑓 ∈ 𝐹,O𝐺∗ (𝑓 ) = 1, if and only if 𝑓 ∈ 𝐺∗. Now
the goal of the robot is to find 𝜋𝑅 such that T (𝜋𝑅, 𝐼𝑅, 𝐷𝑅) ⊇ 𝐺∗, if
one exists, while minimizing the queries to O𝐺∗

As with many of the human-aware planning works, we will

assume access to 𝐷𝐻
and 𝐼𝐻 . Note that the solution we propose

of finding a plan that results in a superset of 𝐺∗ is still consistent
with cases where the human may want to avoid some undesirable

side effects. This can be achieved by adding new fluents that corre-

spond to negations of existing fluents (similarly the model could be

updated to ensure that the original fluent and the new fluent will

always carry complementary values in every reachable state). Our

current formulation can capture cases where a fluent corresponds

to an undesirable side-effect, by adding the fluent corresponding to

the negation of the undesirable fluent into the goal specification

𝐺∗.
Now just to see the complexity of the specified problem, we

can compare it against planning and see that it is at the very least

as hard as solving classical planning problems, i.e., it is at least

PSPACE-Hard.

Proposition 1. A decision-version of HAGL, i.e, the problem of
establishing whether there exists a plan for a given a HAGL problemH
that satisfies𝐺∗ with just 𝐾 queries to O𝐺∗ , is at least PSPACE-Hard.

Proof Sketch. We can establish this by showing that a plan

existence problem for a modelM = ⟨𝐷, 𝐼,𝐺⟩ (which is known to

be PSPACE-Complete [3]) can be compiled into a HAGL problem.

Specifically, one where𝐺∗ is the same as𝐺 , the robot domain model

and initial state are the same as those that are part of the original

planning problem and the human model contains an action 𝑎𝐺 with



an empty precondition that sets the𝐺 true. Here the human plan is

given as 𝜋𝐻 = ⟨𝑎𝐺 ⟩ and we can additionally set 𝐾 = |𝐹 |. Now the

original planning problem is solvable if and only if there exists a

plan for the HAGL problem. □

This further highlights our argument that even when one re-

moves many of the traditional complexities associated with value

alignment, we still find a complex and challenging computational

problem at the heart of the goal-alignment problem. One that could

have clear implications on everyday interactions humans could

have with AI systems.

One of the big advantages that this formulation has over the

traditional ones is the fact that T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 ) already gives you

an upper bound on possible things the human goal may contain.

In fact, if the robot can already achieve a state that is a superset

of T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 ), then that plan is guaranteed to be a plan that

satisfies the true human goal. This is only possible because the

robot is maintaining an explicit model of the human’s belief about

the robot model. However, this is only one way in which modeling

human beliefs can help the robot in finding plans that satisfy the

true human goal. As we will see in the next section, we can further

leverage the human model to get better estimates on which of these

goal fluents the human may have actually intended to achieve (as

opposed to mere unintended side-effects).

6 A SOLUTION FOR GOAL ALIGNMENT
PROBLEM

In addition to introducing a new version of the value alignment

problem, we will also propose a solution for the goal alignment

problem as described earlier. In particular, we will approximate

the value of information related to querying each fluent and then

iteratively query the ones with the highest value. We will only use

this procedure if𝐺𝐻
is achievable, but the robot can’t achieve all

the fluents that were made true by the human plan in the human

model (T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 )). We will calculate the value associated with

querying about each fluent, as

V𝑄 (𝑓 ) = 𝑝 (𝑓 ∈ 𝐺∗) ×𝑉 (𝑓 ∈ 𝐺∗) + (1 − 𝑝 (𝑓 ∈ 𝐺∗)) ×𝑉 (𝑓 ∉ 𝐺∗)

Where 𝑝 (𝑓 ∈ 𝐺∗) is the probability that fluent is part of the goal
and 𝑉 (𝑓 ∈ 𝐺∗), respective values of knowing whether 𝑓 is part of
the goal or not. Now to simplify the calculation of these components,

