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ABSTRACT
Safety and robustness of Reinforcement learning (RL) solutions
have become increasingly crucial as RL is being deployed in safety-
critical industries such as construction, aviation, autonomous driving,
etc. Successful RL deployment is endangered by an array of attacks,
of which the most insidious are training-time attacks (TTAs), due
to their capability of inculcating behavioral loopholes into an RL
strategy. Several works develop and study constructive TTAs, where
the attacker forces a specific, target behavior upon a training RL
agent (victim). Herein the target behavior is un-adoptable under the
original dynamics of the environment and hence the attacker learns a
strategy to appropriately alter the dynamics of the victim’s environ-
ment. In contrast to previous works, we study target behaviors that
are un-adoptable in the default environment due to both environment
dynamics as well as sub-optimality with respect to the victim’s ob-
jective(s). To find efficient attacks in this context, we develop a novel
reinforcement-learning algorithm, 𝛾DDPG, that dynamically alters
the attack policy planning horizon based on the victim’s current
behavior. This improves effort distribution across the attack timeline
and reduces the effect of uncertainty in the blackbox setting. To
demonstrate the features of our method and better relate the results
to prior research, we borrow a 3D Grid World domain from the latter
for our experiments.

KEYWORDS
Training-Time Attack, Dynamic Discount, Deep Reinforcement
Learning

1 INTRODUCTION
Over the last decade, Reinforcement Learning (RL) has dramati-
cally altered the decision-making research landscape and produced
several AI breakthroughs [3, 26, 29]. In turn, deployment of RL
solutions in safety-critical domains necessitates research on their
safety and robustness. Success of RL stands threatened by a wide
variety of attacks, most insidious of which are training-time attacks
that “pre-program” back-doors and behavioral triggers into an RL
strategy. In training-time attacks, the attacker learns to optimally
modify/poison a victim RL agent’s sensor(s), processor(s), mem-
ory, and/or environment while the victim agent trains to learn its
task. This work aims to develop and study a blackbox training-time
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environment-poisoning attack that modifies/poisons the dynamics
of the victim agent’s environment without accessing any internal
mechanism of the victim. In particular, we seek a constructive attack,
i.e., the objective is to push the victim to acquire an attacker-desired
target-behavior. A target-behavior can be any behavior that the vic-
tim agent will not learn by itself in the original environment. The
un-adoptability of this target behavior can be due to environment
dynamics, sub-optimality with respect to victim’s objectives, or both.
Prior works focus on feasibility and hence experimented with target
behaviors that are optimal (discrete environments) or nearly optimal
(continuous environments) with respect to the victim’s objective,
but un-adoptable due to environment dynamics. This work devel-
ops and studies attacks wherein the target behavior is unadoptable
in the default environment due to both, environment dynamics as
well as sub-optimality with respect to victim’s objectives. In addi-
tion to pushing the victim agent towards this strictly sub-optimal
target behavior, the attack must also preserve the environment as
much as possible or, equivalently, reduce the effort expended to
modify it. Attack actions are thus constrained by the magnitude of
change a single attack action is permitted to make, as well as by
treating environment modification effort as a second objective in
the attacker’s optimization problem. The attacker, therefore, faces a
multi-objective problem of finding an attack strategy that: a) gener-
ates the target behavior in the victim with high accuracy, and b) has
low-effort environment modifications.

Now, commonly, an RL agent’s objectives are represented by a
reward signal and the agent strives to find a behavior/policy which,
when executed in the given environment, maximizes the produced
cumulative reward. Likewise, in the attack domain, the attacker’s
reward typically inculcates both attack objectives: the accuracy with
which the victim adopts the target behavior, and the effort applied
by the attacker, in terms of environment modifications, to achieve
this accuracy. This can be done either by having several reward
terms, allowing for prioritization of attacker’s objectives. Or, as is
done in [33, 34], by measuring the discrepancy between combined
behavior-environment pairs. More specifically, Kullback Leibler Di-
vergence Rate (KLR) can provide a unified estimate of effort and
effectiveness of an attack by measuring the discrepancy between the
combination of the victim’s actual behavior with the poisoned envi-
ronment and the combination of the target behavior with the default
environment. Both approaches have their shortcomings. Due to high
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symmetry, the KLR-based approach cannot properly distinguish be-
tween a high-accuracy, medium-effort behavior-environment pair
and a medium-accuracy, low-effort pair. At the same time, weighted
multiple terms of reward cannot address the fact that some behav-
ior/environment discrepancies cancel each other and, are thus, irrele-
vant.

