
Distributed Fault Detection For Multi-Agent Systems Based On
Vertebrate Foraging

Sebastian Schmid
Friedrich-Alexander-Universität Erlangen-Nürnberg

Nuremberg, Germany
sebastian.schmid@fau.de

Andreas Harth
Friedrich-Alexander-Universität Erlangen-Nürnberg

Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits
Nuremberg, Germany

andreas.harth@iis.fraunhofer.de

ABSTRACT
We present our distributed algorithm to detect malfunctioning
units in multi-agent groups based on how social vertebrates, like
chimpanzees, forage in groups for food. Agents with our algorithm
use only the cooperation’s outcome and limited communication
range to form adaptive groups for a given task and to identify a
malfunctioning member. We evaluate our algorithm with simulated
experiments in several setups where distributed agents have to form
groups to achieve a given task. One agent of the agent population is
malfunctioning and shall be identified. We measure the time for the
agent population to form successful groups as well as the detection
rate of the malfunctioning member. We conclude that our algorithm
can detect the error on average with 98% in our scenarios.

KEYWORDS
Distributed Fault Detection, Adaption, Resilience, Stigmergy

1 INTRODUCTION
Distributed agent-based systems offer scalability, graceful degra-
dation, and adaptivity and do not need a central communication
medium [5]. Agent-based systems, in form of autonomousmachines,
are already used in the industrial context because of their adaptiv-
ity and resilience e.g. for manufacturing or transportation [25]. In
terms of scalability, multiple agents may combine their power to
fulfill a shared task, e.g. lifting a heavy box together, where we say
that cooperation among agents happens. Jennings [15] defines such
collective structures of agents as subsystems and "nothing more
than a team of components working together to achieve a collective
goal". Such cooperations can also be solved in a distributed fashion
with partial global planning [8].

Cooperation in industrial scenarios between several agents of a
multi-agent system offers performances that orient on the actual
problem according to the possibilities of the agents, as only as
many resources are used as needed [9]. But to achieve the promised
performance of cooperation in form of groups, all involved agents
have to be able to participate without any excessive performance
loss, or else the cooperating group cannot achieve the expected
outcome. Wear and internal faults may lead to performance loss as
natural processes over time, which threatens the performance of
the agent population system if its parts do not work as intended.

To detect failing agents, the literature favors time-intensive, reg-
ular checks or omniscient systems that evaluate the status of all
agents [24], but such centralized systems suffer from the heavy
computational load with more agents to evaluate, require detailed

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

measures and models, and are prone to single points of failure
[4, 5]. Such solutions contradict the original idea of distributed, au-
tonomous agents, which raises the question: how can agents detect
malfunctioning members in a distributed fashion when cooperating
on tasks?

Three main points make the detection of malfunctioning agents
difficult if the distributed aspects of the agent-based system shall
be preserved:

(1) Fixed assumptions over the agent population have to be re-
duced such that agents are independent of each other and
the population is flexible to be increased or reduced. When
agents use only their own, local observations to find mal-
functioning agents, agents avoid relying on pre-shared, fixed
data and use their own judgment.

(2) The assumption of immediate availability to communicate
with arbitrary agents via a network for information exchange
at will is a fallacy [27]. We consider restricted, local com-
munication for agents where only subsets of agents may
be reached, but others not. This avoids the requirement to
communicate with all agents.

(3) Malfunctioning agents shall be identifiable for other agents.
To avoid a blackboard-like, centralized directory, agents
themselves shall hold and expose information on their pos-
sible failure. These marks act as indirect communication,
called stigmergy [13]. Stigmergy gives scalability and re-
silience: every agent saves only its own information. Even if
the population changes, no additional memory is needed to
save other agents’ performance.

We argue that it is important to avoid centralized assumptions
and knowledge over the agent population as these would defy the
whole purpose of a distributed agent-based systems [15]. We avoid
the usage of pre-calculated models that would tell agents exactly
how particular members should behave, thus we put an emphasis
on using only observations of the outcome of group cooperation.
Instead, we used nature as inspiration and implemented an algo-
rithm for distributed agents that fulfills the demands from above:
the food foraging of social vertebrates e.g. chimpanzees [3]. Like
animals that group together to forage efficiently and reshape their
ties to other members of their population to maximize survival
chances, similarly, our agents shall maximize the chances to fulfill
their task.

We illustrate the problem by introducing the running example
of a shop floor, where groups of transporter units need to transport
a heavy steel motor housing together.

Example 1.1. MH1, a motor housing weighing 300kg, needs to be
transported. Unit5, a transporter unit nearby, has the task to move

https://alaworkshop2023.github.io/

Unit5

Unit7

Unit9

move
MH1

Group1

hunt
mammal

Foraging group

Figure 1: Chimpanzees form a group to hunt a mammal (a
resource that cannot be accessed by an individual), and like
social vertebrates the transportation units of Ex. 1.1 have to
form a group to achieve the task of moving motor housing
MH1, which cannot be achieved alone. Chimpanzee and cow
image from TogoTV (© 2016 DBCLS TogoTV, CC-BY-4.0).

MH1 and is looking for other units for cooperation. Unit5 has a limited
communication range and contacts other units therein. Unit5 perceives
units Unit7, Unit9, and Unit13 inside the range and tries to form a
group via ties with other units. Unit5 asks Unit7, Unit9, and Unit13
if ties among them exist, and Unit7 and Unit13 confirm, such that
now Unit5, Unit7, and Unit13 form a group. The units assert each
other that according to their specifications, the group can lift exactly
300kg, which is sufficient to move MH1. Unit5, Unit7, and Unit13 meet
at MH1 and start to lift. But MH1 one does not move a bit! Unit5
cannot be sure if it malfunctioned or Unit7 or Unit13 as only the
outcome of the cooperation is visible: failure. By random decision,
Unit5 puts a mark of failure on Unit13 that this cooperation failed
and tries to form another group to solve the task, e.g. Group1 together
with Unit7 and Unit9. And indeed, over time more failure marks
appear on Unit13 from other attempts to lift motor housings - while
all other units formed groups to solve the respective tasks, every time
Unit13 was involved, the task failed. Marked by many other units as
malfunctioning, a human technician inspects Unit13 and sees that a
spring was broken which made moving the motor housing impossible.

