
Towards Explaining Actions of Learning Agents
Bruno Rodrigues

NOVA LINCS, NOVA School of Science and Technology
Caparica, Portugal

bac.rodrigues@campus.fct.unl.pt

Matthias Knorr
NOVA LINCS, NOVA School of Science and Technology

Caparica, Portugal
mkn@fct.unl.pt

Ludwig Krippahl
NOVA LINCS

Caparica, Portugal
ludi@fct.unl.pt

Ricardo Gonçalves
NOVA LINCS, NOVA School of Science and Technology

Caparica, Portugal
rjrg@fct.unl.pt

ABSTRACT
Agents increasingly use Deep Neural Networks to process sensor
information and make decisions. While these models have been
shown to provide excellent results, they come with the disadvan-
tage that they behave like black boxes, mapping inputs to outputs
in a way that is hard for humans to understand. This is a serious
disadvantage because it makes it harder to predict how agents will
act in unexpected situations, which is especially dangerous when
agents have to interact physically with humans, such as self-driving
vehicles or industrial robots, but also creates risks for agents such
as chat bots and other virtual agents since their actions may re-
sult in legal liabilities or reputation damage. Being able to explain
decisions taken by these neural networks that guide the agents
is important for preventing incorrect behavior and for building
trust and providing legal justifications whenever necessary. This
applies not only to interactions with humans, but also to multia-
gent systems. In this paper, we build on a recent framework on
Explainable AI that uses small neural networks to map activations
from a trained deep neural network to relevant concepts in a logical
formalization of the domain, which in turn can be used to provide
explanations for the outputs of the original network. Since this
framework is applied to the deep neural network at inference time,
after training, it can be applied to neural networks used in agents
regardless of whether these were trained using supervised or re-
inforcement learning. We show that a potential bottleneck of the
approach, the creation of such mapping networks, can be solved by
employing automated neural architecture search. This paves the
way towards applying this approach to more advanced use cases
of explaining decisions of agents based on deep neural networks,
regardless of how these networks were trained.

KEYWORDS
Explanations, Neural Architecture, Reinforcement Learning

1 INTRODUCTION
Deep neural networks (DNNs) are currently being used to solve a
variety of problems, such as web search [33], image [35] and video
[14] classification, recommendation algorithms for social media
websites [5], finance [9] and decision support systems with a large
impact on humans, such as loan granting [39], job recruitment [6]
and university application processing [40]. They are also being used

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

to guide agents that interact with humans, such as virtual assistants
[44] and autonomous vehicles [43].

The potential impact of DNNs on human lives demands guar-
antees of quality, safety and fairness from DNN-powered systems.
Unfortunately, DNNs are opaque, black-box, models that provide
results with no intelligible indication of why that output was gener-
ated. This is a problem when the models are used to inform human
decisions, but even more so when the models are used without
real-time human supervision, as for autonomous agents, from chat
bots to self-driving vehicles. Explainability, in a broad sense the
ability to make a model’s decision understandable to humans, helps
mitigate this problem by giving us additional means of evaluat-
ing the model. Black-box models can be evaluated by performance
measures on known examples, but without an insight into how
the model operates, such measures only correlate indirectly with
whether the model is working correctly as intended. Explainabil-
ity is recognized as an important concern whenever using DNNs
has important consequences. E.g., in healthcare, explainability of
diagnosis systems increases trust in deciding treatment routes [17],
and physicians rank explainability as the most desirable feature for
a clinical decision support system [17, 37].

These concerns motivate the rising importance of the field of Ex-
plainable AI (XAI), which focuses on developing AI systems whose
behavior can be understood by humans [8]. There is a wide range of
approaches to state-of-the-art XAI solutions. For example, some are
model-agnostic, such as those using proxy models [30]; others focus
on the relevance of different parts of the input more relevant to the
model’s decision [26]; others explain some instances by relying on
other similar cases [15], among many other alternatives. A detailed
overview of XAI falls outside the scope of this paper (for a recent
review see [20]), but it is relevant to point out the complexity of
the problem of finding explanations, which causes this diversity.

Among these approaches, there is a novel method, called con-
cept mapping [7], that finds correspondences between activation
patterns in a DNN and concepts in an ontology for providing a for-
mal justification for the output of the DNN. The core idea is that a
DNN performing some task will rely on internal representations of
relevant features, which can be mapped to a formal representation
of human knowledge about the domain if this knowledge captures
the same relevant features. Thus, by providing a logical descrip-
tion of the domain formalized as an ontology, humans can specify
those concepts and relations that can be used to build acceptable
explanations. This is important because good explanations strongly
depend on the application domain, the purpose of the explanation,

https://alaworkshop2023.github.io/

and its target audience. Once these concepts and their relations
are specified, one can find a mapping between the activations of
some neurons inside the trained DNN and these concepts in the
ontology. This, in turn, allows one to provide an explanation for the
observed classification utilizing off-the-shelf reasoners that can in-
fer non-trivial knowledge from ontologies, including justifications
for a model’s behavior. In addition, the explanations produced by a
reasoner can easily be translated into natural language, allowing
laypersons to directly understand a produced justification without
an expert’s help.

Employing additional neural classifier models – the mapping
networks – which are trained to map the sub-symbolic internal
representations of the main network onto one relevant symbolic
concept, one can achieve excellent results in creating such expla-
nations using this formalism [7]. This approach can be applied to
any trained DNN, and thus can be useful for learning agents, as
long as they rely on artificial neural networks. This is important
because autonomous agents that operate outside human control but
must interact with humans are an extreme example of a system that
requires a good understanding of the models so that it is possible
to trust such agents.

However, in order to apply this method, it is necessary to create
mapping networks that can accurately find a correspondence be-
tween neuron activations in the DNN and the appropriate concepts.
In realistic problems, this is not trivial and poses a challenge to the
application of this method, since a mapping network that produces
an inaccurate labeling will then lead to incorrect justifications.