In this paper, we propose an alternative route. We avoid pack-
ing both attack effort and effectiveness into a single element of
the attacker’s problem. Rather, we use both the reward and the re-
ward discounting factor to encode and prioritize these objectives.
We propose a novel reinforcement-learning algorithm, 𝛾DDPG that
supports such a dual-priority dual-objective optimization. Herein,
the discount function, 𝛾 adapts in response to the current level of
effort exerted by the attacker to create a bounded search space that
on one hand reduces the effect of uncertainty in the given partially
observable environment (blackbox setting), and on the other hand
bounds the lower priority objective (attacker effort), enabling the
attacker to efficiently push a victim to adopt a strictly sub-optimal
target behavior in the blackbox setting.

2 RELATED WORK
Non-Constant Discounts: In this work, we seek to exploit flexible
discount treatment of future rewards to capture the constraints on the
attack effort. Though in a different context, several other works adapt
the discount during training as well [5, 6, 8, 12, 25, 30, 31, 35, 36].
In particular, in Multi-Objective MDPs (MO-MDPs), Gunarathna et
al. 2022 use state-dependent discounts to induce different time-scales
for the optimization of different objectives. Their work requires spec-
ification of several hyperparameters in terms of weights as well as
discounts of the different objectives and works with a fixed set of
discount constants. In contrast, we introduce a novel dual-priority
dual-objective MDP framework that neither needs weights and dis-
counts to be known in advance nor requires separate optimization
of each objective. In our framework, the higher priority (primary)
objective is taken as the RL agent’s reward, while the lower priority
(secondary) objective is used to condition the discount function. The
discount adapts to the current state and modifies the algorithm’s
search space so as to optimize the primary objective while keeping
the secondary objective bounded.

Adaptive MDP: Predictive models, when used to influence the
very system they model, end up introducing themselves as a variable
into the system. Such predictions are termed performative as they
can potentially modify the target distribution that they aim to predict.
Predictive models that do not take performativity into account expe-
rience a concept shift – a change in the underlying data distribution
over time – and deal with it by periodically retraining the model
using new data. In fact, performative stability [2, 16, 19, 21] and
model optimality [17] are a serious concern. Mandal et al. 2022
and Bell et al. 2021 study performative prediction in sequential
decision-making, where the policy of a reinforcement-learning agent
influences the underlying reward and transition dynamics of its envi-
ronment. The agent’s environment, modeled as an MDP, therefore
adapts in response to the agent’s behavior. They explore determin-
istic and non-deterministic MDP adaptation respectively and show
that convergence to the optimal policy cannot be guaranteed under
the latter setting. This seemingly echoes our dual-MDP architecture

and bodes ill. However, if we consider the attacker to be the "perfor-
mative" agent – its MDP does not actually adapt, since the victim is
not aware of the attack. The victim’s MDP does adapt, but the attack
is explicitly calculated to stably influence the victim, rather than just
challenging it.

Unsupervised Environment Design (UED): Design of RL envi-
ronments takes a lot of time and effort, is error-prone, and is infused
with designer bias. UED is a recent paradigm that aims to not only
automate this step but also to generate environment distributions
that are conducive to emergent complexity, robustness, and efficient
transfer learning in RL agents. Adversary and evolution-based UEDs
create challenging environments by aiming to minimize the learn-
ing agent’s rewards [4, 18, 20], while sample-based UEDs sample
environments with high learning potential [9, 10, 27]. Destructive
training-time environment-poisoning attacks can be compared to
a hypothetical negative-UED, whose aim is to automate design of
environment distributions that result in minimization of learning
agent’s (victim’s) performance. However, we focus on a construc-
tive attack, seeking to instill a target behavior, not just destroy the
victim’s performance. As the target behavior is un-adoptable wrt
the victim’s objective, positive UEDs would not be suitable for our
purpose either.

3 METHODOLOGY
This section first presents the overall interaction structure between
the attacker and the victim and then describes the proposed adaptive-
discounting reinforcement learning algorithm titled 𝛾DDPG, used
by the attacker.