Ex. 1.1 shows how units form a group and identify the malfunc-
tioning unit in a distributed fashion, as discussed above:

• Unit5 relies only on local observation, the failed outcome
of lifting MH1, to judge to outcome of Group1

• Unit5 uses local communication and interacts only with
units inside the limited communication range

• Unit5 leaves marks of failure as stigmergy at the other units
that failed to achieve the task. Here, the marks started to
accumulate at Unit13 over time

The parallel can be easily seen, if the three units that move a
motor housing of Ex. 1.1 are compared to three chimpanzees that
hunt a mammal, see Fig. 1: alone, each participant is not strong
enough, but as a group they are. Cantor and Farine describe the
foraging behavior of social vertebrates in [3] including further
influences like birth and death over generations. We extend and
adjust their model with a focus on distributed agents that want
to achieve their task over several groups and also detect specific
agents that are malfunctioning.

We investigate our approach by simulating a population of dis-
tributed agents on a shop floor, based on our use case, that shall
use our solution to find groups and identify a malfunctioning agent.
Furthermore, we restrict the communication among agents, and
use direct, limited communication to form groups among agents,
and stigmergy [14] (that is communication via placing information
in the environment) to pass information about the performance of
specific agents coming from observations. Finally, we measure the
success rate to detect the malfunctioning agent and the time for
agents to find suitable groups.

We summarize our contributions as follows:

• We present a distributed algorithm for agents to form coop-
erative groups on a given task and identify malfunctioning
agents, based on the foraging of vertebrates

• We evaluate the performance of our algorithm in several
simulated scenarios with a given task that has to be achieved
by groups of agents where a malfunctioning agent is present
that hinders the group formation

2 BACKGROUND AND RELATEDWORK
2.1 Vertebrate foraging
Cantor and Farine [3] model the emergence of foraging groups in
vertebrate societies. They analyze how groups between members
of a society evolve when cooperation is necessary to obtain food.
They state that groups tend to evolve in a direction that leads to the
optimum food supply for all participating members, where group
and individual shares are maximized, and resources used ideally.
Their model takes several animal-related specialties into account,
like mortality, birth, and kinship. We give the most important part
of their baseline model here: An agent population of size 𝑁 wants
to access a resource of size 𝑅 that cannot be accessed by individuals.
Ties can be created between agents which form the willingness
to forage together, and if the ties are symmetric, the chain leads
to a group [26]. All groups compete around access to 𝑅. Division
amongℎ groups is calculated by 𝑠𝑘 = 𝑅×(𝑛2

𝑘
/∑ℎ

𝑗=1 𝑛
2
𝑗
) as the group

share 𝑠 of group 𝑘 with 𝑛𝑘 members. An individual 𝑖’s share 𝑟𝑖 is
calculated by 𝑟𝑖 = 𝑠𝑘/𝑛𝑘 . The ties of 𝑖 are modified according to
𝑟𝑖 , building random new ties if 𝑟𝑖 > 1 during abundance, deleting
random old ties if 𝑟𝑖 < 1 during a shortage, or keeping all ties
for optimal outcome 𝑟𝑖 = 1. New ties among members may be
created by chance (0.01% per simulation cycle). Cantor and Farine
conclude that self-organization and specialization among members
lead quickly to a stable cooperative group of size 𝑅, a stepping stone
for more sophisticated processes like social learning.

2.2 Intelligent agents and model-based agents
We follow the structures of Russell and Norvig [23] for intelligent
agents. We use model-based agents (MBA) as agents that possess
internal states, called models, and memorize parts of their environ-
ment that cannot be perceived at the moment. Agents may update
their model as the world evolves. MBAs decide according to a set
of condition-action rules with the help of the model’s information
and their current perception. The extension to a goal-based agent
built on an MBA is straightforward when goals are defined that
describe situations that are desirable for the agent.

2.3 Stigmergy and indirect communication
Stigmergy is the use of asynchronous interaction and information
exchange between agents exclusively through changes in their
environment, but not directly with each other [14]. It is inspired by
the indirect communication of insects like termites [10]. Stigmergy
is the base for algorithms coming from ants [7] and has widespread
usage [28, 29]. The self-organization and coordination of agents are
discussed in e.g. [12]. Our agents use indirect communication to
talk about the performance of a third one, by attaching information
to the third agent. An agent can query this information without
the need to contact any of the other agents, but can just see how
the performance of an agent is judged and decide on this, which
leads to self-organized identification of malfunctioning agents.

2.4 Distributed fault detection and isolation
A succinct overview of the extensive literature on fault detection
and isolation can e.g. be found in [18]. Literature focuses mostly on
centralized approaches where all data can be freely evaluated to un-
cover faults in the overall system, which leads to outstanding results
with neural networks or model-based approaches [19]. However,
for distributed multi-agent systems, centralized approaches can be-
come infeasible [6]. Model-based fault detection for mobile agents
can lead to detailed detection and isolation of agents, but reliable,
valid physical models of agents and systems are needed, otherwise,
estimations have to be used [17]. Bossens et al. [2] discuss several
fault detection mechanisms focused on robotic teams.

Shames et al. [24] apply their approach for interconnected second-
order systems as an example of a multi-agent robot setting for syn-
chronized formation. They can successfully detect and isolate a
malfunctioning node, but as each node needs a separate observer
with a state to their neighbors, the approach puts a computational
burden on each of the nodes. Davoodi et al. [4] build a homo-
geneous multi-agent network and apply detector and controller
units that evaluate the system state in an observer-controller-based
way. Agents have a linear dynamical model they use to achieve
simultaneous consensus and fault detection, based on the resid-
ual. Despite the distributed nature of the approach, they rely on a
model evaluation and a connected network graph. Guo et al. [11]
propose algorithms based on communication and sensing to detect
faulty and malicious agents. Their approaches are based on the
local calculation of deviations and comparison with neighbors by
transmitting the agent’s own state and together with the neighbors’
states. Similarly, Boem et al. [1] rely on decentralized estimators
in a heterogeneous multi-agent system, where independent nodes
lead dependent nodes. Independent nodes do not communicate
with each other but can still detect faulty dependent agents by
estimation of fault and control input.