In this paper, we argue that the approach of mapping networks,
since it is applicable to DNN after training, can also be applied
to DNN trained with reinforcement learning, as it is often the
case for training autonomous agents. We show with a number of
extensive experiments using a controlled, synthetic, dataset how
Neural Architecture Search (NAS) can be used to automate the
process of finding mapping networks, which are the central pieces
of the method for extracting symbolic meaning from subsymbolic
representations, and also demonstrate the application to a simple
reinforcement learning example. The main objective of this paper
is to provide a method for generating explanations for the behavior
of agents controlled by DNN.

The remainder of the paper is structured as follows. We start by
providing the necessary background in Section 2. Then, in Section
3 we review the concept mapping method for justifying a neural
network’s output, followed by a demonstration of its application
on a neural agent in Section 4. In Section 5, we describe neural
architecture search, the framework used in this paper. Section 6
features a discussion on the extensive empirical tests showing that
neural architecture search can be used to provide good concept
mapping models with minimal human effort. We summarize our
findings in Section 7, and discuss possible future work.

2 BACKGROUND
This section provides a brief overview of relevant notions and
notation necessary for understanding the following material.

Deep neural networks (DNN) are artificial neural networks that
stack several layers of neurons. The neuron is the basic building
block of such networks, and consists in a linear combination of

inputs followed by a nonlinear funcion. By stacking such layers
the DNN can transform input vectors in ways that better identify
informative patterns. The neuron weights are adjusted by back-
propagation in order to optimize a loss function that captures the
desired purpose of the DNN (e.g. cross-entropy for classification,
mean squared error for regression, and so forth).

By combining different types of neurons and operations, DNN
can be adapted to different problems. One important example are
Convolutional Neural Networks (CNNs) [25], which excel at Com-
puter Vision tasks such as image classification and segmentation.
These DNN use convolutional layers, where the same set of neuron
weights are applied to regularly-spaced small patches of the image
to produce feature maps. This allows the identification of useful
patterns in the image while reducing the total number of param-
eters in the network. A typical CNN classifier consists of a stack
of convolutional layers to extract features from the image input
followed by fully connected layers that output a vector with the
probabilities of the input belonging to each class.

Reinforcement Learning. DNNs are trained by comparing the
network output to a desired output andminimizing the loss function.
In supervised learning these desired outputs are given by a training
set consisting of previously labelled examples. In Reinforcement
Learning (RL) [36] the examples can also be generated by having
the agent explore the decision space and using feedback from the
environment. Deep Q-Learning [21], a variant of Q-Learning [42],
is an example. In this type of learning, a DNN learns to approximate
Q-function, a maping from each state-action pair to the discounted
reward, which can be used to determine the best action to take at
each state by selecting the action with the highest Q-value. Using a
DNN makes it possible to use high-dimensional and unstructured
inputs such as images.

Description Logics (DLs). DLs [2] are fragments of first-order
logic whose reasoning tasks are usually decidable. Here, we briefly
recall the standard DL𝒜ℒ𝒞. The basic elements to represent knowl-
edge in DLs are: individuals that represent objects in a domain of
discourse; concepts that group together individuals with common
properties; and roles that relate individuals. The sets 𝑁𝐼 , 𝑁𝐶 , and
𝑁𝑅 of individual names, concept names and role names, respec-
tively, form the basis to construct the syntactic elements of 𝒜ℒ𝒞
according to the following grammar (in which𝐴 ∈ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅):

𝐶 −→ ⊥ | ⊤ | 𝐴 | ¬𝐶 | 𝐶 ⊓𝐶 | 𝐶 ⊔𝐶 | ∃𝑟 .𝐶 | ∀𝑟 .𝐶

Intuitively, the logical operators can be read as negation (¬),
conjunction (⊓), and disjunction (⊔) of concepts, the existence
of a relation 𝑟 from an individual belonging to the class to one
belonging to 𝐶 (∃𝑟 .𝐶), and for all relations 𝑟 from an individual
belonging to the class, the related individual belongs to𝐶 (∀𝑟 .𝐶) (cf.
[2] for the formal semantics). An ontology then contains axioms,
namely assertions of the form 𝐶 (𝑎) and 𝑟 (𝑎1, 𝑎2), that assign an
individual 𝑎 to a concept𝐶 and relate two individuals 𝑎1, 𝑎2 by role
𝑟 , respectively, as well as concept inclusions of the form 𝐶1 ⊑ 𝐶2
to state subsumption of concept 𝐶1 by concept 𝐶2 and concept
equivalence 𝐶1 ≡ 𝐶2 as a shortcut for 𝐶1 ⊑ 𝐶2 and 𝐶2 ⊑ 𝐶1.

Given such an ontology, one can perform standard reasoning
tasks, e.g., whether the specification admits a model, i.e., is consis-
tent, which can be used to validate the specification, or whether

a certain formula is an implicit logical consequence of the given
specification. The latter also allows us to determine which axioms
are used to determine a certain logical consequence, which provides
a justification for the obtained inference [11].

3 CONCEPT MAPPING
In this section, we briefly recall material on producing justifications
for a neural network’s output via concept mapping [7].

The objective is to justify the outputs of a trained neural net-
work employing reasoning over a formal specification of the task’s
domain, given the output of the neural network and the presence of
certain characteristic features somewhere in the network’s model,
which are relevant for inferring the obtained output. This requires a
formal specification of the task’s domain, in the form of an ontology,
containing concepts equivalent to the ones extracted by the neural
network and those relevant for inferring the main concepts.

Building on the assumption that if a concept is indeed relevant
to the task, it is present in the network’s internal representations,
mapping networks are trained on those representations. To do so,
first a subset of the dataset is labeled with respect to these relevant
concepts, and the mapping networks are trained to generalize from
it. In other words, the mapping networks are trained to learn what
internal behavior a concept triggers in the main network when it
appears in the input. For their outputs to be useful in producing
symbolic explanations for the main network’s behaviour, the map-
ping networks own behaviour need not be similarly explained. We
are merely interested in predicting with high confidence whether a
concept is present.