3.1 System Architecture
We follow a bi-level hierarchical framework (Figure 1), wherein
the attacker as well as the victim is an independent reinforcement-
learning agent with its individual learning algorithm, memory, and
policy. In order to learn a given task, the victim trains to maximize
its cumulative discounted rewards by interacting with the victim
environment, unaware of the attacker. The attacker, on the other
hand, observes these interactions of the victim with its environment,
processes these observations into an approximation of the victim’s
behavior, and takes an action to modify the victim environment.
The goal of the attacker is to sequentially and minimally modify
the victim environment dynamics to drive the victim to adopt the
attacker-desired target behavior. Therefore, the overall system is
formed by two nested closed-loop processes, wherein the attacker,
as well as the victim, is modeled as a Markov Decision Process
(MDP).

Victim MDP: The victim’s MDP can be denoted by the tuple
< 𝑆,𝐴,𝑇𝑢𝑖 , 𝑅𝑣, 𝑞0, 𝛾𝑣 > where 𝑆 = 𝑠1, 𝑠2, ..., and 𝐴 = 𝑎1, 𝑎2, ... are
the victim’s states and actions respectively; 𝑅𝑣 : 𝑆 × 𝐴 × 𝑆 → R
is the reward function which encodes the victim’s task; 𝛾𝑣 ∈ (0, 1)
is the discount factor, 𝑞0 (𝑆) is the distribution over initial states;
and, 𝑇𝑢𝑖 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is the probabilistic transition function,
where 𝑢𝑖 denotes the environment parameterization that has resulted
from the first 𝑖 interventions on the environment, by the attacker.
In particular, 𝑇𝑢0 refers to the original, unaltered dynamics of the
victim environment. The objective of the victim is to find an optimal
policy within the experienced environment.



Attacker MDP: In our blackbox setting, the attacker’s Markov
process is partially observable in nature, as the attacker does not
have access to the victim policy directly. However, explicitly solv-
ing such a POMDP is taxing. Instead, we take a page from the
Belief MDPs [11]; our attacker views the behavior approximated
from observing the victim’s actions as the attacker’s state, and any
implied discrepancy is absorbed by the stochastic transition func-
tion. The attacker’s Markov process can be represented by the tuple
< 𝑋,𝑈 , 𝐹, 𝑅, 𝜏∗, 𝛾 >, where: 𝑋 = [𝑇𝑢𝑖−1 , 𝜙𝑢𝑖−1 ] is the attacker’s state
space comprising the victim environment dynamics, 𝑇𝑢𝑖−1 and the
victim’s behavior, 𝜙𝑢𝑖−1 that emerged in response to those dynam-
ics; 𝑈 is the attacker’s action space, i.e., the set of all permissible
changes that can be applied to the victim environment dynamics,
such that action 𝑢𝑖 when applied on the environment with dynamics
𝑇𝑢𝑖−1 results in an environment with dynamics 𝑇𝑢𝑖 . Please note the
aggregate nature of the notation: environment changes by attack ac-
tions 𝑢0, 𝑢1, ..., 𝑢𝑖 accumulate and create𝑇𝑢𝑖 . 𝐹 : 𝑋 ×𝑈 ×𝑋 → [0, 1]
is the stochastic transition function that describes the response of
the victim to environmental experiences, i.e., how the victim’s be-
havior changes in response to changes in the environment dynamics;
𝑅 : 𝑋 ×𝑈 × 𝑋 → R is the attacker reward function that describes
attack effectiveness, i.e., how close the victim’s behavior is to the tar-
get (attacker-desired ideal) behavior 𝜏∗. 𝛾 : 𝑋 → [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥 ] is the
adaptive discount function that tunes the importance of long-term re-
wards based on the accumulated environment modifications (attacker
effort) carried out until state 𝑥𝑢𝑖 . The attacker seeks to optimize its
expected total discounted reward, wherein the combination of 𝑅 and
𝛾 simulate dual optimization of (maximum) attack effectiveness with
(minimum) effort, by a policy of the form 𝜎 : 𝑋 → 𝑈 , 𝜎 (𝑢𝑖 |𝑥𝑖−1).
In other words, the attacker seeks the most efficient way to push the
victim to converge to the target policy 𝜏∗.