wewill make a simplifying assumption that the achievement of each

fluent can be done independently of each other. Let 𝑆𝐻
𝐺∗ represent

the state that results from executing the plan 𝜋𝐻 in the human

model (i.e., 𝑆𝐻
𝐺∗ = T (𝜋𝐻 , 𝐼𝐻 , 𝐷𝐻 )) and let 𝐹 ⊆ 𝑆𝐻

𝐺∗ be the set of

fluents in the goal state that the robot cannot achieve in its true

model. Now to calculate the probability, we will employ a strategy

similar to the ones used in goal recognition [26]. Namely to detect

whether the suboptimality of the plan specified by the human may

be explained by a given fluent. That is if the inclusion of a fluent 𝑓

in the goal set (i.e., 𝐺𝐻 ∪ {𝑓 }), makes the optimal plan for the new

goal in the human model closer to the cost of the specified plan,

then you will assign a higher probability to that fluent. Keeping

with the conventions used by [26], we can formalize this as

𝑝 (𝑓 ∈ 𝐺∗) ∝ 𝑒−1×𝛽×|𝐶 (𝜋𝐻 )−𝐶 (𝜋∗
𝑓
) |

Where 𝜋∗
𝑓
is a plan that is optimal in the human model for the

goal𝐺𝐻 ∪ 𝑓 , where 𝛽 is usually referred to as a rationality parame-

ter and controls the randomness of the decision-maker. Note that

this approach assumes that the human follows a noisy rational

decision-making process, an assumption that has been shown to

have psychological validity [16].

Now coming to the value, the value function reflects the certainty

the robot has regarding the achievability of the goal state. If the

robot knows for certain that it can be achieved or cannot be achieved

then it will be set to 1. More formally the value will be equal to

the sum of the probability that the 𝐺∗ is unachievable and the

probability there exists a single plan that achieves 𝐺∗ (these two
terms are mutually exclusive). Now we can find a lower bound

on this true value by just using the probability that the goal is

unachievable.

𝑉 (𝑓 ∈ 𝐺∗) ≊
∑̄︁
𝐺

𝑃 (𝐺∗ = 𝐺) × 1(𝐺 not solvable)

Where 𝐺 is any subset of 𝑆𝐻
𝐺∗ containing 𝐺

𝐻
that satisfy 𝑓 ∈ 𝐺∗

(i.e., 𝐺𝐻 ⊆ 𝐺 ⊆ 𝑆𝐻
𝐺∗ and 𝑓 ∈ 𝐺), 𝑃 (𝐺

∗ = 𝐺) probability that the

true goal is the same as 𝐺 and 1(𝐺 not solvable) is an indicator

function that evaluates to true if 𝐺 is unsolvable. We can similarly

define 𝑉 (𝑓 ∉ 𝐺∗), but now we will only consider subsets of goal

state that don’t contain 𝑓 .

Exactly calculating this lower bound on true value can still be

computationally expensive, as it would require effectively testing

the achievability of every subset that satisfies the condition dis-

cussed above (and calculating the probability as well). However,

since we are assuming that if a fluent is achievable in isolation in

robot model, it can also be achieved as part of any goal state, we

only need to care about the fluents that are part of 𝐹 So we will

define

�̃� (𝑓 ∈ 𝐺∗) =
{

1 if 𝑓 is not achievable∏
ˆ𝑓 ∈𝐹 𝑝 ( ˆ𝑓 ∈ 𝐺∗) Otherwise

In the case of �̃� (𝑓 ∉ 𝐺∗) the value is always given as �̃� (𝑓 ∉

𝐺∗) =
∏

ˆ𝑓 ∈𝐹\{ 𝑓 } 𝑝 ( ˆ𝑓 ∈ 𝐺∗). Now the important point of this

approximation is the assumption that each fluent’s independent

achievability reflects its overall achievability. However, while many

fluents may be achievable in isolation, there may be subsets of

fluents containing that fluent which are not achievable. However,

we can show that the value we calculated is guaranteed to be an

approximation of the true value.

Proposition 2. For a given HAGL problem for an 𝑓 ∈ 𝑆𝐻
𝐺∗ , we

will have 𝑉 (𝑓 ∈ 𝐺∗) ≥ �̃� (𝑓 ∈ 𝐺∗) and 𝑉 (𝑓 ∉ 𝐺∗) ≥ �̃� (𝑓 ∉ 𝐺∗)

Proof Sketch. This follows from two facts (a) 𝑃 (𝐺∗ = 𝐺) ≥
𝑃 ( ¯𝑓 ∈ 𝐺∗) for any ¯𝑓 𝐺 , and (b) there may be subsets of 𝑆𝐻

𝐺∗ that are

unsolvable, which doesn’t contain any elements from 𝐹 . This means

the sum of elements used to calculate the lower bound 𝑉 (𝑓 ∈ 𝐺∗)
would be greater than or equal to �̃� (𝑓 ∈ 𝐺∗). When �̃� (𝑓 ∈ 𝐺∗) = 1,

then 𝑉 (𝑓 ∈ 𝐺∗) must equal to one, since all possible goals are

unachievable and when �̃� (𝑓 ∈ 𝐺∗) = ∏
ˆ𝑓 ∈𝐹 𝑝 ( ˆ𝑓 ∈ 𝐺∗), then there

must exist at least one term in the sum that is greater than or equal



Algorithm 1 An approximation-based algorithm to find a solution

to a HAGL

Input:H = ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 , 𝜋𝐻 ,O𝐺∗ ⟩
𝑆𝐻
𝐺∗ = T (𝜋

𝐻 , 𝐼𝐻 , 𝐷𝐻 )
if ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 ⟩ not solvable then

return No plan exists

end if
if ⟨𝐷𝑅, 𝐼𝑅, 𝑆𝐻

𝐺∗ ⟩ is solvable then
return Return a valid plan for ⟨𝐷𝑅, 𝐼𝑅, 𝑆𝐻

𝐺∗ ⟩
end if
𝑄 ← A queue of fluents from the set 𝑆𝐻

𝐺∗ \𝐺
𝐻
ordered byV𝑄

C← ∅
while 𝑄 is not empty do
𝑓 ← 𝑄.𝑝𝑜𝑝 ()
if O𝐺∗ (f) == 1 then
C = C ∪ {𝑓 }
if ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 ∪ C⟩ not solvable then

return No plan exists

end if
else
𝐺 = 𝐺𝐻 ∪ C ∪𝑄
if ⟨𝐷𝑅, 𝐼𝑅,𝐺⟩ is solvable then

return Return a valid plan for ⟨𝐷𝑅, 𝐼𝑅,𝐺⟩
end if

end if
end while
if ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 ∪ C⟩ not solvable then
return No plan exists

else
return Return a valid plan for ⟨𝐷𝑅, 𝐼𝑅,𝐺𝐻 ∪ C⟩

end if

to

∏
ˆ𝑓 ∈𝐹 𝑝 ( ˆ𝑓 ∈ 𝐺∗). We can use a similar kind of reasoning to show

the relation also exists between 𝑉 (𝑓 ∉ 𝐺∗) and �̃� (𝑓 ∉ 𝐺∗). □

Now that we have a value associated with each fluent. We will

start by querying them in the order of their value. We will end the

query process under one of the three conditions

(1) The human says yes to a fluent that cannot be achieved

(2) The current subset of fluents the human has said yes to

cannot be achieved along with the goal

(3) There exists a plan that can achieve the current subset of

fluents the human has said yes to can be achieved along with

𝐺𝐻
and any unqueried fluent.

The first two conditions correspond to cases where the robot can’t

achieve the expected goal and the latter where the robot can achieve

a superset of 𝐺∗ and thus that plan would be acceptable to the

human. Algorithm 1 presents the pseudocode for the overall proce-

dure.

Proposition 3. Algorithm 1 is a complete procedure for any given
HAGL problem, i.e, it will always find a solution if one exists.

This result follows from the fact that in the worst case, it would

ask about every fluent that is part of 𝑆𝐻
𝐺∗ and will be able to deter-

mine if a plan exists or not.

In the case of the running example, the 𝐹 only consists of the

fluent corresponding to the use of the ladder. The fluents corre-

sponding to the use of the ladder and the use of the high-quality

tea leaves will be assigned the highest probability. In this case, the

proposed algorithm generates a plan that achieves the remaining

goal fluents once the human is queried about whether the ladder

used is part of the goal. Averaged across ten runs, we found that

for the running example, our algorithm will query 4.2 times (with

the maximum number of queries being 8).

7 EMPIRICAL EVALUATION
For evaluating our proposed algorithm, we ran our method on a set

of problems selected from standard IPC benchmark problems [15].

Our primary motivation was to test the effectiveness of our method

in reducing the number of times the user would need to be queried

before the true goal is found. Since we are unaware of any existing

methods we can directly apply in this setting, we will compare the

number of queries generated against a simple baseline that would

query the user about all potential goal predicates. Specifically, the

hypothesis we will test will be

Hypothesis 1. The average number of queries generated by our
algorithm will be lower than the naive upper bound on the number of
queries, which is equal to |𝑆𝐻

𝐺∗ \𝐺
𝐻 |.