Not all of the main network’s activations need be fed to the
mapping network. After all, conventionally-sized CNNs can have
tens of millions of trainable parameters, and given that all the data
is fed forward through the network, we should expect the same
information to be found at multiple levels. CNNs excell at computer
vision due to how the stacking of multiple convolutions allows for
simple patterns (e.g. contrast, lines, basic shapes) to be detected in
the first layers and more complex ones (e.g. ears, tail, wheels) to be
extracted in the latter ones. At the end of the convolutional part
of a CNN, the relevant features have been identified and largely
abstracted from their position in the input. Therefore, the represen-
tations of the dense part of the network are viable candidates for
input for the mapping task.

With this in place, it is possible to produce justifications for the
main network’s output for a given example by a) providing the main
network with the example and having it produce a classification;
b) using the mapping networks to identify the concepts that the
main network found in that example; and c) using the suitable DL
reasoner to produce a justification for the network’s output based
on the ontology and the identified concepts.

Fig. 1 contains a graphical representation of the method using
the example of classification of images of trains [7] based on the
characteristics of these trains - an example image is given on the
bottom-left. Such images are classified by the main network, i.e.,
the model whose behaviour we want to explain, e.g., classifying
the example image in Fig. 1 as 𝑇𝑦𝑝𝑒𝐵. Taking (part of) the inner
activations of the main network as input, the mapping networks are
trained to detect certain relevant concepts, previously determined

TypeB(input)

TypeB(input)

PassengerTrain LongTrain FreightTrain

Train ≡ ∃has.(Wagon ⊔ Locomotive)
TypeA ≡ WarTrain ⊔ EmptyTrain

TypeB ≡ PassengerTrain ⊔ LongFreightTrain
TypeC ≡ RuralTrain ⊔MixedTrain

≥ 2 has.FreightWagon ⊑ FreightTrain
LongFreightTrain ≡ LongTrain ⊓ FreightTrain

. . .

LongTrain(input)
FreightTrain(input)

LongFreightTrain ≡ LongTrain ⊓ FreightTrain

TypeB ≡ PassengerTrain ⊔ LongFreightTrain

Input Main Network Output

JustificationOntology

Mapping Networks

J

Figure 1: Overview of the Concept Mapping Method [7]

within an ontology for the domain, taking into account input images
that are labelled accordingly. Once trained, an image when being
classified by the main network also gets assigned which concepts
are detected by themapping networks. In this example, themapping
networks detected the concepts 𝐿𝑜𝑛𝑔𝑇𝑟𝑎𝑖𝑛 and 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑇𝑟𝑎𝑖𝑛 in the
image. The ontology for the domain, an excerpt of which is shown
on the upper left,1 together with the observed concepts for the
image allow to infer 𝑇𝑦𝑝𝑒𝐵. The justification given on the right
contains the two observations and two axioms from the ontology.
The resulting justification can be read as we infer 𝑇𝑦𝑝𝑒𝐵, because
𝑇𝑦𝑝𝑒𝐵 is a 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑇𝑟𝑎𝑖𝑛 or a 𝐿𝑜𝑛𝑔𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑇𝑟𝑎𝑖𝑛 (line four), and
the latter is equivalent to 𝐿𝑜𝑛𝑔𝑇𝑟𝑎𝑖𝑛 and 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑇𝑟𝑎𝑖𝑛 (line three),
which corresponds to the observations.

The cost of deploying this method depends on the complexity
of the ontology, which is influenced by the complexity of the main
task and the desired explanatory power. More complex problems
will increase the number of relevant concepts to be detected, which
in turn requires the training and usage of more mapping networks.
The usage of neural architecture search employed in our work (see
Sects. 5 and 6) may help address this problem.

4 USING CONCEPT MAPPING TO EXPLAIN
AN AGENT’S BEHAVIOR

In this section, we show how the method, described in the previous
section, can be applied to explain the behavior of a DNN-powered
agent, such as one trained with DQN.

To demonstrate this, we employed concept mapping on a DQN
agent trained to play tic-tac-toe. In this game, two players, X and
O, take turns marking the spaces on a 3×3 grid. The player who
succeeds in placing three of their marks in a horizontal, vertical,

1Here, also qualified number restrictions are used, allowing one to describe objects
that have at least two 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑊𝑎𝑔𝑜𝑛𝑠 , but that does not affect the method presented
here as long as the DL reasoner used for inference is capable of reasoning with those.

Figure 2: Sample images from the tic-tac-toe dataset

Dense(1, Sigmoid)

(a)

Dense(1, Sigmoid)

Dropout(0.3)

Batch norm.

(b)

Dense(1, Sigmoid)

Dense(128, ReLu)

(c)

Dense(1, Sigmoid)

Dropout(0.3)

Batch norm.

Dense(128, ReLu)

Dropout(0.3)

Batch norm.

(d)

Figure 3: Suite of tested mapping architectures

or diagonal row wins the game. The agent receives information
about the game state via an image depicting the board, extracts
relevant features from the image and uses them to make a decision
that maximizes its chances of winning the match.

Given tic-tac-toe’s simplicity, it is possible to have a dataset
containing images of every legal board. Given three potential states
per grid cell - an X, a circle, or nothing - there exist 39 = 19683
ways that the 3x3 grid can be filled in, 5478 of which can actually
occur in a game. For this demonstration, we generated 50x50 pixel
images using Blender’s Python API [10]; depicting a top-down view
of a board outlined in dark gray, on a textured background (Fig. 2).

The task involves extracting information from image data, there-
fore the network powering the agent is a CNN, which, after we
trained the agent against a random player for 10,000 games, learned
to predict the expected reward of placing an X on each available
position, given solely an image of the current board.

To explain the trained agent’s behaviour using concept mapping,
we need to be able to extract relevant concepts from its internal
activations. Let us consider concepts referring to whether a certain
position contains a certain symbol. For example, we can number
the board positions as follows:

0 1 2
3 4 5
6 7 8

Then we can denote by 𝑂4 the concept “There is an O in position
4”, and so forth for the other symbol and positions. This can then
be used with an ontology characterizing reasons for each of the
possible moves, containing axioms such as 𝑋3 ⊓ 𝑋4 ⊑ 𝑋5 and
𝑂2 ⊓𝑂8 ⊑ 𝑋5 (assuming that 𝑋 is placed by the learning agent).