Figure 1: Bi-Level Attack Framework

3.2 𝜸DDPG Algorithm
We train the attacker to efficiently and constructively influence the
victim to adopt the attacker-desired target policy 𝜏∗. Every action
𝑢𝑖 of the attack is conditioned on the current victim behavior 𝜙𝑢𝑖−1
and the current victim environment dynamics 𝑇𝑢𝑖−1 . We assume that
this attack conditioning occurs in a blackbox setting, i.e., without
any access to the victim’s inner mechanisms or representations,
during both, the attacker’s training and testing. Thus, the victim’s
behavior can only be approximated through across-policy behavior

Algorithm 1 𝜏 Computation Algorithm

1: Receive victim environment with dynamics 𝑇𝑢𝑖
2: Initialize victim’s Q table
3: Initialize 𝜏𝑢𝑖 with the no-action symbol for each state
4: Initialize state
5: for episode = 1, 𝑀𝑣 do
6: while done != True do
7: action = Softmax_Action(Q)
8: next_state, reward, done = Env-𝑇𝑢𝑖 (action)
9: 𝜏𝑢𝑖 (state)← action

10: Q← TD_Update(Q)
11: state← next_state
12: end while
13: end for

Algorithm 2 𝛾DDPG Algorithm

1: Randomly initialize critic 𝑄 (𝑥,𝑢 |\𝑄 ) and actor 𝜎 (𝑥 |\𝜎 ) net-
works with weights \𝑄 and \𝜎

2: Initialize target networks 𝑄 ′ and 𝜎′ with weights \𝑄
′ ←

\𝑄 , \𝜎
′ ← \𝜎

3: Initialize replay buffer 𝑅
4: for episode = 1, 𝑀𝑎 do
5: Initialize a random process 𝜒 for action exploration
6: Receive initial observation state 𝑥0
7: for t = 1, 𝑇𝑎 do
8: Select action 𝑢𝑡 = 𝜎 (𝑥𝑡−1 |\𝜎 ) + 𝜒𝑡 according to the current

policy and exploration noise
9: Execute action 𝑢𝑡 to poison environment 𝑇𝑢𝑡−1

10: Observe reward 𝑟𝑡
11: 𝑥𝑡 ← [𝑇𝑢𝑡 , Auto_Encoder( Algorithm 1 (𝑇𝑢𝑡 ) )]
12: Compute 𝛾𝑡 using Equation 5
13: Store transition (𝑥𝑡−1, 𝑢𝑡 , 𝑟𝑡 , 𝑥𝑡 , 𝛾𝑡 ) in 𝑅

14: Sample a random minibatch of 𝑁 transitions
(𝑥𝑖−1, 𝑢𝑖 , 𝑟𝑖 , 𝑥𝑖 , 𝛾𝑖 ) from 𝑅

15: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑖𝑄 ′ (𝑥𝑖 , 𝜎′ (𝑥𝑖 |\𝜎
′ ) |\𝑄 ′ )

16: Update critic 𝜎 by minimizing the loss: 𝐿 = 1
𝑁

∑
𝑖 (𝑦𝑖 −

𝑄 (𝑥𝑖−1, 𝑢𝑖 |\𝑄 ))2
17: Update actor policy 𝑄 using sampled policy gradient:

∇\𝜎 𝐽 ≈
1
𝑁

∑︁
𝑖

∇𝑢𝑄 (𝑥,𝑢 |\𝑄 )

|𝑥=𝑥𝑖−1,𝑢=𝜎 (𝑥𝑖−1 ) ∇\𝜎𝜎 (𝑥 |\
𝜎 ) |𝑥𝑖−1

18: Update the target networks 𝑄 ′ and 𝜎′:

\𝑄
′
← 𝜌\𝑄 + (1 − 𝜌)\𝑄

′

\𝜎
′
← 𝜌\𝜎 + (1 − 𝜌)\𝜎

′

19: end for
20: end for

traces that the attacker observes while the victim trains. In general,
the victim would update its policy with a non-trivial frequency.
This frequency can be so high that each state-action pair of its
behavior trace would originate from a slightly different policy. In