3 APPROACH AND REALIZATION
3.1 Assumptions for our approach
We base our algorithm on Cantor and Farine [3], but while they
study the accessibility of a single resource with equally working
agents, we modify the approach with the following assumptions:

• Not all agents are assumed to work perfectly in using the
resource but fail miserably. Agents cannot directly observe

which agent malfunctions but can measure the outcome of
their own group that tries to fulfill a shared task.

• All agents intend to fulfill a task 𝑅, which cannot be solved
alone. Agents have to form a group where each group tries
to get as many members such that 𝑅 is exactly fulfilled.

• Agents limit communication to close neighbors and only
extend their communication range if no group can be found.

3.2 Environment and agents
We give the definition of our setup and the individual components:

Definition 3.1 (Floor). The floor 𝐹 is a space of 𝑚 × 𝑛 floor
tiles that represent positions where units are located, where 𝐹 =

{𝑓(0,0) , ..., 𝑓(𝑚,𝑛) } is connected inMoore neighborhood by𝑁𝑀
𝑓(𝑥0,𝑦0)

=

{𝑓(𝑥,𝑦) ∈ 𝐹 : |𝑥 − 𝑥0 | ≤ 1, |𝑦 − 𝑦0 | ≤ 1}. The Euclidean distance
between 𝑓𝑎, 𝑓𝑏 ∈ 𝐹 is 𝑑 (𝑓𝑎, 𝑓𝑏).

Definition 3.2 (Artifacts). Artifacts 𝑈 are passive, reactive en-
tities that are used by agents as defined in [20]. Artifacts 𝑈 =

{𝑢1, ..., 𝑢𝑁 } are defined by the properties 𝑢𝑖 = ⟨𝑓 ∈ 𝐹, 𝑠𝑖𝑧𝑒 ∈
N+⟩, 𝑢𝑖 ∈ 𝑈 . We assume 𝑠𝑖𝑧𝑒 < 𝑅 for functioning agents such
that multiple agents are necessary to achieve 𝑅.

In our running example, artifacts are implemented by transport
units. The function of artifacts is given by groups of associated
agents (cf. Def. 3.3) in the environment as performTask (cf. Def. 3.4).

Definition 3.3 (Foraging Agent). We define our agents as proac-
tive components that make decisions on their own [20]. Agents
implement a perception-thought-action cycle to influence their en-
vironment, based on defined condition-action rules. We define an
agent 𝑎 ∈ A as 𝑎 = ⟨𝑎0,M, 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒, 𝑎𝑝𝑝𝑙,𝑢𝑝𝑑𝑎𝑡𝑒, 𝑎𝑐𝑡⟩ with

𝑎0, the initial agent state,

M = ⟨𝑢 ∈ 𝑈 , 𝑡𝑖𝑒𝑠 ⊂ A, 𝑅 ∈ N+, 𝑓 𝑎𝑢𝑙𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟, 𝑐 ∈ R⟩,
𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 : N ×M → M,N = {𝑎 ∈ A \ 𝑡𝑖𝑒𝑠 |𝑑 (𝑓𝑢𝑎 , 𝑓𝑢) ≤ 𝑐},

𝑎𝑝𝑝𝑙 : M → M, derivation of statemens,

𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑂 ×M → M, apply operations to own model,

𝑎𝑐𝑡 : 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ×M → M ×𝑂 , update model and perform action,

whereM is the agent’s model holding relations to the controlled
unit 𝑢, the ties among agents, its 𝑓 𝑎𝑢𝑙𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 , and the commu-
nication radius 𝑐 . 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 is the observed performance of groups
according to the agent’s ties (cf. Def. 3.4). Based on the communi-
cation radius, perceive uses reachable, neighboring agents to form
new ties act realizes updates to the agent’s own model (e.g. to
change the communication range), and actions to influence agents
in the 𝑡𝑖𝑒𝑠 via operations 𝑂 , where we use the single operation
𝑂 = {𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐹𝑎𝑢𝑙𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 }. Cooperation among agents can only
be formed by reciprocal, symmetric ties, where the connected com-
ponents of more than one agent define groups, as in [3].

Definition 3.4 (Environment). We define the environment 𝐸 =

⟨𝑠𝑡𝑎𝑡𝑒0, 𝑆𝑡𝑎𝑡𝑒, 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑇𝑎𝑠𝑘⟩ as all scenario components with

𝑠𝑡𝑎𝑡𝑒0, the environment’s initial state,

𝑆𝑡𝑎𝑡𝑒 = 𝐹 × A ×𝑈 , the set of all possible component states,

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑇𝑎𝑠𝑘 : 𝑈 × A → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒, the groups’ performances.

Goal state is R

[Yes]

[No]
Group found?

Inital ties with pini

Calculate groups via
symmetric ties

Observe sk

[= 1.0, Task fulfilled][>1.0, Task not yet fulfilled]

[<1.0, Task failed]

sk

Reset failureCounter

Reduce
communication range

Increase
communication range

pi for ties with agents
in range

Select random tie

Increase
failureCounter and

remove

Increase
communication range

Pick new agent and
form tie

[No]

pn for random ties

[Yes] Groups
found?

A

B

D

C
Enact plan for R

Figure 2: UML activity diagram of the agent’s behavior with
the presented fault detection algorithm

performTask returns the outcome of a group as defined by the agents
inA and their ties. Agents are situated in an environment after [23]
that is partially observable (relevant information might be missed),
dynamic (it may change while agents deliberate), and discrete (in
terms of time and states).

3.3 Cooperation of agents
We follow Panzarasa et al.’s [21] definition of agent cooperation,
consisting of:

• the practical basis: what an agent wants to achieve
• the practical problem: what to do to fulfill an intention

• the recognition of the potential for cooperation: the identi-
fication by an agent of an opportunity to collaborate with
one or more agents on the resolution of a practical problem

Using [21] as a starting point to detect and understand how to
collaborate, we integrate our vertebrate algorithm: obviously, an
agent intends to achieve a given state, e.g. elevating the defined
motor housingMH1 by 50cm. The practical basis is that the intended
state is not given and pre-conditions may apply, e.g. that the motor
housing requires 𝑅 and a single unit is insufficient as its 𝑠𝑖𝑧𝑒 < 𝑅 (cf.
Def.3.3). The practical problem is, in our use case, to use local ties
to find agents for a group to achieve 𝑅 and avoid malfunctioning
ones.