We tested four models on extracting the eighteen resulting con-
cepts, whose architecture is shown in Fig. 3 2.
2“Dense(n,a)” denotes a fully connected layer with n neurons followed by an a activa-
tion function. “Dropout(p)” denotes a dropout layer with an probability p of ignoring a
given neuron’s output

Model Avg BCE Loss Avg Top-1 Acc.
(a) 2.71 × 10−2 0.9994
(b) 2.41 × 10−4 1
(c) 1.93 × 10−2 0.9998
(d) 1.58 × 10−4 1

Table 1: Average Binary Cross Entropy Loss and Top-1 Accu-
racy across eighteen concepts.

For every step in a game, the agent receives an image depicting
the current board and chooses the legal action that maximizes the
predicted Q-value 3. The next state is generated, and, after the
opponent plays, a tuple of the type (𝑠𝑡 , 𝑎, 𝑟, 𝑠𝑡+1, 𝑑) is stored in the
agents memory bank, where 𝑠𝑡 contains the initial state, 𝑎 the action
taken by the agent, 𝑟 the reward received as a consequence of that
action, 𝑠𝑡+1 the state produced by the action, and 𝑑 a flag indicating
whether 𝑠𝑡+1 is a final state. These memories are used to learn the
effect of certain actions in certain scenarios and to adjust the target
Q-values being learned by the agent. At each step, the agent is
trained on random memories from its bank.

The results (Table 1) show that the concepts can easily be ex-
tracted with excellent performance by all models, demonstrating
the viability of concept mapping as an explanatory method for
neural agents.

While these results show that the method is also applicable in
this setting, at least from the point of view of finding such mapping
networks this is not too surprising. In fact, the method supposes
a trained main network, but how such network was trained is not
important. However, common to both the examples in Sects. 3 and 4,
is that the main network’s task is rather simple, which allows even
simple mapping network architectures found manually to perform
well.

Before we proceed showing how the application of this method-
ology to larger problems can be aided by determining mapping
networks in an automated fashion using neural architecture search,
we first recall some necessary notions in the next section.

5 NEURAL ARCHITECTURE SEARCH
The field of Neural Architecture Search (NAS) [28] stems from
an interest in streamlining and automating the process of neural
architecture design, which requires substantial human effort and
expertise. NAS systems employ machine learning techniques to
learn neural architectures that minimize the validation-set loss after
training on a given dataset. These are its main components:

• Search Space: The domain of architectures that are consid-
ered as candidates.

• Search Strategy: The method by which the Search Space is
traversed. Common search strategies employed by early NAS
systems are random search (RS) [32], reinforcement learning
(RL) [3, 45], evolutionary algorithms (EA) [27], bayesian
optimization (BO) [4], monte carlo tree search (MCTS) [24],
and sequential model-based optimization (SMBO) [12].

3Initially, to promote exploration, there is a high probability that the agent will instead
perform a random action. This probability decays to zero as training progresses.

Search
Strategy

Search Space

Candidate
Architecture

Optimal
Architecture

Training & Rank

Select
Performance
EvaluationEvaluation

Strategy

Figure 4: The general framework of NAS [28]

• Evaluation Strategy: The method used to benchmark the
candidate architectures. The search strategy relies on this
protocol to provide, at least, a comparative ranking between
different candidates to inform the search direction.

In sum, a NAS system traverses its search space using its search
strategy, assessing different candidates with its evaluation strategy.
Fig. 4 shows a diagram of this general framework.

In a performance comparison [28] of NASmethods on the CIFAR-
10 dataset, NAS-RL [45], achieved a 3.65 error rate after 22400 GPU
days, while DARTS [19], a newer system that employs several op-
timization techniques, achieved 2.76 error rate after 4 GPU days.
With its state-of-the-art results and diminished computational re-
quirements, DARTS has the desired attributes of a NAS system for
the concept mapping application, which is why we briefly review
it next.

5.1 DARTS
One of the ways DARTS achieves its high efficiency is by using a
modular search space, meaning that rather than designing a whole
architecture, it designs a computational cell that can be stacked to
build a final architecture. A cell is represented as a Directed Acyclic
Graph (DAG), in which each node 𝑥 (𝑖) is an internal representation
of the input and each edge (𝑖, 𝑗) is an operation 𝑜 (𝑖, 𝑗) that further
transforms 𝑥 (𝑖) . The content of each node 𝑥 (𝑗) is computed based
on all of its incoming edges:

𝑥 (𝑗) =
∑︁
𝑖< 𝑗

𝑜 (𝑖, 𝑗) (𝑥 (𝑖)) (1)

Learning the optimal cell consists of learning the optimal opera-
tion to place on each of the edges. In addition to other candidate
operations, a 𝑍𝑒𝑟𝑜 operation is used to indicate a non-existing
connection between two nodes.

The key optimization of DARTS is to continuously relax the NAS
problem, and thus enable the use of efficient gradient descent algo-
rithms. To achieve this relaxation, each edge of the cell represents,
during training, a Softmax over all candidate operations:

𝑜 (𝑖, 𝑗) (𝑥) =
∑︁
𝑜∈𝒪

exp(𝛼 (𝑖, 𝑗)
𝑜)∑

𝑜 ′∈𝒪 exp(𝛼 (𝑖, 𝑗)
𝑜 ′)

𝑜 (𝑥) (2)

where𝒪 is the set of all candidate operations and 𝛼 a set of vectors
𝛼 (𝑖, 𝑗) containing mixing weights associated to each operation of
each edge. Going further, we will refer to the set of these mixing
weights 𝛼 as the arch weights - since they encode the architecture -
and to the trainable parameters of the candidate operations as the
model weights.