our experiments, we assume as much. Now, to approximate the
victim’s policy we would need traces of multiple epochs of the
victim’s training process. But conditioning an attack on such a large
volume of data is impractical. Instead, we preprocess these traces
by storing the last observed victim action corresponding to each
observed victim state and assign a "no-action" symbol to unvisited
states. This behavior information will hereafter be denoted as 𝜏𝑢𝑖−1 =
{𝑠1, 𝑎1; 𝑠2, 𝑎2; ...; 𝑠𝑁 , 𝑎𝑁 }∀𝑠𝑛 ∈ 𝑆 , where 𝑎𝑛 is the latest action taken
by the victim in state 𝑛 or the no-action symbol in case state 𝑠𝑛 was
never visited by the victim, and 𝑁 is the total number of states in the
victim environment. As 𝜏𝑢𝑖−1 contains the latest action / no-action
symbol corresponding to all states, 𝜏𝑢𝑖−1 ’s size can still explode in
high-dimensional environments. To combat this issue, the current
paper learns a low-dimensional latent space, Φ of victim behaviors
using an auto-encoder model. The model consists of an encoder 𝑞𝑒
that takes the victim’s 𝜏𝑢𝑖−1 as input and outputs the corresponding
latent behavior 𝜙𝑢𝑖−1 ; and a decoder 𝑞𝑑 that takes two inputs, the
latent behavior 𝜙𝑢𝑖−1 and a victim environment state 𝑠𝑛 , and outputs
the probability with which the victim will take each available action
in the given state 𝑠𝑛 .

Now, as our attacker-MDP suggests, we seek to balance attack
effectiveness and effort. However, unlike prior works, where the
balance was achieved through reward elements’ merge, we distribute
the responsibility between distinct MDP components. Namely, while
attack effectiveness (accuracy) remains with the reward function, the
effort is controlled by a dynamic reward discounting. We implement
this architecture in our 𝛾DDPG algorithm (Figure 2), appropriately
subverting the original DDPG [14]. 𝛾DDPG is made capable of
prioritizing attack accuracy over attacker effort by maximizing attack
accuracy within an effort-bounded search space. This search space is
created at every attack step by adapting the attacker MDP’s discount
factor (𝛾) conditioned on the current attacker effort. The adapting
discount factor modifies 𝛾DDPG’s Bellman update to alter the level
of importance that the algorithm accords to long-term rewards.In
further detail, when the attacker begins to train using 𝛾DDPG and
takes the first action to poison the victim’s environment dynamics, its
next-state is a low attacker-effort state due to existence of magnitude
constraints on attack actions. Corresponding to this low effort, the
discount function (𝛾) takes a small value. A small discount biases
the attacker’s precedence to short-term rewards, pushing 𝛾DDPG
to search for a high-accuracy state near the current state. As attack
actions are constrained in nature, this high-accuracy state will be
reachable using a bounded level of effort i.e. it will require the
attacker to make only a few modifications to the victim’s original
environment. The constraints, therefore, ensure that the attacker
effort and thereby the discount factor increase gradually during the
search process. A greater discount factor increases the radius of
search for 𝛾DDPG, as high rewards in further states begin getting
noticed. 𝛾DDPG therefore gradually moves to further-away states
(higher-effort states) when it is unable to find a higher-accuracy
state nearby (low-effort). This increase in radius also increases the
probability of 𝛾DDPG finding a way back to (now far-away) low-
effort states, if they can provide the attacker with higher accuracy
than seen so far. A jump to a low-effort state will again reduce the
discount factor, enabling 𝛾DDPG to search for better accuracy states
near this low-effort state. Therefore, at each timestep, the adaptive
discount factor creates a bounded-effort search space similar to the

trust regions created by adaptive step sizes [24]; and 𝛾DDPG looks
for the highest accuracy state within this space.

The aforementioned adaptive discount which is a function of the
effort executed by the attacker on the victim environment can be
modeled in different ways. The attacker executes effort on the victim
environment to poison/modify the environment’s transition dynam-
ics. This effort can therefore be computed in terms of the distance be-
tween the original and the current environment dynamics. However
different environment dynamics at the same distance to the original
dynamics can result in different accuracy of target behavior adoption.
Therefore, we adopt the aforementioned MDP-based formulation
but modify it to compute distance between target-current ( current
environment * target behavior) and perfect (original environment
* target behavior) MDPs instead of vanilla-current ( current envi-
ronment * current behavior) and perfect MDPs. The target-current
MDP models the current environment dynamics coupled with the
victim’s target behavior as a stochastic Markov process and there-
fore computes target-behavior conditioned effort associated with
the current state. The target-current MDP over state-action pairs
is here onwards denoted as 𝑃𝑢𝑖 (𝑠 𝑗+1, 𝑎 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 ). Here, 𝑗 denotes
victim-level time step, just as 𝑖 has been used to denote attacker-level
time step. This target-current process is described in Equation 3.
The effort is then computed as the Wasserstein distance between the
𝑘𝑡ℎ step distributions corresponding to the target-current and perfect
processes respectively. This work adopts the partial target behavior
design of Xu et al. [34]:

𝜏∗𝑢𝑖 (𝑠) =
{
𝑎∗𝑛 𝑠𝑛 ∈ 𝑆∗

𝜏𝑢𝑖 (𝑠𝑛) 𝑠𝑛 ∉ 𝑆∗
(1)

Here 𝑆∗ is the target state set, 𝑎∗𝑛 is the target action for target
state 𝑠𝑛 , and 𝜏𝑢𝑖 (𝑠) is the latest behavior of the victim observed
in the environment with transition dynamics 𝑇𝑢𝑖 . As the attacker
cannot access the victims’ policy in the given blackbox setting, it
approximates the victim policy 𝜋𝑢𝑖 , using the last ℎ actions taken
by the victim in each state. The target policy distribution 𝜋∗𝑢𝑖 is then
constructed by taking a copy of 𝜋𝑢𝑖 and modifying it by assigning
probability 1.0 to all target actions (and 0.0 to non-target actions)
w.r.t. each target state. The vanilla-current 𝑃𝑣𝑢𝑖 , target-current 𝑃𝑢𝑖 and
perfect 𝑃∗𝑢0 processes are defined as:

Vanilla-Current MDP = 𝑃𝑣𝑢𝑖 (𝑠 𝑗+1, 𝑎 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 )
= 𝑇𝑢𝑖 (𝑠 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 ) 𝜋𝑢𝑖 (𝑎 𝑗+1 |𝑠 𝑗+1)

(2)

Target-Current MDP = 𝑃𝑢𝑖 (𝑠 𝑗+1, 𝑎 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 )
= 𝑇𝑢𝑖 (𝑠 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 ) 𝜋∗𝑢𝑖 (𝑎 𝑗+1 |𝑠 𝑗+1)

(3)

Perfect MDP = 𝑃∗𝑢0 (𝑠 𝑗+1, 𝑎 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 )
= 𝑇𝑢0 (𝑠 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 ) 𝜋∗𝑢𝑖 (𝑎 𝑗+1 |𝑠 𝑗+1)

(4)

As noted in Section 1, prior works utilize KLR [23]) to com-
pute the divergence between Markov processes [33, 34] and utilize
negative of this divergence as the attacker reward. KLR computes
divergence between probability distributions of different trajectories
in the two given Markov processes but does not take the underlying
metric space into account. This work hypothesizes that a measure
that computes the distance between the 𝑘𝑡ℎ step probability distri-
butions of two Markov processes while respecting the underlying



(a) Accuracy Line Graph (b) Softmax Accuracy Line Graph (c) Effort Line Graph (d) Legend

(e) Accuracy Histogram (f) SoftMax Accuracy Histogram (g) Effort Histogram (h) Time Histogram

Figure 2: Accuracy, Effort, and Time of 𝛾DDPG with fixed Bellman discounts 0.80, 0.85, 0.90, 0.95, and 0.99

geometry of the metric space provides a better estimate of the differ-
ence between the two given Markov processes when compared to
KLR. To test this hypothesis we use Wasserstein distance to com-
pute the distance between the target-current and perfect Markov
processes. Wasserstein distance possesses an additional property of
being insensitive to small changes in the probability distributions.
This property is advantageous in the current uncertain blackbox
setting where 𝜏𝑢𝑖 being an approximate representation of the actual
policy of the victim can be noisy in nature. Let 𝑝𝑘𝑢𝑖 and 𝑝𝑘∗𝑢0 be the
𝑘𝑡ℎ step probability distributions of the target-current and perfect
processes respectively. The Wasserstein 1-distance between these
distributions termed TargetWD is defined below. Here, 𝛽 is a trans-
port plan, 𝑑 (𝑥,𝑦) is the distance between 𝑥 and 𝑦, and 𝑝𝑘𝑢𝑖 and 𝑝𝑘∗𝑢0

are written as 𝑝𝑘 and 𝑝𝑘∗ respectively.