The recognition to cooperate on a given problem basis from
[21, 30] gives a group’s cooperation as the ability of a group 𝑔𝑖 to
achieve a state 𝑅 iff there is some action sequence 𝑒𝑖 that is a plan
for 𝑔𝑖 either to achieve 𝑅 directly or to bring about some necessary
conditions to achieve 𝑅. Panzarasa et al. [21] give the formalization
of the notion of group ability as: ∀𝑔𝑖∀𝑡𝑖 J-CAN(𝑔𝑖 , 𝑅) (𝑡𝑖) ≡
∃𝑒𝑖 s.t. plan(𝑔𝑖 , 𝑒𝑖 , 𝑅) (𝑡𝑖) ∨ plan(𝑔𝑖 , 𝑒𝑖 , J-CAN (𝑔𝑖 , 𝑅)) (𝑡𝑖) where
J-CAN denotes the joint ability of multiple agents, and 𝑡𝑖 denotes
time. We see our algorithm as help for agents to a) determine how
to get to a notion of cooperation that is how to find local agents
that allow J-CAN over ties, b) how to recover if J-CAN is not given
despite the best effort of all agents, and c) detect and mark which
agents malfunction in a decentralized manner over time.

3.4 Implementation of agent behaviour
We explain the steps of our algorithm along Fig. 2 and present
the application in examples, based on our running example of Ex.
1.1. The examples below are given from the perspective of Agent5
which controls Unit5.

Initialization (A). As part of the initial state 𝑎0 (cf. Def. 3.3), all
𝑁 agents have the goal state 𝑅 that needs the help of other agents
to be reached. 𝑅 is initially known, e.g. because it is programmed
into the agent as specialized behavior or received from an outside
source. Agents are initialized with 𝑝𝑖𝑛𝑖 to form initial and new ties
with agents within their units’ communication range. Agents have
no further knowledge of the remaining agent population.

Example 3.1. Fig. 3: Agent5 is initialized with the task to lift MH1,
a motor housing. Lifting MH1 is a task of size 𝑅 = 3. Agent5 perceives
all other units and their agents in Unit5’s communication range and
thus sees Unit7, Unit9, and Unit13 nearby. With 𝑝𝑖𝑛𝑖 , Agent5 tries to
form a unidirectional tie to the units’ respective Agent7, Agent9, and
Agent13 - the result is a tie with Agent7 and Agent9.

Group building (B). Agents want to reach the goal state 𝑅 and
recognize that they have to be supported by others. Of course,
this involves planning ahead on how to reach 𝑅. We assume that
this planning may be solved via the given plan libraries. Based
on formed plans, agents determine connected components in a
depth-first-search (DFS) among their ties to detect symmetric ones,
that is if both agents possess a unidirectional tie to each other, and
calculate suitable groups (see 𝑎𝑝𝑝𝑙 , Def. 3.3). All agents that are
connected together via symmetrical ties form a single group that
cooperates together for 𝑅.

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

com range Unit 5

Figure 3: Initialization: Agent5 formed unidirectional ties to
Agent 7 and 9, inside of Unit5’s communication range (see
Ex. 3.1)

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

Group1

Figure 4: Group forming: Agents 5 and 9 have symmetrical
ties and form Group1 (see Ex. 3.2)

Agents without a group will successively increase their commu-
nication range to contact randomly any other perceivable agent
that is not already in their ties and actively try to form a tie without
a probability attached.

Example 3.2. Fig. 4: Agent5 concludes that it needs help for𝑅. Agent5
evaluates its ties and asks Agent7 and Agent9, if they have unidirec-
tional ties to Agent5. Agent7 has none, but Agent9 does. Agent5 and
Agent9 form Group1 as they have a symmetrical tie.

Task result (C). After enacting their plans, agents observe the
outcome of their group’s cooperation as defined by the agents’
ties (see 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑇𝑎𝑠𝑘 , Def. 3.4), but do not have any knowledge
about the individual units’ size. Agents can observe if the group
failed if the group needs more agents to even attempt the task, or
if the group failed, where agents use the outcome 𝑠𝑘 for decision
(see 𝑎𝑐𝑡 , Def. 3.3). In an application, this can e.g. be realized by
observing if the motor housing is lifted or not, although enough
units participate.

• 𝑠𝑘 = 1.0, ideal outcome. faultCounter is reset to zero for all
group members. The communication range is successively
decreased, as a suitable group was found within reach and
no further search has to be conducted.

• 𝑠𝑘 > 1.0, partners missing. Agents increase the communica-
tion radius and try to build a new unidirectional tie. Agents
first try to get an agent with faultCounter=0 (as it promises

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

Group1

n5=1

n9=1

Figure 5: Task Result: Agents 5 and 9 of Group1 cannot per-
form task 𝑅 yet (see Ex. 3.3)

a functioning group). If none are available, they pick a ran-
dom agent 𝑖 according to the probability

𝑝𝑖 =
faultCounter𝑖∑ℎ
𝑗=1 faultCounter𝑗

among the ℎ agents in range (via 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 , Def. 3.3). Note
that 𝑖 may already have a tie with the initiating agent.

• 𝑠𝑘 < 1.0, unsuccessful cooperation. Every group member
chooses one random tie, increases this agent’s faultCounter
by one, and then deletes its unidirectional tie to it (see 𝑎𝑐𝑡 ,
Def. 3.3).

We modify the equations of [3] such that each group 𝑘 tries to
get a task outcome of 𝑠𝑘 = 1.0 with 𝑠𝑘 = 𝑅/(∑ℎ

𝑗=1 𝑠𝑖𝑧𝑒 𝑗) by using
its respective ℎ units, reflected by 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑇𝑎𝑠𝑘 (Def. 3.4). A group
with a task 𝑅 will thus tend in the trivial case towards 𝑅 members
when all units have 𝑠𝑖𝑧𝑒 𝑗 = 1.0 to get to the ideal usage of 𝑠𝑘 = 1.0.

Example 3.3. Fig. 5: Group1, consisting of Agent5 and Agent9, wants
Unit5 and Unit9 to attempt the task of 𝑅 = 3 to lift the motor housing.
Unit5 and Unit9 have 𝑛5 = 𝑛9 = 1, giving 𝑠1 = 𝑅/(𝑛5 + 𝑛9) = 3/2 =
1.5. Agent5 and Agent9 observe with 𝑠1 > 1.0 that the power of their
units is not sufficient. With an increased communication range, both
agents look for a new partner.

Example 3.4. Fig. 6: In an alternative attempt, Group1 consists of
Agent5, Agent9, and Agent13, and with the task of 𝑅 = 3 from Ex. 3.3.
With Unit13’s 𝑛13 = 100, the outcome is 𝑠1 = 3/102 = 0.03. Group1
observes that 𝑠1 < 1.0 gives an unsuccessful outcome for the task 𝑅.
Agents 5 and 9 choose randomly Agent13 and penalize it by increasing
its faultCounter by one and deleting their ties, while Agent13 chose
to penalize Agent5 in the same way. Agent13’s faultCounter is now
two, Agent5’s faultCounter is one, and Agent9’s faultCounter is
still zero.

Example 3.5. Fig. 7: After finding a new partner via symmetric ties,
Group1 consists of Agent5, Agent9, and Agent7, and attempts the task
of 𝑅 = 3 from Ex. 3.3 again. With Unit7’s 𝑛7 = 1, the outcome is
𝑠1 = 3/3 = 1.0. Group1 observes that 𝑠1 = 1.0 gives an ideal outcome.

New ties (D). All agents have a chance 𝑝𝑛 = 0.01% (via 𝑎0, cf. Def.
3.3), as in [3], to form a random new tie with another random agent
inside the communications range.

Example 3.6. Fig. 8: Agent5 tries to form a new tie after the task
outcome. Inside Unit5’s communication range are still Agents7, 9, and

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

Group1

n5=1

n9=1

1
n13=100

2

Figure 6: Task Result: Agents 5, 9 and 13 of Group1 fail to
perform task 𝑅. Agent13 receives two faultCounters as a
penalty, Agent5 one. Agents 5 and 9 remove their ties to
Agent13. Note that Agent5’s communication range increased
(see Ex. 3.4)

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

Group1
n9=1

n7=1

n5=1

Figure 7: Task Result: Agents 5, 9, and 7 form Group 1 and
successfully cooperate to achieve the task 𝑅 (see Ex. 3.5)

0 1 2 3

0

1

Y
X 4 5

2

3

5

9

13

7
2

Figure 8: New ties: Agent5 forms a new random tie with
agents inside the communication range, here Agent13 (see
Ex. 3.6)

13. Here, Agent5 picks randomly Agent13 from the agents inside the
range for a new unidirectional tie.

The process is finished, when all agents found successful groups
for their units where each group𝑘 has optimal usage 𝑠𝑘 = 1.0within
tolerances. After that, successful agents have no need to search
for further units and cease the process. The remaining singletons
will still try to find suitable groups, but will not find a suitable
group, as no functioning agent is willing to form groups. From
these singletons, the agent with the highest faultCounter is the
one that is regarded as malfunctioning.

4 EXPERIMENT SETUP AND RESULTS
4.1 Experiment setup and measures
Agent types and experimentation setup were implemented with
GAMA.1 All code and measurements are available online.2 The ex-
periment setup contains a quadratic shop floor with a side length of
250m and round units with a diameter of 1m. Each unit is controlled
by a distinct agent as an artifact. The communication range can be
changed in 0.1m steps. We used four setups of starting positions:

• checkerboard style with 50 units (setup A)
• diagonal with 50 units (setup B)
• random setup with 50 units (setup C50)
• random setup with 105 units (setup C105)

We varied the initial communication range with 𝑐𝑜𝑚 = {0m, 10m,
25m, 50m}, which influences the possible initial ties an agent can
have. We fixed the probability to build random new ties with agents
in range of 𝑝𝑛 = 0.05% per simulation cycle, the probability to
create initial ties to 𝑝𝑖𝑛𝑖 = 5%, and 𝑅 = 3. Agents had no further
knowledge about other units or agents. All units, but one unit, were
initialized with 𝑠𝑖𝑧𝑒 = 1 as functioning, and one unit was initialized
with 𝑠𝑖𝑧𝑒 = 10000 as a faulty unit.

We measure the cycles needed until the algorithm terminates
(time to finish, TTF) as well as the average communication range
and amount of unidirectional ties of each agent at the end of the
simulation. We evaluated the fault detection by comparison of all
units: at the moment when the number of expected groups N/R
was found across the population, we evaluated the experiment in
terms of TTF, range, ties, and which unit had the highest amount of
faultCounters, which was then interpreted as the identified faulty
unit. If the identified unit was the same as the unit we initialized ear-
lier as a faulty unit, the error was detected successfully. Obviously,
the evaluation and stopping of the algorithm for measurement is a
process that we as observers centrally controlled, but which had
no influence on the agent’s decentralized and distributed execution
of our algorithm.

4.2 Results of our experiments
Figure 9 shows our results across setups and 100 repetitions for
each scenario. Tab. 1 gives exemplary results of the measures for
the checkerboard setup with varied communication ranges. Setups
A, B, and C50 have very similar behavior with an error detection of
≥ 93%, setup C105 of ≥ 88%, while forming the expected groups for
task size 𝑅. By reducing the communication range and resetting the
ties, agents, and units end up with 6-9 ties to their neighbors and a
communication range of 35-45m among all scenarios, which leads
to a stable separation of the population into groups by excluding
possible disruptive influences after group formation.

The variation of the initial communication range leads to diverse
results: while setups A, B, and C50 tends to finish in about after
2500-3200 cyc, runs with a wider communication range leads to
worse results, e.g. for 𝑇𝑇𝐹𝐴 = 2986𝑐𝑦𝑐 or 𝑇𝑇𝐹𝐶50 = 3200𝑐𝑦𝑐 . We
observe similar results for setup C105, where 𝑇𝑇𝐹 = 4313𝑐𝑦𝑐 at
10m as the best result, compared to 𝑇𝑇𝐹 = 12257𝑐𝑦𝑐 at 50m as
the worst - a factor about 3 worse. A wider communication range,

1https://gama-platform.github.io/
2https://github.com/wintechis/vertebrate-fault-detection

https://gama-platform.github.io/
https://github.com/wintechis/vertebrate-fault-detection

2500 5000 7500
5

10 Initial com range = 0

2000 4000 6000 8000
5

10

Initial com range = 10

2500 5000 7500
5

10
Initial com range = 25

0 5000 10000

5

10 Initial com range = 50

2000 4000 6000
5

10

2000 4000 6000 8000
5.0

7.5

2000 4000 6000

5

10

5000 10000

5

10

2500 5000 7500

5.0

7.5

2500 5000 7500 10000

5.0

7.5

2500 5000 7500
2.5
5.0
7.5

0 2500 5000 7500

5.0

7.5

5000 1000015000
5

10

5000 10000 15000
5

10

15

0 10000 20000
5

10
15

0 20000 40000

10

15

Time to finish (in cyc)

Ch
ec

ke
r

Fr
ee

 5
0

Di
ag

on
al

Fr
ee

 1
05

Av
er

ag
e

am
ou

nt
 o

f t
ie

s

Error detected Error not detected Average

Figure 9: Measures of all repetitions varied across the scenarios showing the TTF and average amount of ties at the end of the
run. Each line shows one scenario, and each column a different initial communication range. Data points show if a run has
correctly detected the malfunctioning agent (circle) or not (cross). Small circles and crosses show if a run finished with more
than the average amount of ties of the respective scenario. A diamond marks the overall average of the respective scenario.

paired with the higher possibility to form ties at the beginning
of the algorithm, leads to more unidirectional ties for agents and
hence more possible members in groups. The result is a longer run
time for group formation and thus worse TTFs.

In terms of communication range, the results have to be inter-
preted carefully: units in groups reduce the range successively, so
the range will tend towards 0 as units need the range only for the
detection of other units. Whenever a group is successfully formed
the unit has no need to detect other units. The faulty unit on the
other hand tends towards the maximal range because as many
other units as possible shall be detected. Thus, the extremes of the
individual communication ranges have to be considered as well.

With an average detection rate of 98.06% from all setups, while
forming cooperative groups, avoiding fixed assumptions, and us-
ing indirect communication, we see the usage of our algorithm as
beneficial for distributed fault detection.

5 DISCUSSION
We took inspiration from the domain of biology and used the al-
gorithm of [3] that describes the foraging of animals in a group,
Cantor and Farine give specialized foraging groups of primates
and birds as an example. The conditions for foraging animals are
similar (no global view and tend towards the maximization of group
share) to the usage of multiple agents in cooperation for a specific
task. Where Cantor and Farine adjust the formation of their groups

with respect to the ideal usage of an animal group for a given food
resource including birth and death, we adjust the algorithm by
introducing indirect communication, a reflection on task outcomes
with respect to malfunction and respective marking, and the for-
mation of stable sub-groups (instead of population wide groups as
in [3]).

We are aware that our use case of group building and failure
detection, combined with our assumptions, can also be solved by
centralized fault detection algorithms as well. There is no limitation
that a statistical approach could come to a similar result as we do,
with better performance, e.g. a centralized algorithm that controls
all units, knows that groups of 𝑅 shall be created, and may assume
size= 1.0 for all agents. This approach could easily choose ran-
domly 𝑅 agents from the population and observe the outcome, until
it picks groups that fail - the agents from this group would then be
recombined randomly with others in succinct steps, until only one
agent is left, which is the malfunctioning one (if we assume N/R
works out evenly and only one agent is left).

Nevertheless, beware of the strong assumptions as a centralized
algorithm needs to know all units for communication and to pick
units for groups, observe all outcomes, save the results in a central-
ized storage, and evaluate the results. Two disadvantages can easily
be seen for this (admittedly well-performing) centralized algorithm,
that is increasing computational and storage needs with the number
of agents, and a strong connection (for availability and knowledge)
to all units [5]. Thus, we emphasize that our algorithm runs in a

TTF (cycles) Ties Com range (meters) Detection (%)
init com avg median stdev avg median stdev avg median stdev avg

0m 2839.14 2508.5 1362.402 6.77 6.83 1.332 44.1048 38.38 21.36 93
10m 2777.94 2310.0 1455.939 6.47 6.39 1.451 41.8133 37.44 21.44 99
25m 2659.96 2179.0 1436.042 6.78 6.72 1.290 45.0069 39.61 16.11 97
50m 2986.72 2490.5 1959.683 6.56 6.63 1.332 37.6962 37.35 13.54 99
Table 1: Samples from measures of the checkerboard scenario with varied communication range

distributed and decentralized fashion and avoids the necessity of
a global network for the population, and may scale through the
use of restricted communication and stigmergy. Both can be easily
extended for applications with decentralized task allocation [16] or
relying on trust [22]. Two further points reduce the computational
load on the participants, and give scalability:

1) Agents do not have to calculate tedious models to come to
a residue or threshold for fault detection (as pointed out e.g by
[6, 24]). Admittedly, our required detection of success is application
specific and might therefore also make use of models, but not with
a focus on agent performance. Where other approaches require
direct observation of individuals to detect deviations, our approach
requires only the group’s outcome. This is especially useful where
no such observation is per se possible, e.g. if four units try to carry
a heavy box, at least the units on opposite sides cannot directly
observe each other.

2) While the application of stigmergy can be challenging [31],
indirect communication leads to the scalability of our approach.
Agents expose their unit’s failure markers, such that other agents
read them directly, without the need to save others’ performances.
Thus, with an increasing amount of agents, the time to find suitable
groups will clearly rise as more options are available (cf. Sec. 3),
but not the needed memory for each agent. Still, synchronization
of read-write-operations can become a problem with increasing
group size when multiple agents try to increase the performance
marker simultaneously, but locks may lead to respective solutions
[27].

We see our algorithm as a feature-based anomaly detection ap-
proach as it relies on the comparison of expected outcomes and
actual outcomes of cooperation in the respective agent’s environ-
ment [2]. While the comparison requires an understanding of a
"successful outcome" as compared to an "unsuccessful outcome"
to decide about the performance of a group, the notion of success
is tied strongly to the understanding of the task itself, which we
assume to be understood by the controlling agent.