Figure 5: An overview of DARTS [19].

(a) The problem, find the optimal cell. (b) Continuous relaxation
of the problem by replacing each edge with a set of mixed opera-
tions. (c) Joint optimization of architecture and network weights.
(d) Derivation of final architecture by replacing mixed operations
with the learned optimal operation.

Once the optimal cell has been learned, the discrete architecture
can be obtained by replacing the mixed operations with the learned
(i.e. most likely) operation:

𝑜 (𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑜∈𝒪 𝛼
(𝑖, 𝑗)
𝑜 (3)

In each step of the architecture search, the archweights𝛼 are first
optimized by descending the validation-set loss. Then the model
weights are optimized by descending the training-set loss of the
architecture found in the upper-level optimization. This process is
repeated until convergence, at which point the final architecture is
derived. Figure 5 contains a summary of the DARTS framework.

6 DESIGNING CONCEPT MAPPING MODELS
WITH NEURAL ARCHITECTURE SEARCH

To empirically assess the merits of NAS for concept mapping, we
implemented an adaption of DARTS, geared towards learning of
mapping architectures (henceforth referred to as DARTS-CM 4).
First, we changed the set of candidate operations. In the original
paper, a series of convolutional candidate operations were used for
the learning of CNNs, which does not apply to concept mapping.
Therefore, we used the following operations: 5

• Skip Connect (i.e. identity function)
• Batch Normalization [13]
• Layer Normalization [1]
• Dropout [34]
• Gaussian Dropout [29]
• ReLU [22]
• LeakyReLU [38]
• Dense (i.e. fully connected layer)

We further changed the cell structure to be linear (i.e. each node
only outputs to the next).

To allow for robust testing of our DARTS implementation, we de-
veloped Arch-MAX (Architecture: Modular, Artificial, Explainable),
a set of image classification datasets with identical features that
differ only in how difficult the images are to classify. The images
4The implementation is provided at https://github.com/brunoacr/DARTS-CM
5Note that we exclude the Zero operation used in the original work. Subsequent
DARTS-based works [18, 31, 41] have noted how the operation hinders stability, and
we had similar observations.

https://github.com/brunoacr/DARTS-CM

(a) Commercial (b) Residential (c) Industrial

Figure 6: Samples from the Arch-MAX dataset

contain depictions of buildings that vary in their surroundings and
visual attributes. The building itself may contain a door, windows,
awnings, billboards, porches, wall signs, roof statues, tiled roofs,
chimneys, and pipes. Surrounding the building, there may be eating
areas, pole signs, vendingmachines, constructionmachinery, trucks,
and cars. Excluding the tiled roof and roof statues, the features can
appear in one of multiple locations, and windows and awnings
can also appear in varying quantities. Different combinations of
these features are mapped different classes of houses, which in turn
belong to one of three main classes - Residential, Commercial, and
Industrial (see Fig. 6). These mappings are modeled in an ontol-
ogy, which defines the main concepts as a disjunction of different
lower-level concepts representing the various kinds of buildings,
for example:

Residential ≡ 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐻𝑜𝑢𝑠𝑒 ⊔𝑀𝑖𝑠𝑐𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 ⊔ 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛

“Residential Buildings are at leas one of these: (...), and all of them are residential

buildings”

Then each of the lower-level concepts is defined with respect to
which features appear on the building:

𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐻𝑜𝑢𝑠𝑒 ≡ ∃ℎ𝑎𝑠.𝐶𝑎𝑟 ⊓ ∃ℎ𝑎𝑠.𝑇𝑖𝑙𝑒𝑑𝑅𝑜𝑜 𝑓
“Any Building that features a Car and a TiledRoof is a CountryHouse (and vice-versa)”

The ontology is a parameter of the Arch-MAX generator6. The user
only needs to provide an ontology that encodes what combinations
of features describe each class, and the generator will produce an
equal amount of examples for each class, according to the provided
“recipes”.

Multiple methods are used to make the data harder to classify:
alternating the model used for a given feature; varying textures;
varying the camera’s position; adding background elements; and
randomizing the contrast and brightness of the image. Table 2
shows the six levels of complexity used for our experiments.

We used eighteen fully trained binary classification convolu-
tional neural networks - one for each (complexity, class) pair - to
evaluate our implementation of DARTS. The template shown in Fig.
7 represents the architectures that were used, where c and d are
variables that determine the number of times the respective block
is stacked. Convolutional layers in the same block share the same
amount of filters, which increases from block to block with the
network’s depth. The first Convolutional block always has thirty-
two filters, and that number doubles for each subsequent one. The

6At https://github.com/brunoacr/ArchMAX-Generator are provided generator and
ontology, and the datasets at https://huggingface.co/datasets/bruno-cotrim/arch-max.

1 2 3 4 5 6
Models
Textures
Camera - Small variance
Background elements
Camera - Large variance
Contrast
Brightness

Table 2: Variations present in each of Arch-MAX’S complex-
ity levels

Dense(ReLU)

Conv(ReLU)

Batch norm.
Max Pooling
Dropout(0.3)

x c

Flatten

Batch Norm
Dropout(0.3)

x d

input

classification

Dense(1,Sigmoid)

x2

Figure 7: Convolutional Architecture Template used for the
main networks.

Dense layer that directly precedes the output layer is set to have
sixteen neurons, and every preceding layer has double the amount
of its successor.

The models for complexities one to three were trained with
eight thousand examples in the training set and around twenty-
seven hundred in each of the validation and test sets. The models
for complexities four to six were trained with twelve thousand
examples in the training set and four thousand examples in each of
the validation and test sets. Table 3 shows, for each main network,
the values for c and d as well as the obtained loss and accuracy on
the test set.

For each of the three main classes, we selected three relevant
secondary concepts, and used DARTS to design architectures for
the task of extracting each concept. The result of the architecture
search is an encoding of a computational cell featuring four selected
operations (See Fig. 8 for an example).