𝜸 ∝ TargetWD(𝑝𝑘 , 𝑝𝑘∗) :=(
inf

𝛽∈B(𝑝𝑘 ,𝑝𝑘∗ )
IE(𝑥,𝑦)∼𝛽𝑑 (𝑥,𝑦) d𝛽 (𝑥,𝑦)

)
(5)

4 EXPERIMENTS
Several works in the training-time attack domain develop, test, and
study attacks on a navigational agent (victim) whose objective is
to find the shortest path to the goal state [22, 32–34]. Herein the
victim’s navigation environment can be discrete or continuous. In
discrete environments, the target behavior selected in these works
was an alternate path to the goal state that is un-adoptable due to
environment dynamics but equal in length to the optimal path (i.e.
optimal with respect to the victim’s objectives). On the other hand,
in continuous environments, a longer trajectory along the optimal

path was selected as the target behavior (i.e. nearly-optimal with
respect to the victim’s objectives). The current research aims to
build an attacker that learns a high-accuracy, low-effort strategy
to modify the stochastic dynamics of a discrete environment in
order to push a training victim agent to learn a strictly sub-optimal
target behavior. This target behavior must be un-adoptable in the
default environment due to both, environment dynamics as well as
sub-optimality with respect to victim’s objectives. In the following
experiments, a path that is three times the length of the optimal
path (shortest high-probability path under the original dynamics) is
chosen as the strictly sub-optimal target behavior.

In order to better align our contribution with prior works, we
utilize the 3D Grid World [22] to test and establish the quality of
the proposed methodology. This environment simulates an uneven
terrain on a 2𝐷 grid of cells. The unevenness corresponds to the 3𝑟𝑑
dimension of the grid and is due to the elevation/altitude associated
with each grid cell. The relative elevation between two cells affects
the transition probability between them. A change in this relative
elevation thus changes how the environment responds to a navigating
agent’s actions. The navigating agent’s task is to find the optimal
path from the start cell to the goal cell and its state is its position
inside the grid world. At each time step, the agent observes its state
and takes one step in any of the four cardinal directions (N,S,E,W).
The agent receives a reward of -1 for every action it takes until it
reaches the goal state. A given agent training episode terminates
once the agent reaches the goal state or maximum time has elapsed.
This pushes the agent to find a shortest path to the goal cell. This
environment also allows the presence of an additional agent, the
elevation expert who can view the altitude of each grid cell and take
a constrained action to modify it. The elevation expert’s state space
comprises of the grid cells’ altitudes along with the navigational
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Figure 3: Accuracy, Effort, and Time of 𝛾DDPG with adaptive Bellman discounts KLR and WD

agent’s behavior, while its action space is a vector of real numbers
[𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑀 ], 𝑥 ∈ [−1.0, 1.0] where 𝑀 is the total number of
cells in the grid. In this work, the victim is a navigating agent while
the attacker is the elevation expert.

The performance of the attacker is measured in terms of the ac-
curacy (Attack Accuracy) and strength (Attack SoftMax Accuracy)
with which the victim (unknowingly) adopts the target behavior; the
cumulative changes brought about in the victim environment by the
attacker (Attacker Effort); and time taken to carry out the attack (At-
tack Time). Attack Accuracy (abbreviated as @Acc) computes the
level of adoption of the target behavior by the victim. A target state
(state included in the target path) is assigned an adoption accuracy
of 1.0 if the victim assigns highest probability to the target action
(attacker-desired victim-action) in that state. The final accuracy is
the sum of the adoption accuracies of all target states, divided by the
number of target states. The convergence rate of this measure reflects
how quickly the attack enabled target behavior adoption in the victim.
Attack SoftMax Accuracy (@SoftAcc) computes the probability
assigned to the target path by the victim and is computed as the
sum of the target actions’ probabilities in the target states, divided
by the number of target states. This measure reflects the strength
with which the victim adopts the target behavior. Attacker Effort
(@Effort) computes the degree to which the attacker modifies the
environment and is computed as the mean of the absolute difference
between the previous and current attack time step’s grid cells’ al-
titudes. