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ABSTRACT
Imitation learning allows artificially intelligent systems to learn

either the reward (or preference) model (or directly the behavioral

policy) only from observing the behavior of an expert. Existing

work in imitation learning and inverse reinforcement learning has

focused on imitation primarily in unconstrained settings (e.g., no

limit on fuel consumed by the vehicle). In many real-world do-

mains, the behavior of an expert is governed not only by reward

(or preference) but also by constraints. For instance, decisions of

self-driving delivery vehicles are dependent not only on the route

preferences/rewards (depending on past demand data) but also on

the fuel in the vehicle. In such problems, imitation learning is chal-

lenging as decisions are not only dictated by the reward model but

are also dependent on a cost constraint model. In this paper, we

provide a reward-generative model to address imitation learning in

cost-constrained environments. We demonstrate that the objective

for imitation learning in cost-constrained environments can be suc-

cinctly derived. Finally, we empirically show that our approach is

able to handle cost constraints exceedingly well and provides clear

benefits over leading approaches on multiple benchmark problems

from the literature.

KEYWORDS
imitation learning, constrained markov decision process, inverse

reinforcement learning

1 INTRODUCTION
Imitation learning aims to replicate expert behaviors by directly

observing human demonstrations, eliminating the need for design-

ing explicit reward signals as in reinforcement learning (RL) [1].

This approach has been successfully applied in a variety of domains

such as robotics [5], autonomous vehicles [10], and game AI [8].

Typically, this is achieved through techniques such as behavioral

cloning [3], inverse reinforcement learning [13], and generative

inverse reinforcement learning [7].

The previous research in the fields of imitation learning and

inverse reinforcement learning has primarily concentrated on mim-

icking human behaviors in unconstrained environments, such as

mimicking driving a vehicle without any limitations on fuel con-

sumption by the vehicle. However, in many practical scenarios, ex-

perts consider not only rewards or preferences, but also limitations

or constraints. For example, the decisions made by a self-driving

delivery vehicle are not only based on route preferences or rewards,

which are derived from past demand data, but also on the amount

of fuel/power available in the vehicle. As another example, when

an agent is being trained to drive a car on a race track, the expert
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demonstrations that the agent is mimicking involve high-speed

driving and precision maneuvering, which are critical for success

in a race. However, it is also essential for the agent to adhere to

safety constraints, such as staying within the boundaries of the

track and avoiding collisions with other vehicles. These safety con-

straints are different from the reward function, which may focus

on achieving a fast lap time or winning the race. Therefore, the

agent must strike a balance between the goal of imitating the expert

demonstrations and the need to adhere to the safety constraints in

order to successfully complete the task.

In scenarios where the decision-making process is influenced by

both a reward model and a cost constraint model, the implementa-

tion of imitation learning becomes significantly more complex. This

is because the decisions made are not solely based on the reward

model, but also take into consideration the limitations imposed by

the cost constraint model. To that end, we provide a new imitation

learning problem in cost-constrained environments. The closest

research to work provided in this paper is byMalik et al. [11], where

cost constraints have to be learned from expert trajectories when

the reward function is already provided. Our work is fundamentally

different from their work, as we consider settings where the reward

model is unknown (as it is usually a subjective preference), but the

cost consumption and constraints are known (e.g., fuel consumed).

Contributions: Our key contributions are as follows:

• First, we formulate the cost-constrained imitation learning

problem and provide a reward-generative model to address

the challenge of imitation learning in cost-constrained envi-

ronments. By utilizing this model, we are able to effectively

address the issue of imitating expert behavior while ensuring

that cost constraints are met during the exploration stage.

• We theoretically derive how the objective for imitation in

cost-constrained environments can be succinctly derived

using our proposed method. This proof serves as a solid

foundation for the effectiveness of our model in addressing

this specific problem.

• To further validate the effectiveness of our proposed method,

we have conducted extensive evaluations on modified cost-

constrained benchmarks from MuJoCo. The results of these

evaluations show that our method is able to effectively imi-

tate expert behavior while satisfying cost constraints.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the two important relevant models in

this paper, namely Constrained MDPs and Imitation Learning. We

also briefly review related work.

2.1 Constrained Markov Decision Process
Reinforcement Learning problems are characterized by an under-

lying Markov Decision Process (MDP), which is defined by the
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tuple (S,A,R,P). Where S represents the set of states, A rep-

resents the set of actions. The reward function, R : S × A ↦→ R,
provides a quantitative measure of how well the system is perform-

ing based on the current state and action. The transition function,

P : S × A × S ↦→ [0, 1], defines the probability of transitioning

from one state to another, given the current state and action taken.

Specifically, the probability of transitioning from state 𝑠 to 𝑠′, given
that action 𝑎 is taken, is represented by P(𝑠′ |𝑠, 𝑎). A feasible set

of policies, denoted as Π, contains all possible policies that can be

implemented in the system. The objective of the MDP problem is

to find an optimal policy, 𝜋 ∈ Π, by maximizing the reward-based

objective function, which is defined as follows:

max

𝜋∈Π
E𝜋 [𝑟 (𝑠, 𝑎)] . (1)

In this work, we examine the scenario in which agents aim to op-

timize their rewards while adhering to policy-based cost constraints.