Figure 8: Learned cell for complexity 2, main class Industrial,
concept MiscIndustrial

https://github.com/brunoacr/ArchMAX-Generator
 https://huggingface.co/datasets/bruno-cotrim/arch-max

Complexity Class c d Loss Acc
Commercial 3 2 0.036 0.9904
Industrial 3 2 0.026 0.9921
Residential 3 2 0.051 0.9865
Commercial 3 2 0.0526 0.9814
Industrial 3 2 0.055 0.98232
Residential 3 2 0.0362 0.9883
Commercial 6 2 0.0721 0.9805
Industrial 3 2 0.0973 0.97613
Residential 3 2 0.0879 0.9817
Commercial 2 3 0.143 0.958
Industrial 2 3 0.0743 0.97734
Residential 2 3 0.0778 0.9827
Commercial 6 2 0.1545 0.9453
Industrial 6 2 0.1325 0.9555
Residential 6 2 0.1209 0.9562
Commercial 6 2 0.1487 0.9456
Industrial 6 2 0.0953 0.97416
Residential 6 2 0.1193 0.9591

Table 3: Test-set performance of each main network.

After the architecture search, we build, train and evaluate models
with one to four copies of the learned cell. To provide a frame of
reference, we also evaluated the four architectures from Fig. 3 on
the same tasks. All mapping networks used 750 examples in the
training set, 250 in the validation set, and 1000 in the test set. In all
sets, exactly half of the examples contain the concept being learned.
Each model was trained for a maximum of fifty epochs, stopping
earlier if there is no improvement to the validation loss for fifteen
epochs. The model uses a Binary Cross-entropy loss function and
the Adam [16] Optimizer with a learning rate of 1e−3, momentum
𝛽 = (0.9, 0.999). All the values shown result from an averaging of
five trials.

Figure 9 shows the distribution of the test-set binary-cross-
entropy loss value obtained by the models in each category. The
density of the values in a given range is given by the width of the
graph in that range. The values shown include the results obtained
by all of the architectures in each category prior to selecting the
best performing model for each one. DARTS-CM exhibits lower
variance in the loss values than the Manual Models, providing more
consistent and predictably good performance in most cases.

Figure 10 shows the same Loss distribution, but now only for
the DARTS-CM and aggregated Manual Models categories, and
subdivided by complexity. This graph illustrates that the concept
mapping task is highly sensitive to the main network’s task. Even
when performing the same classification task, changes in the com-
plexity of the images affect the extraction of the same concepts.
This further emphasizes the advantages brought by a system such
as DARTS-CM, which shows a higher resilience to those changes
than the manual models.

Notably, while there is a visible pattern for complexities one to
four, complexities five and six appear to break that pattern, show-
ing more homogeneous results, where both categories stay within
a shorter and more similar range in terms of performance. This
phenomenon likely owes itself to the fact that the main networks
for complexities five and six did not learn the main task to the same

DARTS-CM (a) (b) (c) (d) Manual Models
Type

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

BCE Loss distribution per category

Figure 9: BCE Loss distribution per category.

1 2 3 4 5 6
Complexity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Lo

ss
BCE Loss distribution per complexity & category

Type
DARTS-CM
Manual Models

Figure 10: BCE Loss distribution per complexity and category.

degree as the ones for lower complexities (Table 3), effectively set-
ting a bottleneck on concept-mapping performance, and reducing
the performance differential caused by architecture quality. After
all, a less accurate main network can reasonably be assumed to
be similarly less accurate at predicting certain secondary features,
resulting in situations where a concept appears in the input, but is
not identified by the main network. Given that the concept map-
ping task is to predict the latter, but the training labels encode the
former, this causes the training data for the mapping models to
effectively include wrong labels. This added noise makes the data
harder for the concept mappers to fit - increasing the lower bound
on loss for those complexities - and thus also harder to over-fit -
reducing the upper bound on loss - which results in the observed
smaller range of loss values.

In Figure 11 we plot the distribution of the difference between the
loss value of each architecture and the one from the best performing
model for the same (complexity, concept) combination. High density

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Dif

0

1

2

3

4

5

6

7

8

De
ns

ity

Diff. from best loss per category
Type

DARTS-CM
(a)
(b)
(c)
(d)
Manual Models

Figure 11: Distribution of difference in loss to the best per-
forming architecture

near or at zero means that that category is often the best or close
to the best. DARTS-CM exhibits a much higher density of values
at or near zero and a smaller range of values than the manual
architectures.

6.1 Discussion
We saw that the test set loss of all models tends to increase with
the complexity of the dataset, meaning that concepts from more
complex classification tasks are also more complex to map. While
DARTS showedmore resilience to those changes, we believe further
improvement of the methodology can return an even more robust
system. Firstly, we would increase the training time allocated to
the algorithm. DARTS-CM was trained on a maximum of fifty
epochs with an early stopping policy with a patience of twenty
epochs. Since it optimizes the arch weights at the same time as the
model weights, operations with fewer trainable parameters usually
get better early performance and are thus favored, meaning that
optimal operations with high parameter counts require more time
to surface. For low complexities - and better trained main networks
- DARTS-CM manages to fully optimize the architecture in the
allocated time, but it may require more time for higher complexities.
Furthermore, the fact that the majority of the candidate operations
used were non-parametric also reduces the attention received by
the others. Therefore, removing some of those operations from the
search-space could allow for faster convergence in more complex
datasets.

We ran a preliminary experiment to test this intuition by al-
locating two hundred epochs to training, with an early stopping
policy with a patience of thirty epochs. The concept ∃ℎ𝑎𝑠.𝑃𝑜𝑟𝑐ℎ
was mapped from the main network for the complexity four dataset
and main class Residential. Additionally, we shortened the search
space by leaving only the skip_connect, dropout, batch normaliza-
tion, and the dense operations. DARTS-CM had previously achieved
a test-set loss value of 0.0546 for this same configuration, being
surpassed by a manual architecture that achieved a loss value of

0.0262. After these changes, DARTS-CM managed to find an archi-
tecture that obtained a loss value of 0.0243, obtaining an improved
result, better than any of the manual architectures.

7 CONCLUSIONS
In this work, we have shown that the approach of mapping net-
works can be successfully applied to generate explanations for the
behavior of agents controlled by DNN, which helps increase trust in
the decisions taken by an autonomous learning agent. In particular,
we have empirically demonstrated the merits of employing neural
architecture search in the design of the necessary concept mapping
architectures, reducing the effort of creating the latter, and thus
making the methodology more easily applicable to more complex
settings. Notably, we have shown that our approach, DARTS-CM, is
able to use its larger search space efficiently to produce consistently
high quality concept mapping models, that are overall more reliable
than trial-and-error across changes in the main network’s task and
in the concepts being extracted.

As producing explanations for relatively intricate domains can
conceivably require the extraction of many concepts, the initial
set-up cost of DARTS becomes obviously worthwhile, given the
much higher cost of individually fine-tuning architectures for each
concept. DARTS-CM is a significant step towards making concept
mapping a viable explanatory method, to be deployed at scale on
wide range of systems.

As possible future work, we may modify the set of candidate
operations. One possible solution is to have composite candidate
operations, with multiple neural operations each. For example, one
candidate operation could be a batch normalization layer followed
by a dense layer followed by a ReLU activation function. By keep-
ing the skip-connect operation, the search algorithm would remain
able to find simple designs, but the operations with high parameter
counts would be awarded more attention by the algorithm. Another
route would be to experiment with different cell structures, increas-
ing the number of nodes, or making the cell non-linear, with each
node receiving multiple inputs from preceding structures.

Additionally, recent related work [18, 31, 41] has pointed out
possible improvements for DARTS, that could be implemented into
DARTS-CM. Of special note, XNAS [23] (eXperts Neural Archi-
tecture Search) introduces a novel optimization method based on
the theory of prediction with expert advice, which seems better
suited for the selection task that is NAS, while keeping DARTS’
continuous relaxation of the NAS problem. XNAS also enables the
resurfacing of operations with high parameter counts that become
effective later in training, and shows promising results, both in
terms of performance and search costs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments. We
acknowledge partial support by NOVA LINCS (UIDB/04516/2020)
with the financial support of FCT.IP, and B. Rodrigues and M. Knorr
acknowledge partial support of "Project Sustainable Stone by Portu-
gal - Valorization of Natural Stone for a digital, sustainable and qual-
ified future, nº 40, proposal nº C644943391-00000051, co-financed
by PRR - Recovery and Resilience Plan of the European Union (Next
Generation EU)".

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-

tion. https://doi.org/10.48550/ARXIV.1607.06450
[2] Franz Baader (Ed.). 2003. The description logic handbook: theory, implementation,

and applications. Cambridge University Press, Cambridge, UK ; New York.
[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=S1c2cvqee

[4] Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (Eds.). 2018. Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. https://proceedings.
neurips.cc/paper/2018

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen,Werner
Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 191–198. https://doi.org/10.
1145/2959100.2959190

[6] Jeffrey Dastin. 2018. Amazon scraps secret AI recruiting tool that showed
bias against women. https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-
bias-against-women-idUSKCN1MK08G

[7] Manuel de Sousa Ribeiro and João Leite. 2021. AligningArtificial Neural Networks
and Ontologies towards Explainable AI. Proceedings of the AAAI Conference on
Artificial Intelligence 35, 6 (May 2021), 4932–4940. https://ojs.aaai.org/index.php/
AAAI/article/view/16626

[8] Derek Doran, Sarah Schulz, and Tarek R. Besold. 2017. What Does Explainable
AI Really Mean? A New Conceptualization of Perspectives. arXiv:1710.00794
http://arxiv.org/abs/1710.00794

[9] Adam Fadlalla and Chien-Hua Lin. 2001. An Analysis of the Applications of
Neural Networks in Finance. Interfaces 31, 4 (2001), 112–122. https://doi.org/10.
1287/inte.31.4.112.9662

[10] Blender Foundation. [n.d.]. Blender API Documentation.
[11] Matthew Horridge. 2011. Justification based explanation in ontologies. Ph.D.

Dissertation. University of Manchester, UK. http://www.manchester.ac.uk/
escholar/uk-ac-man-scw:131699

[12] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In Learning and Intel-
ligent Optimization (Lecture Notes in Computer Science), Carlos A. Coello Coello
(Ed.). Springer, Berlin, Heidelberg, 507–523. https://doi.org/10.1007/978-3-642-
25566-3_40

[13] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. http://arxiv.org/
abs/1502.03167 arXiv:1502.03167 [cs].

[14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society,
1725–1732. https://doi.org/10.1109/CVPR.2014.223

[15] Mark TKeane and EoinMKenny. 2019. How case-based reasoning explains neural
networks: A theoretical analysis of XAI using post-hoc explanation-by-example
from a survey of ANN-CBR twin-systems. In Case-Based Reasoning Research and
Development: 27th International Conference, ICCBR 2019, Otzenhausen, Germany,
September 8–12, 2019, Proceedings 27. Springer, 155–171.

[16] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. https://doi.org/10.48550/arXiv.1412.6980 arXiv:1412.6980 [cs].

[17] Jean-Baptiste Lamy, Booma Devi Sekar, Gilles Guézennec, Jacques Bouaud, and
Brigitte Séroussi. 2019. Explainable artificial intelligence for breast cancer: A
visual case-based reasoning approach. Artif. Intell. Medicine 94 (2019), 42–53.
https://doi.org/10.1016/j.artmed.2019.01.001

[18] Chao Li, Jia Ning, Han Hu, and Kun He. 2022. Enhancing the Robustness, Effi-
ciency, and Diversity of Differentiable Architecture Search. https://doi.org/10.
48550/arXiv.2204.04681 arXiv:2204.04681

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv:1806.09055 http://arxiv.org/abs/1806.09055

[20] Dang Minh, H Xiang Wang, Y Fen Li, and Tan N Nguyen. 2022. Explainable
artificial intelligence: a comprehensive review. Artificial Intelligence Review (2022),
1–66.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 http://arxiv.org/abs/1312.5602

[22] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
onMachine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, Johannes Fürnkranz
and Thorsten Joachims (Eds.). Omnipress, 807–814. https://icml.cc/Conferences/

2010/papers/432.pdf
[23] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, and Lihi Zelnik-

Manor. 2019. XNAS: Neural Architecture Search with Expert Advice. http:
//arxiv.org/abs/1906.08031 arXiv: 1906.08031.

[24] Renato Negrinho and Geoff Gordon. 2017. DeepArchitect: Automatically Design-
ing and Training Deep Architectures. https://doi.org/10.48550/ARXIV.1704.08792

[25] Keiron O’Shea and Ryan Nash. 2015. An Introduction to Convolutional Neural
Networks. arXiv:1511.08458 http://arxiv.org/abs/1511.08458

[26] Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. RISE: Randomized Input Sampling
for Explanation of Black-box Models. arXiv:1806.07421 http://arxiv.org/abs/
1806.07421

[27] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc Le, and Alex Kurakin. 2017. Large-scale evolution of image
classifiers. https://arxiv.org/abs/1703.01041

[28] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2020. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. arXiv:2006.02903 https://arxiv.org/abs/2006.
02903

[29] Mélanie Rey and Andriy Mnih. 2021. Gaussian dropout as an information bottle-
neck layer.

[30] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16). Association for Computing Machinery, New York, NY, USA,
1135–1144. https://doi.org/10.1145/2939672.2939778

[31] Rei Sato, Jun Sakuma, and Youhei Akimoto. 2021. AdvantageNAS: Efficient
Neural Architecture Search with Credit Assignment. In Proceedings of the AAAI
Conference on Artificial Intelligence. AAAI Press, 9489–9496.

[32] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salz-
mann. 2019. Evaluating the Search Phase of Neural Architecture Search.
arXiv:1902.08142 http://arxiv.org/abs/1902.08142

[33] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference onWorldWideWeb
(Seoul, Korea) (WWW ’14 Companion). Association for Computing Machinery,
New York, NY, USA, 373–374. https://doi.org/10.1145/2567948.2577348

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

[35] Farhana Sultana, Abu Sufian, and Paramartha Dutta. 2019. Advancements in
Image Classification using Convolutional Neural Network. arXiv:1905.03288
http://arxiv.org/abs/1905.03288

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[37] Randy L. Teach and Edward H. Shortliffe. 1981. An analysis of physician attitudes
regarding computer-based clinical consultation systems. Computers and Biomedi-
cal Research 14, 6 (1981), 542–558. https://doi.org/10.1016/0010-4809(81)90012-4

[38] T. Terasvirta and H. M. Anderson. 1992. Characterizing nonlinearities in busi-
ness cycles using smooth transition autoregressive models. Journal of Applied
Econometrics 7, S1 (Dec. 1992), S119–S136. https://doi.org/10.1002/jae.3950070509

[39] Chih-Fong Tsai. 2008. Financial decision support using neural networks and
support vector machines. Expert Systems 25, 4 (2008), 380–393. https://doi.org/
10.1111/j.1468-0394.2008.00449.x

[40] Steven Walczak. 1994. Categorizing university student applicants with neural
networks. In Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), Vol. 6. IEEE, 3680–3685.

[41] Xiaoxing Wang, Wenxuan Guo, Junchi Yan, Jianlin Su, and Xiaokang Yang.
2021. ZARTS: On Zero-order Optimization for Neural Architecture Search.
arXiv:2110.04743 https://arxiv.org/abs/2110.04743

[42] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. , 279–292 pages.
[43] Bichen Wu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. 2017. SqueezeDet:

Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time
Object Detection for Autonomous Driving. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 446–454. https://doi.org/10.1109/
CVPRW.2017.60

[44] Rui Yan, Yiping Song, and Hua Wu. 2016. Learning to Respond with Deep
Neural Networks for Retrieval-Based Human-Computer Conversation System.
In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016,
Raffaele Perego, Fabrizio Sebastiani, Javed A. Aslam, Ian Ruthven, and Justin
Zobel (Eds.). ACM, 55–64. https://doi.org/10.1145/2911451.2911542

[45] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. https://arxiv.org/abs/1611.01578

https://doi.org/10.48550/ARXIV.1607.06450
https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://proceedings.neurips.cc/paper/2018
https://proceedings.neurips.cc/paper/2018
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://ojs.aaai.org/index.php/AAAI/article/view/16626
https://ojs.aaai.org/index.php/AAAI/article/view/16626
https://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1710.00794
https://doi.org/10.1287/inte.31.4.112.9662
https://doi.org/10.1287/inte.31.4.112.9662
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.48550/arXiv.2204.04681
https://doi.org/10.48550/arXiv.2204.04681
https://arxiv.org/abs/2204.04681
https://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
http://arxiv.org/abs/1906.08031
http://arxiv.org/abs/1906.08031
https://doi.org/10.48550/ARXIV.1704.08792
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1806.07421
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/2006.02903
https://arxiv.org/abs/2006.02903
https://arxiv.org/abs/2006.02903
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1902.08142
https://doi.org/10.1145/2567948.2577348
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1905.03288
http://arxiv.org/abs/1905.03288
https://doi.org/10.1016/0010-4809(81)90012-4
https://doi.org/10.1002/jae.3950070509
https://doi.org/10.1111/j.1468-0394.2008.00449.x
https://doi.org/10.1111/j.1468-0394.2008.00449.x
https://arxiv.org/abs/2110.04743
https://arxiv.org/abs/2110.04743
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1145/2911451.2911542
https://arxiv.org/abs/1611.01578

	Abstract
	1 Introduction
	2 Background
	3 Concept Mapping
	4 Using concept mapping to explain an agent's behavior
	5 Neural Architecture Search
	5.1 DARTS

	6 Designing concept mapping models with Neural architecture search
	6.1 Discussion

	7 Conclusions
	Acknowledgments
	References