In particular, we considered five domains, namely, Blocksworld,

Driverlog, Elevators, Rover and Logistics. For each domain, we

selected five instances that were used in previous competitions.

The true goal in this case consisted of the goal that was specified as

part of the original problem, while we created the goal specification

provided to the robot by randomly deleting a predicate from the goal

specification. The human model was formed by randomly deleting

preconditions and deletes from the original domain description

and we used the original domain description as the robot model.

All plans were generated using FastDownward planner [13] and

we used A-star search with LM-cut heuristic [14] and set 𝛽 to one

for probability calculation. All experiments were run on a linux

machine with 32GB ram and 16 Intel(R) Xeon(R) 2.60GHz CPUs.

We ran our algorithm on each problem instance ten times and the

results from our evaluation are provided in Table 1. The second

column in Table 1, provides the baseline upper bound on the number

of queries and the second and third columns list the average number

of queries generated and the average time taken by our algorithm

(along with their standard deviations).

The most striking result to note is the fact that, apart from the

blocksworld domain, we see a significant drop in the number of

queries in almost all the domains. In fact, for many of the problems

the algorithm doesn’t even need to generate a single query to

identify a plan that is guaranteed to satisfy the user’s hidden goal.

This means that for these problems our method was able to find a

plan which could achieve a superset of the goal state expected by

the user. The cases where the gains are less marked, particularly

in Blocksworld, seem to correspond to ones where the number of

fluents in the goal states are small. This indicates that our method

will be most effective in problems with a larger fluent set and by

extension a larger state space. This is a particularly useful property,

as a naive querying strategy will not be viable in such problem

settings. It is also worth noting that the time taken to complete



Problem Instance |𝑆𝐻
𝐺∗ \𝐺

𝐻 | No of Queries Time (secs)

Mean Std Mean std

Blocks

p1 7 6.4 1.1 5.08 0.37

p2 3 2.6 0.52 2.72 0.2

p3 7 5.9 1.1 4.9 0.37

p4 4 3.8 0 3.37 0.1

p5 8 7.3 1.1 5.6 0.24

Driverlog

p1 21 0 0 0.81 0.03

p2 24 0 0 1 0.02

p3 26 0 0 0.83 0.01

p4 23 0 0 0.9 0.01

p5 23 14.1 4.8 20.32 1.17

Elevator

p1 25 0 0 0.71 0.02

p2 24 0 0 0.73 0.04

p3 25 14 4.16 13.30 1.04

p4 25 0 0 0.70 0.03

p5 24 6.7 4.35 11.07 1.05

Logistics

p1 12 10.8 1.4 8.7 0.55

p2 13 0 0 0.78 0.03

p3 13 0 0 0.78 0.03

p4 12 9.8 2.2 8.63 0.48

p5 12 10.3 1.34 8.5 0.33

Rover

p1 46 0 0 1.1 0.08

p2 42 0 0 1.07 0.05

p3 55 0 0 1.13 0.05

p4 55 29.3 11.88 34.72 3.4

p5 69 0 0 4.74 0.07

Table 1: Empirical evaluation of the proposed algorithm on
a number of standard IPC domains)

the whole interaction is short and within an acceptable bounds for

real-time interaction with users.

8 CONCLUSION AND DISCUSSION
In this paper, we present a reformulation of the value alignment

problem, which explicitly accounts for an often overlooked aspect

of the problem, namely the asymmetry between the human’s belief

and the agent’s true model. Even in this setting, we see that value

alignment, or more accurately the goal alignment problem remains

a challenging one. We also see how we could leverage the human

mental models to possibly generate better ways to query the hu-

man to find more information about their underlying objectives.

Our initial empirical evaluation shows that even this approximate

algorithm helps reduce the number of queries we would need to

ask the human before the system can come up with a plan that is

guaranteed to satisfy the true human goal. There are multiple ways

this work could be extended. One possibility would be to extend the

work to support more complex decision-making settings including

decision-theoretic ones. Another one would be to look at the use of

more realistic decision-making models for humans and also relax

assumptions about access to the human mental model of the robot.

While the value alignment problem is generally discussed in the

context of AI safety, such misspecification and misalignment could

affect every possible interaction between a human and AI agent. As

such, we hope more researchers working in the area of human-AI

interaction would try to account for such misalignment problems

when designing their systems.
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