This leads to an extension of the traditional MDP framework re-

ferred to as the Constrained Markov Decision Process (CMDP) [2].

The objective in a CMDP problem is succinctly formulated as:

max

𝜋∈Π
E𝜋 [𝑟 (𝑠, 𝑎)]

𝑠 .𝑡 . E𝜋 [𝑑 (𝑠, 𝑎)] ≤ 𝑑0 .
(2)

Where 𝑑 (𝑠, 𝑎) is the cost associated with taking action 𝑎 in state 𝑠

and is independent of the reward function, 𝑟 (𝑠, 𝑎).𝑑0 is the expected

cost threshold for any selected policy.

2.2 Imitation Learning
Methods of Reinforcement Learning require clearly defined and ob-

servable reward signals, which provide the agent with feedback on

their performance. However, in many real-world scenarios, defining

these rewards can be very challenging. Imitation learning, on the

other hand, offers a more realistic approach by allowing agents to

learn behavior in an environment through observing expert demon-

strations, without the need for getting access to a defined reward

signal.

An effective method for addressing imitation learning challenges

is Behavior Cloning (BC) [3]. This approach utilizes the states and

actions of a demonstrator as training data, allowing the agent to

replicate the expert’s policy [14]. One of the advantages of this

method is that it does not require the agent to actively interact

with the environment, instead, it operates as a form of supervised

learning, similar to classification or regression. Despite its simplic-

ity, BC is known to suffer from a significant drawback, namely

the compounding error caused by covariate shift [16]. This occurs

when minor errors accumulate over time, ultimately resulting in a

significantly different state distribution.

Another approach, Inverse Reinforcement Learning (IRL) [13]

aims to identify the underlying reward function that explains the

observed behavior of an expert. Once the reward function is de-

termined, a standard Reinforcement Learning algorithm can be

used to obtain the optimal policy. The reward function is typically

defined as a linear [1, 13] or convex [19] combination of the state

features, and the learned policy is assumed to have the maximum

entropy [23] or maximum causal entropy [22]. However, many IRL

methods are computationally expensive and may produce multiple

possible formulations for the true reward function. To address these

challenges, Generative Adversarial Imitation Learning (GAIL) [7]

was proposed. GAIL directly learns a policy by using a discrimi-

nator to distinguish between expert and learned actions, with the

output of the discriminator serving as the reward signal. With its

state-of-the-art performance in various applications, we designate

GAIL as the baseline for our algorithms.

We now describe the imitation learning problem and GAIL ap-

proach here as it serves as the basis for our method. The learner’s

goal is to find a policy, denoted as 𝜋 , that performs at least as well

as an expert policy, denoted as 𝜋𝐸 , with respect to an unknown

reward function, denoted as 𝑟 (𝑠, 𝑎). For a given policy 𝜋 ∈ Π, we
define its occupancy measure, denoted as 𝜌𝜋 ∈ Γ, as [15]

𝜌𝜋 (𝑠, 𝑎) = 𝜋 (𝑎 |𝑠)
∞∑︁
𝑡=0

𝛾𝑡𝑃 (𝑠𝑡 = 𝑠 |𝜋)

The occupancy measure represents the distribution of state-action

pairs that an agent encounters when navigating the environment

with the specified policy 𝜋 . It is important to note that there is

a one-to-one correspondence between the set of policies, Π, and
the set of occupancy measures, Γ. Therefore, an imitation learning

problem can be equivalently formulated as a matching learning

problem between the occupancy measure of the learner’s policy, 𝜌𝜋 ,

and the occupancy measure of the expert’s policy, 𝜌𝜋𝐸 . In general,

the objective can be succinctly represented as the task of finding a

policy that closely matches the occupancy measure of the expert’s

policy, which is represented as:

min

𝜋
−𝐻 (𝜋) +𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 ), (3)

where 𝐻 (𝜋) ≜ E𝜋 [− log𝜋 (𝑎 |𝑠)] is the causal entropy of the policy

𝜋 , which is defined as the expected value of the negative logarithm

of the probability of choosing an action 𝑎 given a state 𝑠 , under

the distribution of the policy 𝜋 . Additionally, the distance measure

between the state-action distribution of the policy 𝜋 , represented by

𝜌𝜋 , and the expert’s state-action distribution, represented by 𝜌𝜋𝐸 ,

is represented by the symbol𝜓∗
. Specifically, the distance measure

(Jensen-Shannon divergence) employed by the GAIL framework is

defined as follows:

𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 ) = max

𝐷
E𝜋 [log𝐷 (𝑠, 𝑎)] + E𝜋𝐸 [log(1 − 𝐷 (𝑠, 𝑎))] (4)

The GAIL method utilizes a combination of imitation learning

and generative adversarial networks, where 𝐷 ∈ (0, 1)S×A
acts

as the discriminator. Through this formalism, the method trains a

generator, represented by 𝜋\ , to generate state-action pairs that the

discriminator attempts to distinguish from expert demonstrations.

The optimal policy is achieved when the discriminator is unable to

distinguish between the data generated by the generator and the

expert data.

In our problem, as we aim to address the imitation learning

problem within the constraints of an MDP, we have employed a

unique distance measure that diverges from the traditional GAIL

framework. This approach allows us to more effectively navigate

the complexities of the constrained MDP setting and achieve our

desired outcome.



3 COST CONSTRAINED IMITATION
LEARNING

In this section, we first describe the problem of cost-constrained

imitation learning and outline our approach to compute the policy

that mimics expert behavior while satisfying the cost constraints.

Formally, the problem is a combination of the CMDP problem (2)

and the Imitation Learning problem (3) and can be succinctly char-

acterized as:

min

𝜋
− 𝐻 (𝜋) +𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 )

𝑠 .𝑡 . E𝜋 [𝑑 (𝑠, 𝑎)] ≤ E𝜋𝐸 [𝑑 (𝑠, 𝑎)] (5)

Our approach to computing the policy that mimics the behavior

of the expert within cost constraints is focused on computing a

solution to the objective function of Equation (6) below. The theo-

retical justification for choosing this objective function is provided

in the next section. Intuitively, the objective is composed of three

optimizations:

• Minimize the distance between state, action distributions of new

policy, 𝜋\ and expert policy, 𝜋𝐸 . This is transformed into the

loss associated with a discriminator, 𝐷𝜔 , which discriminates

between expert state, action pairs and the state, action pairs

generated by the new policy, 𝜋\ .

• Maximize the entropy of the new policy, 𝜋\ to ensure none of

the correct policies are ignored.

• Minimize the cost constraint violations corresponding to the

new policy, 𝜋\ .

𝐿(𝜔, _, \ ) ≜ min

\
max

𝜔,_
E𝜋\ [log𝐷𝜔 (𝑠, 𝑎)] + E𝜋𝐸 [log(1 − 𝐷𝜔 (𝑠, 𝑎))]

+ _
(
E𝜋\ [𝑑 (𝑠, 𝑎)] − E𝜋𝐸 [𝑑 (𝑠, 𝑎)]

)
− _1𝐻 (𝜋\ )

(6)

where \ represents the parameters of the policy, _1 is the parameter

corresponding to the causal entropy (since we maximize entropy

similar to imitation learning) and finally, _ is the parameter cor-

responding to cost constraint. 𝐻 (𝜋\ ) ≜ E𝜋\ [− log𝜋\ (𝑎 |𝑠)] is the
casual entropy of policy 𝜋\ .The given expert policy is represented

by 𝜋𝐸 , and a known cost function, represented by 𝑑 , is also incor-

porated into the objective function.

Given the three optimization criterion, we do not choose one

of the three but instead compute a saddle point (\, 𝜔, _) for (6).
To accomplish this, we will employ a parameterized policy, repre-

sented by 𝜋\ , with adjustable weights \ , as well as a discriminator

network, represented by 𝐷𝜔 , which maps states and actions to a

value between 0 and 1, and has its own set of adjustable weights

𝜔 . The Lagrangian multiplier, denoted by _, is for penalizing the

number of cost constraint violations.

To obtain the saddle point, we update the parameters of the

policy, discriminator, and Lagrangian multiplier sequentially:

Updating 𝜔 : The gradient of (6) with respect to 𝜔 is calculated as:

▽𝜔 𝐿(𝜔, _, \ ) =
E𝜋\ [▽𝜔 log𝐷𝜔 (𝑠, 𝑎)] + E𝜋𝐸 [▽𝜔 log(1 − 𝐷𝜔 (𝑠, 𝑎))]

(7)

We utilize the Adam gradient step method [9] on the variable 𝜔 ,

targeting the maximization of (6) in relation to 𝐷 .

Updating \ : To update policy parameters, we adopt Trust Region

Policy Optimization (TRPO) method [17]. The theoretical foun-

dation of the TRPO update process involves utilizing a specific

algorithm to improve the overall performance of the policy by

optimizing the parameters within a defined trust region:

\𝑘+1
= arg max

\
L(\𝑘 , \ )

𝑠 .𝑡 . �̄�𝐾𝐿 (\ | |\𝑘 ) ≤ 𝛿
(8)

The key challenge in applying the TRPO update process is the

computation of the surrogate advantage, denoted by L(\𝑘 , \ ). It is
a metric that quantifies the relative performance of a new policy

𝜋\ in comparison to an existing policy 𝜋\𝑘 , based on data collected

from the previous policy:

L(\𝑘 , \ ) = E
𝑠,𝑎∼𝜋\𝑘

[
𝜋\ (𝑎 |𝑠)
𝜋\𝑘 (𝑎 |𝑠)

(𝐴𝜋\𝑘 (𝑠, 𝑎) − _𝐴
𝜋\𝑘
𝑑

(𝑠, 𝑎))
]
. (9)

We do not have a reward function to compute the advantage and

hence we utilize the output of the discriminator, represented by

log𝐷𝜔 (𝑠, 𝑎), as the reward signal. Subsequently, we employ the

Generalized Advantage Estimation (GAE) method outlined in [18]

to calculate the advantage of the reward, 𝐴
𝜋\𝑘 (𝑠, 𝑎). Additionally,

we also calculate the advantage pertaining to cost, denoted as

𝐴
𝜋\𝑘
𝑑

(𝑠, 𝑎), by utilizing the GAE method, as we have knowledge of

the cost function.

The average KL-divergence, represented by �̄�𝐾𝐿 (\ | |\𝑘 ), between
policies across states visited by the previous policy can be computed

as:

�̄�𝐾𝐿 (\ | |\𝑘 ) = E
𝑠∼𝜋\𝑘

𝐷𝐾𝐿
(
𝜋\ (·|𝑠) | |𝜋\𝑘 (·|𝑠)

)
(10)

Updating _:We do an Adam gradient step on _ to increase (6), the

gradient of (6) with respect to _ is calculated as:

▽_ 𝐿(𝜔, _, \ ) = (E𝜋\ [𝑑 (𝑠, 𝑎)] − E𝜋𝐸 [𝑑 (𝑠, 𝑎)]) (11)

Algorithm 1 shows the pseudocode for our approach, CCIL (Cost

Constrained Imitation Learning).

Algorithm 1 Cost Constrained Imitation Learning, CCIL

Input: expert trajectories 𝜏𝐸 ∼ 𝜋𝐸 , initial parameters of policy,

discriminator and Lagrangian multiplier \0,𝜔0,_0, maximum cost

𝑑0

Output: Learned policy 𝜋\

1: for 𝑖 = 0, 1, 2, ... do
2: Sample trajectories 𝜏𝑖 ∼ 𝜋\𝑖
3: Update 𝜔𝑖 to 𝜔𝑖+1 by ascending with gradients:

△𝜔𝑖
= ˆE𝜏𝑖 [▽𝜔𝑖

log(𝐷𝜔𝑖
(𝑠, 𝑎))] + ˆE𝜏𝐸 [▽𝜔𝑖

log(1 −
𝐷𝜔𝑖

(𝑠, 𝑎))]
4: Take a policy step from \𝑖 to \𝑖+1, using the TRPO update

rule with the following objective:

ˆE𝜏𝑖 [log(𝐷𝜔𝑖+1
(𝑠, 𝑎))] + _𝑖 ˆE𝜋\𝑖 [𝑑 (𝑠, 𝑎)] − _1𝐻 (𝜋\𝑖 )

5: Update _𝑖 to _𝑖+1 by ascending with gradients:

△_𝑖 = ˆE𝜏𝑖 [𝑑 (𝑠, 𝑎)] − ˆE𝜏𝐸 [𝑑 (𝑠, 𝑎)]
6: end for

4 THEORETICAL ANALYSIS
The objective function of the imitation learning problem can be rep-

resented using (3), and the distance measure in the GAIL framework

is defined as (4).



Our proof is based on the GAIL framework, and the objective

function of the cost-constrained imitation learning problem is for-

mulated in (6). However, it is important to note that the form of the

distance measure will differ from that of (4), as will be explained in

the following theory.

Theorem 1. The objective function of the cost-constrained imita-
tion learning problem is:

min

𝜋∈Π
−𝐻 (𝜋) +𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 ), (12)

where𝜓∗ (𝜌𝜋−𝜌𝜋𝐸 ) = max

𝐷,_
E𝜋 [log(𝐷 (𝑠, 𝑎))]+E𝜋𝐸 [log(1−𝐷 (𝑠, 𝑎))]+

_(E𝜋 [𝑑 (𝑠, 𝑎)] − E𝜋𝐸 [𝑑 (𝑠, 𝑎)])

We will provide a proof sketch for the above theorem in two

steps :

Step 1: Typically, optimal policy in an imitation learning setting

is obtained by first solving the Inverse Reinforcement Learn-

ing (IRL) problem to get the optimal reward function 𝑟∗ and
then running an RL algorithm on the obtained reward function.

In GAIL, these two steps were compressed into optimizing a

𝜓−regularized objective. Our first step is to show this can
be also done for Cost Constrained Imitation Learning
problems.

Step 2: Our second step is to derive the specific form of𝜓∗
for CCIL

problems.

4.1 Step 1
Constrained Markov Decision Process (CMDP) is commonly solved

by utilizing the Lagrangian relaxation technique [20]. Then CMDP

is transformed into an equivalent unconstrained problem by incor-

porating the cost constraint into the objective function:

max

_≥0

min

𝜋∈Π
E𝜋 [−𝑟 (𝑠, 𝑎)] + _(E𝜋 [𝑑 (𝑠, 𝑎)] − 𝑑0) (13)

In the aforementioned equation, our objective is to find the sad-

dle point of the minimax problem. Since the reward function 𝑟 (𝑠, 𝑎)
is not provided, our goal is to determine the optimal policy by uti-

lizing the expert policy 𝜋𝐸 and the given cost functions 𝑑 (𝑠, 𝑎). To
accomplish this, we utilize the maximum casual entropy Inverse Re-

inforcement Learning (IRL) method [22][23] to solve the following

optimization problem:

max

𝑟 ∈R
_≥0

(
min

𝜋∈Π
−𝐻 (𝜋) + E𝜋 [−𝑟 (𝑠, 𝑎)] + _(E𝜋 [𝑑 (𝑠, 𝑎)] − 𝑑0)

)
−
(
E𝜋𝐸 [−𝑟 (𝑠, 𝑎)] + _(E𝜋𝐸 [𝑑 (𝑠, 𝑎)] − 𝑑0)

) (14)

Where R is a set of reward functions. Maximum casual entropy

IRL aims to find a reward function 𝑟 ∈ R that gives low rewards

to the learner’s policy while giving high rewards to the expert

policy. The optimal policy can be found via a reinforcement learning

procedure:

𝑅𝐿(𝑟, _) = arg min

𝜋∈Π
−𝐻 (𝜋) + E𝜋 [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)] − _𝑑0 (15)

We study policies generated through reinforcement learning,

utilizing rewards learned through IRL on the most extensive set

of reward functions, denoted as R in Eq.(14), which encompasses

all functions mapping from RS×A
to R. However, as the use of

a large R can lead to overfitting in the IRL process, we employ a

concave reward function regularizer [6], denoted as𝜓 , to define the

IRL procedure:

𝐼𝑅𝐿𝜓 (𝜋𝐸 , 𝑑) = arg max

𝑟 ∈RS×A
_≥0

(
min

𝜋∈Π
−𝐻 (𝜋) + E𝜋 [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)]

)
− E𝜋𝐸 [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)] +𝜓 (𝑟 )

(16)

Given (𝑟, ˜_) ∈ 𝐼𝑅𝐿𝜓 (𝜋𝐸 , 𝑑), our objective is to learn a policy de-

fined by 𝑅𝐿(𝑟, ˜_). To characterize 𝑅𝐿(𝑟, ˜_), it is commonly beneficial

to convert optimization problems involving policies into convex

problems. We use occupancy measure 𝜌𝜋 to accomplish this. After

which we express the expected value of the reward and the ex-

pected value of the constraint as: E𝜋 [𝑟 (𝑠, 𝑎)] =
∑
𝑠,𝑎 𝜌𝜋 (𝑠, 𝑎)𝑟 (𝑠, 𝑎)

and E𝜋 [𝑑 (𝑠, 𝑎)] =
∑
𝑠,𝑎 𝜌𝜋 (𝑠, 𝑎)𝑑 (𝑠, 𝑎) as described in Altman [2].

IRL can be reformulated as:

𝐼𝑅𝐿𝜓 (𝜋𝐸 , 𝑑) = arg max

𝑟 ∈RS×A
_≥0

min

𝜋∈Π
−𝐻 (𝜋) +𝜓 (𝑟 )+

∑︁
𝑠,𝑎

(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎)) [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)]
(17)

We then characterize 𝑅𝐿(𝑟, ˜_), the policy learned by RL on the

reward recovered by IRL as the optimal solution of Eq.(12).

Proposition 1. (Theorem 2 of [19]) If 𝜌 ∈ D, then 𝜌 is the occu-
pancy measure for 𝜋𝜌 (𝑎 |𝑠) ≜ 𝜌 (𝑠, 𝑎)/∑′

𝑎 𝜌 (𝑠, 𝑎′), and 𝜋𝜌 is the only
policy whose occupancy measure is 𝜌 .

Proposition 2. (Lemma 3.1 of [7]) Let 𝐻 (𝜌) = −∑
𝑠,𝑎 𝜌 (𝑠, 𝑎)

log(𝜌 (𝑠, 𝑎)/∑𝑎′ 𝜌 (𝑠, 𝑎′)). Then, 𝐻 is strictly concave, and for all 𝜋 ∈
Π and 𝜌 ∈ D, we have 𝐻 (𝜋) = 𝐻 (𝜌𝜋 ) and 𝐻 (𝜌) = 𝐻 (𝜋𝜌 ).

Proposition 3. Let (𝑟, ˜_) ∈ 𝐼𝑅𝐿𝜓 (𝜋𝐸 , 𝑑), �̃� ∈ 𝑅𝐿(𝑟, ˜_), and
𝜋𝐴 ∈ arg min

𝜋
−𝐻 (𝜋) +𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 )

= arg min

𝜋
max

𝑟,_
−𝐻 (𝜋) +𝜓 (𝑟 )+∑︁

𝑠,𝑎

(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎)) [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)]
(18)

Then 𝜋𝐴 = �̃� .

Proof. Let 𝜌𝐴 be the occupancy measure of 𝜋𝐴 and 𝜌 be the

occupancy measure of �̃� . By using Proposition 1, we define 𝐿 :

D × RS×A × R→ R by

𝐿(𝜌, (𝑟, _)) = −𝐻 (𝜌) +𝜓 (𝑟 )+∑︁
𝑠,𝑎

(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎)) [_𝑑 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)] (19)

The following relationship then holds:

𝜌𝐴 ∈ arg min

𝜌∈D
max

𝑟,_
𝐿(𝜌, (𝑟, _)) (20)

(𝑟, ˜_) ∈ arg max

𝑟,_

min

𝜌∈D
𝐿(𝜌, (𝑟, _)) (21)

𝜌 ∈ arg min

𝜌∈D
𝐿(𝜌, (𝑟, ˜_)) (22)

D is compact and convex, RS×A
is convex. Due to convexity of

−𝐻 ,it follows that 𝐿(𝜌, ·) is convex for all 𝜌 . 𝐿(·, (𝑟, _)) is concave



for all (𝑟, _) (see proof in appendix A.1), Therefore, we can use

minimax duality [12]:

min

𝜌∈D
max

𝑟 ∈R
_

𝐿(𝜌, (𝑐, _)) = max

𝑟 ∈R
_

min

𝜌∈D
𝐿(𝜌, (𝑐, _)) (23)

Hence,from Eqs.(20) and (21), (𝜌𝐴, (𝑟, ˜_)) is a saddle point of 𝐿,
which implies that:

𝜌𝐴 ∈ arg min

𝜌∈D
𝐿(𝜌, (𝑟, ˜_)) (24)

Because �̃�(·, (𝑟, _)) is strictly concave for all (𝑟, _), Eqs.(22) and
(24) imply 𝜌𝐴 = 𝜌 . Since policies whose corresponding occupancy

measure are unique(Proposition 2), finally we get 𝜋𝐴 = �̃� □

Proposition 3 illustrates the process of IRL in finding the optimal

reward function and Lagrangian multiplier, represented by (𝑟∗, _∗).
By utilizing the output of IRL, reinforcement learning can be ex-

ecuted to obtain the optimal policy, represented by 𝜋∗. And we

prove that 𝜋∗ is the same as by directly solving the𝜓 -regularized

imitation learning problem �̃�. Furthermore,𝜓 -regularized imitation

learning aims to identify a policy whose occupancy measure is

similar to that of an expert, as measured by the convex function𝜓∗
.

Subsequently, we deduce the form of𝜓∗
.

4.2 Step 2
In the GAIL paper [7], the authors present a cost regularizer,𝜓𝐺𝐴 ,

that leads to an imitation learning algorithm, as outlined in Eq.(3),

which aims to minimize the Jensen-Shannon divergence between

the occupancy measures. Specifically, they convert a surrogate loss

function, 𝜙 , which is used for binary classification of state-action

pairs drawn from the occupancy measures 𝜌𝜋 and 𝜌𝜋𝐸 , into cost

function regularizers 𝜙 , such that 𝜙∗ (𝜌𝜋 − 𝜌𝜋𝐸 ) represents the
minimum expected risk, 𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ), for the function 𝜙 [7].

𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ) =
∑︁
𝑠,𝑎

max

𝛾 ∈R
𝜌𝜋 (𝑠, 𝑎)𝜙 (𝛾) + 𝜌𝜋𝐸 (𝑠, 𝑎)𝜙 (−𝛾) (25)

Here we use the same formula of surrogate loss function 𝜙 as

in GAIL paper: 𝜓𝜙 (𝑐) =
∑
𝜌𝜋𝐸

𝑔𝜙 (𝑐 (𝑠, 𝑎)), where 𝑔𝜙 (𝑥) = −𝑥 +
𝜙 (−𝜙−1 (−𝑥)), 𝜙 is a strictly decreasing convex function (Proposi-

tion A.1 from Ho and Ermon [7]). Noted that in GAIL paper they

adopt cost function 𝑐 (𝑠, 𝑎) not reward function 𝑟 (𝑠, 𝑎), then we

write in this form:𝜓𝜙 (−𝑟 ) =
∑
𝜌𝜋𝐸

𝑔𝜙 (−𝑟 (𝑠, 𝑎)).
Then formulation of𝜓∗

𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 ) is represented as follows(see

proof in Appendix A.2):

𝜓∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 )

= −𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ) + max

_

∑︁
𝑠,𝑎

_(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎))𝑑 (𝑠, 𝑎)
(26)

Using the logistic loss𝜙 (𝛾) = log(1+𝑒−𝛾 ), the same form in GAIL

paper, then −𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ) = max

𝐷∈ (0,1)S×A

∑
𝑠,𝑎 𝜌𝜋 (𝑠, 𝑎) log𝐷 (𝑠, 𝑎) +

𝜌𝜋𝐸 (𝑠, 𝑎) log(1 − 𝐷 (𝑠, 𝑎)). Therefore, we obtain the final form of

𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 ) as follows:

𝜓∗ (𝜌𝜋 − 𝜌𝜋𝐸 ) = max

𝐷∈ (0,1)S×A
_

∑︁
𝑠,𝑎

𝜌𝜋 (𝑠, 𝑎) log𝐷 (𝑠, 𝑎)+

𝜌𝜋𝐸 (𝑠, 𝑎) log(1 − 𝐷 (𝑠, 𝑎)) + _(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎))𝑑 (𝑠, 𝑎)
= max

𝐷∈ (0,1)S×A
_

E𝜋 [log𝐷 (𝑠, 𝑎)] + E𝜋𝐸 [log(1 − 𝐷 (𝑠, 𝑎))]

+ _(E𝜋 [𝑑 (𝑠, 𝑎)] − E𝜋𝐸 [𝑑 (𝑠, 𝑎)])

(27)

Therefore, we prove Theorem 1 and the objective function of

cost-constrained imitation learning is Eq.(6).

5 EXPERIMENTS
In this section, we compare the performance of our approach, CCIL

in comparison to leading approaches for imitation learning, GAIL

[7] and Behavioral Cloning (BC) [3]. This is to illustrate that a

new approach is needed to mimic expert behavior when there are

cost constraints in play. As we show, GAIL and BC can extensively

violate the cost constraints.

5.1 Setup
Environments. We chose MuJoCo [21] due to its comprehensive

collection of continuous control tasks, such as Ant,Walker2d, Swim-

mer, and Hopper, commonly used to evaluate Reinforcement Learn-

ing (RL) and Imitation Learning (IL) algorithms. Since existing

environments do not have any cost constraints, we artificially in-

troduced constraints on certain features of the state space:

• We imposed the speed limit as a cost indicator for the Swimmer,

Walker2d, and Ant environments. If the speed/velocity of a

performed action exceeds 1, the cost is denoted as 1; otherwise,

we denote the cost as 0. Additionally, we utilized the default

MuJoco environment settings as the reward function for these

three environments.

• For the Hopper environment, we use the control cost as the cost

indicator, penalizing the hopper for actions that are too large.

If the control cost of a performed action exceeds 0.001, the cost

is 1. The Hopper reward function consists of two parts: healthy

reward and forward reward. Every time step that the hopper

remained healthy, it received a fixed value ’healthy reward’, and

a ’foward reward’ is also given for hopping forward.

The expert trajectories were generated by solving a forward-

constrained RL problem, and the statistics of these trajectories are

summarized in the last column of Table 1. We generated 10 expert

trajectories for each environment.

Baselines and Codes. In order to evaluate the performance of our

algorithm, we performed a comparison with two popular methods,

namely Generative Adversarial Imitation Learning (GAIL) and Be-

havior Cloning (BC). It is worth noting that neither of these two

methods considers cost constraints in their approaches. In the case

of Behavioral Cloning, the expert trajectories dataset, which con-

sists of state-action pairs, was divided into a 70% training data set

and a 30% validation data set. The policy was then trained using

supervised learning techniques. On the other hand, in the GAIL

method, the policy network, value network, and discriminator net-

work all employ the same architectures, comprising two hidden
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Figure 1: Performance over the training for GAIL, BC, and our approach (CCIL) all trained over 5 random seeds. The x-axes
indicate the number of iterations, each iteration consists of 2000 timesteps interacting with the environment, and the y-axes
indicate the performance of the agent, including average rewards/costs with standard deviations.

Environment BC GAIL CCIL Expert

Swimmer-v3

Reward 93.87±18.0 103.66±21.0 115.68± 4.0 122.41±2.41
Cost 79.52 ± 18.95 219.24±114.73 78.97 ±6.32 80.10±3.78

Walker2d-v3

Reward 835.52±72.0 2065.97±30.00 2043.46±20.0 2065.71± 21.86

Cost 126.06 ± 13.54 234.16±11.32 198.99 ±4.15 201.1±7.48

Ant-v3

Reward -1072.5±336.0 1403.35±180.00 966.31±432.0 1895.15±57.81
Cost 147.64 ± 15.99 530.75±47.78 485.08 ±32.06 519.9±11.28

Hopper-v3

Reward 54.36±16.0 3456.06±12.0 3393.90±85.0 3472.90±1.16
Cost 30.46 ± 5.23 601.44±92.29 486.85 ±26.33 493.50±5.0

Table 1: Reward & Cost (mean ± std) an of best policy trained by GAIL, BC, and our approach (CCIL) in different MuJoCo games.
The last column is the statistics of expert trajectories. In each column, we bold the best reward performance over all algorithms
(higher is better), and bold the cost which is below the expert cost.

layers of 100 units each, with tanh nonlinearities being utilized in

the layers.

Implementation. We employ a neural network architecture con-

sistent with the one utilized in the GAIL method. However, our

approach includes adding a cost value network and a Lagrangian

penalty term, denoted by _, which distinguishes our method from

the GAIL method. The policy, value, and cost value network are

optimized through gradient descent with the Adam optimizer [9].

The initial value of _ is set to 0.01 and also optimized using the

Adam optimizer. We ran each algorithm for 5 different random

seeds. The algorithms ran for 2000 time steps during each iteration,

and the episode’s total true reward and cost were recorded. The

implementation of all codes was based on the OpenAI Baselines

library [4].



5.2 Results
In order to assess the effectiveness of each algorithm, we used aver-

age episode true reward and average episode cost at each iteration

as an evaluation. Here are the key observations from Figure 1:

• Even though BC also does not consider cost constraints, the

cost of the policy obtained was generally lower than that of the

expert cost. However, the reward obtained was well below the

expert reward, except for the Swimmer environment.

• On the other hand, the GAIL method, which also neglects cost

constraints, resulted in a scenario where the reward during the

training process approached the expert reward. However, the

cost was almost always higher than the expert cost.

• In contrast, our proposedmethod consistentlymaintained episode

costs below the expert cost (except for the Swimmer environ-

ment, where it violated expert cost in initial episodes). Also, it

achieved a true reward as close as possible to the expert reward.

Table 1 illustrates the performance of the optimal policy of all

algorithms, which highlights that our proposed method almost

achieved the highest reward while keeping all costs below the

expert cost. The GAIL and BC methods fail to consider the cost

constraints, which results in costs that exceed the expert cost for

GAIL and low rewards for BC. Compared to these two methods, our

method has a superior cost and reward optimization performance.

6 CONCLUSION
In this study, we address a novel challenge of solving the imita-

tion learning problem within cost-constrained environments. To

tackle this issue, we propose the Cost Constrained Imitation Learn-

ing method, which is both scalable and theoretically sound. We

provide comprehensive theoretical justification for the objective

utilized to handle imitation in cost-constrained environments. Our

experiments demonstrate that our method can effectively imitate

expert behavior while satisfying cost constraints, compared to other

imitation learning methods that do not consider cost constraints.
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A PROOFS
A.1 Prove concavity of 𝐿
𝐿(·, (𝑟, _)) is concave for all (𝑟, _).

Proof. We known that𝜓 (𝑟 ) is concave, suppose 𝛼 ∈ [0, 1].
𝐿(·, (𝛼𝑟1 + (1 − 𝛼)𝑟2, 𝛼_1 + (1 − 𝛼)_2)) = −𝐻 (𝜌)+
𝜓 (𝛼𝑟1 + (1 − 𝛼)𝑟2)+∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) [𝑑 (𝛼_1 + (1 − 𝛼)_2) − (𝛼𝑟1 + (1 − 𝛼)𝑟2)]

≥ 𝛼𝜓 (𝑟1) + (1 − 𝛼)𝜓 (𝑟2) + 𝛼
∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) (_1𝑑 − 𝑟1)

+ (1 − 𝛼)
∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) (_2𝑑 − 𝑟2)

(28)

Therefore, 𝐿(·, (𝛼𝑟1 + (1−𝛼)𝑟2, 𝛼_1 + (1−𝛼)_2)) ≥ 𝐿(·, (𝛼𝑟1, 𝛼_1) +
𝐿(·, ((1 − 𝛼)𝑟2, (1 − 𝛼)_2)), 𝐿(·, (𝑟, _)) is concave for all (𝑟, _). □

A.2 Proof of𝜓 ∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 )

We deduce the form of𝜓∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 ) as:

𝜓∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 ) =

− 𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ) + max

_
_
∑︁
𝑠,𝑎

(𝜌𝜋 (𝑠, 𝑎) − 𝜌𝜋𝐸 (𝑠, 𝑎))𝑑 (𝑠, 𝑎)
(29)

We will simplify notation by using the symbols 𝜌𝜋 , 𝜌𝜋𝐸 , 𝑟 , and 𝑑 to

represent 𝜌𝜋 (𝑠, 𝑎),𝜌𝜋𝐸 (𝑠, 𝑎),𝑟 (𝑠, 𝑎) and 𝑑 (𝑠, 𝑎), respectively.

𝜓∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 ) = max

𝑟 ∈R
_

∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) (_𝑑 − 𝑟 ) −𝜓𝜙 (−𝑟 )

= max

𝑟 ∈R
_

∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) (_𝑑 − 𝑟 ) −
∑︁
𝑠,𝑎

𝜌𝜋𝐸𝑔𝜙 (−𝑟 )

= max

𝑟 ∈R

∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 ) (−𝑟 ) −
∑︁
𝑠,𝑎

𝜌𝜋𝐸 (𝑟 + 𝜙 (−𝜙−1 (𝑟 )))

+ max

_

∑︁
𝑠,𝑎

_(𝜌𝜋 − 𝜌𝜋𝐸 )𝑑

= max

𝑟 ∈R

∑︁
𝑠,𝑎

𝜌𝜋 (−𝑟 ) −
∑︁
𝑠,𝑎

𝜌𝜋𝐸𝜙 (−𝜙−1 (𝑟 ))

+ max

_

∑︁
𝑠,𝑎

_(𝜌𝜋 − 𝜌𝜋𝐸 )𝑑

(30)

Then we make the change of variables 𝑟 → 𝜙 (𝛾), the above

equation becomes:

𝜓∗
𝜙
(𝜌𝜋 − 𝜌𝜋𝐸 ) =∑︁

𝑠,𝑎

max

𝛾 ∈R
𝜌𝜋 (−𝜙 (𝛾)) − 𝜌𝜋𝐸𝜙 (−𝛾) + max

_
_
∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 )𝑑

= −𝑅𝜙 (𝜌𝜋 , 𝜌𝜋𝐸 ) + max

_
_
∑︁
𝑠,𝑎

(𝜌𝜋 − 𝜌𝜋𝐸 )𝑑

(31)
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