6 LIMITATIONS
The application of our algorithm in its current state has limitations:
Agents have to measure the task fulfillment of units to decide on
the task outcome (cf. Sec. 5). For the calculation, we assume that
a malfunctioning agent has size > 𝑅 such that cooperation fails
miserablywith 𝑠𝑘 < 1. The values for size followCantor and Farine
[3] where the individual per capita share would be based on equal
distribution of a group’s foraging result. Hence, different sizes can
be seen as group members that require excessively more food such
that the outcome of the group foraging becomes unfeasible.

We tested our algorithm to detect one single malfunctioning
agent, which was done successfully (cf. Sec. 4). Still, we assume
that if several are present, the algorithm can be applied in a loop
among remaining agents that did not find groups for 𝑅 s.t. one after
another failing agent is detected. The remaining, functioning agents
with no mark of failure would be singletons and could possibly not
fulfill 𝑅 as there are not enough units.

Concerning the simulations, the validity of our results is limited
to the presented settings only, as additional factors may influence
the simulation outcome. We observe that the number of units and
their initial locations on the shop floor can of course favor or hinder
error detection and group building. Furthermore, simulations are by
nature simplified abstractions from reality and prone to statistical
fluctuations, especially when varying values for probabilities to
build groups. We address these concerns by using different setups to
measure the algorithm’s performance. We are confident our results
can be reproduced in similar settings.

7 CONCLUSION AND OUTLOOK
We present our algorithm that helps agents in multi-agent coopera-
tion to detect and isolate malfunctioning units. Our algorithm is
inspired by the behavior of vertebrates that form their groups based
on the outcome of food foraging. Similarly, our agents use our de-
centralized algorithm to decide on the outcome of their group and
how to adjust their relations, while detecting malfunctioning agents.
Positive and neutral outcomes enable group forming, while nega-
tive outcomes lead to penalization with failure markers. The use of
stigmergy and limited communication range enable the algorithm’s
distributed nature, independence of agents, and scalability.

Our experiments show that agents can efficiently identify the
malfunctioning agent with a 98% chance while still forming groups
for cooperation. We focus on the detection of a single, malfunc-
tioning agent, but in the future want to the history of groups into
account, which introduces the need to understand time. Further
ideas include e.g. spatial mobility for agents with a fixed small, local
communication range that move to find other group members.

All in all, we see the usage of our bio-inspired algorithm as
beneficial and efficient for group forming and the detection of
malfunctioning agents in a distributed manner.

ACKNOWLEDGMENTS
This work has been partially funded by the German FederalMinistry
of Education and Research through the MANDAT project (Grant
no. 16DTM107A).

REFERENCES
[1] Francesca Boem, Lorenzo Sabattini, and Cristian Secchi. 2016. Decentralized

fault diagnosis for heterogeneous multi-agent systems. In 2016 3rd Conference
on Control and Fault-Tolerant Systems (SysTol). 771–776. https://doi.org/10.1109/
SYSTOL.2016.7739841

[2] David M. Bossens, Sarvapali Ramchurn, and Danesh Tarapore. 2022. Resilient
Robot Teams: a Review Integrating Decentralised Control, Change-Detection,
and Learning. Current Robotics Reports 3, 3 (01 Sep 2022), 85–95. https://doi.org/
10.1007/s43154-022-00079-4

[3] Mauricio Cantor and Damien R. Farine. 2018. Simple foraging rules in competitive
environments can generate socially structured populations. Ecology and Evolution
8, 10 (2018), 4978–4991. https://doi.org/10.1002/ece3.4061

[4] Mohammadreza Davoodi, Nader Meskin, and Khashayar Khorasani. 2016. Simul-
taneous fault detection and consensus control design for a network of multi-agent
systems. Automatica 66 (01 Apr 2016), 185–194. https://www.sciencedirect.com/
science/article/pii/S0005109815005592

[5] Rogério de Lemos et al. 2013. Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32.
https://doi.org/10.1007/978-3-642-35813-5_1

[6] Steven X. Ding. 2013. Model-Based Fault Diagnosis Techniques. Springer London.
https://doi.org/10.1007/978-1-4471-4799-2

[7] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony opti-
mization. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39. https:
//doi.org/10.1109/MCI.2006.329691

[8] Edmund H. Durfee and Victor R. Lesser. 1991. Partial global planning: a coor-
dination framework for distributed hypothesis formation. IEEE Transactions on
Systems, Man, and Cybernetics 21, 5 (1991), 1167–1183. https://doi.org/10.1109/
21.120067

[9] Peter Göhner and Michael Weyrich. 2014. Agent-Based Concepts for Manufac-
turing Automation. In Multiagent System Technologies, Jörg P. Müller, Michael
Weyrich, and Ana L. C. Bazzan (Eds.). Springer International Publishing, Cham,
90–102.

[10] P. Grassé. 1959. La reconstruction du nid et les coordinations interindividuelles
chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6,
1 (01 Mar 1959), 41–80. https://doi.org/10.1007/BF02223791

[11] Meng Guo, Dimos V. Dimarogonas, and Karl Henrik Johansson. 2012. Distributed
real-time fault detection and isolation for cooperative multi-agent systems. In
2012 American Control Conference (ACC). 5270–5275. https://doi.org/10.1109/
ACC.2012.6315178

[12] Karuna Hadeli, Paul Valckenaers, Constantin Zamfirescu, Hendrik Van Brussel,
Bart Saint Germain, Tom Hoelvoet, and Elke Steegmans. 2004. Self-Organising in
Multi-agent Coordination and Control Using Stigmergy. In Engineering Self-
Organising Systems, Giovanna Di Marzo Serugendo, Anthony Karageorgos,
Omer F. Rana, and Franco Zambonelli (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 105–123.

[13] Francis Heylighen. 2016. Stigmergy as a universal coordination mechanism I:
Definition and components. Cognitive Systems Research 38 (01 Jun 2016), 4–13.
http://www.sciencedirect.com/science/article/pii/S1389041715000327

[14] O. Holland and C. Melhuish. 1999. Stimergy, Self-Organization, and Sorting in
Collective Robotics. Artificial Life 5 (04 1999), 173–202.

[15] Nicholas R. Jennings. 2000. On agent-based software engineering. Artificial
Intelligence 117, 2 (2000), 277–296. https://doi.org/10.1016/S0004-3702(99)00107-1

[16] Vera A. Kazakova and Gita R. Sukthankar. 2020. Adaptable and stable decentral-
ized task allocation for hierarchical domains. The Knowledge Engineering Review
35 (2020), e26. https://doi.org/10.1017/S0269888920000235

[17] Anastassia Kuestenmacher and Paul G. Plöger. 2016. Model-Based Fault Diag-
nosis Techniques for Mobile Robots. IFAC-PapersOnLine 49, 15 (2016), 50–56.
https://doi.org/10.1016/j.ifacol.2016.07.613 9th IFAC Symposium on Intelligent
Autonomous Vehicles IAV 2016.

[18] Dubravko Miljkovic. 2011. Fault detection methods: A literature survey. In 2011
Proceedings of the 34th International Convention MIPRO. 750–755.

[19] Alexandros Mouzakitis. 2013. Classification of Fault Diagnosis Methods for
Control Systems. Measurement and Control 46, 10 (2013), 303–308. https://doi.
org/10.1177/0020294013510471 arXiv:https://doi.org/10.1177/0020294013510471

[20] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A
meta-model formulti-agent systems. Autonomous Agents andMulti-Agent Systems
17, 3 (01 Dec 2008), 432–456. https://doi.org/10.1007/s10458-008-9053-x

[21] Pietro Panzarasa, Nicholas R. Jennings, and Timothy J. Norman. 2002. Formalizing
Collaborative Decision-making and Practical Reasoning in Multi-agent Systems.
Journal of Logic and Computation 12, 1 (2002), 55–117. https://doi.org/10.1093/
logcom/12.1.55

[22] Caroline Player and Nathan Griffiths. 2020. Improving trust and reputation
assessment with dynamic behaviour. The Knowledge Engineering Review 35
(2020), e29. https://doi.org/10.1017/S0269888920000077

[23] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, USA.

[24] Iman Shames, AndréM.H. Teixeira, Henrik Sandberg, and Karl H. Johansson. 2011.
Distributed fault detection for interconnected second-order systems. Automatica
47, 12 (2011), 2757–2764. https://doi.org/10.1016/j.automatica.2011.09.011

[25] Weiming Shen and Douglas H. Norrie. 1999. Agent-Based Systems for Intelligent
Manufacturing: A State-of-the-Art Survey. Knowledge and Information Systems 1,
2 (01 May 1999), 129–156. https://doi.org/10.1007/BF03325096

[26] Rachel A. Smolker, Andrew F. Richards, Richard C. Connor, and John W. Pepper.
1992. Sex Differences in Patterns of Association Among Indian Ocean Bot-
tlenose Dolphins. Behaviour 123, 1-2 (1992), 38 – 69. https://doi.org/10.1163/
156853992X00101

[27] Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed Systems: Princi-
ples and Paradigms (2nd Edition). Prentice-Hall, Inc., USA.

[28] Luca Tummolini and Cristiano Castelfranchi. 2007. Trace Signals: The Mean-
ings of Stigmergy. In Environments for Multi-Agent Systems III, Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 141–156.

[29] H. Van Dyke Parunak. 2006. A Survey of Environments and Mechanisms for
Human-Human Stigmergy. In Environments for Multi-Agent Systems II, Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 163–186.

[30] Michael Wooldridge and Nicholas R. Jennings. 1999. The cooperative problem-
solving process. Journal of Logic and Computation 9, 4 (08 1999), 563–592. https:
//doi.org/10.1093/logcom/9.4.563 arXiv:https://academic.oup.com/logcom/article-
pdf/9/4/563/3887385/090563.pdf

[31] Ouarda Zedadra, Nicolas Jouandeau, Hamid Seridi, and Giancarlo Fortino. 2017.
Multi-Agent Foraging: state-of-the-art and research challenges. Complex Adaptive
Systems Modeling 5, 1 (02 Feb 2017), 3. https://doi.org/10.1186/s40294-016-0041-8

https://doi.org/10.1109/SYSTOL.2016.7739841
https://doi.org/10.1109/SYSTOL.2016.7739841
https://doi.org/10.1007/s43154-022-00079-4
https://doi.org/10.1007/s43154-022-00079-4
https://doi.org/10.1002/ece3.4061
https://www.sciencedirect.com/science/article/pii/S0005109815005592
https://www.sciencedirect.com/science/article/pii/S0005109815005592
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-1-4471-4799-2
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/21.120067
https://doi.org/10.1109/21.120067
https://doi.org/10.1007/BF02223791
https://doi.org/10.1109/ACC.2012.6315178
https://doi.org/10.1109/ACC.2012.6315178
http://www.sciencedirect.com/science/article/pii/S1389041715000327
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1017/S0269888920000235
https://doi.org/10.1016/j.ifacol.2016.07.613
https://doi.org/10.1177/0020294013510471
https://doi.org/10.1177/0020294013510471
https://arxiv.org/abs/https://doi.org/10.1177/0020294013510471
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1093/logcom/12.1.55
https://doi.org/10.1093/logcom/12.1.55
https://doi.org/10.1017/S0269888920000077
https://doi.org/10.1016/j.automatica.2011.09.011
https://doi.org/10.1007/BF03325096
https://doi.org/10.1163/156853992X00101
https://doi.org/10.1163/156853992X00101
https://doi.org/10.1093/logcom/9.4.563
https://doi.org/10.1093/logcom/9.4.563
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/9/4/563/3887385/090563.pdf
https://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/9/4/563/3887385/090563.pdf
https://doi.org/10.1186/s40294-016-0041-8

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Vertebrate foraging
	2.2 Intelligent agents and model-based agents
	2.3 Stigmergy and indirect communication
	2.4 Distributed fault detection and isolation

	3 Approach and Realization
	3.1 Assumptions for our approach
	3.2 Environment and agents
	3.3 Cooperation of agents
	3.4 Implementation of agent behaviour

	4 Experiment Setup and Results
	4.1 Experiment setup and measures
	4.2 Results of our experiments

	5 Discussion
	6 Limitations
	7 Conclusion and Outlook
	Acknowledgments
	References

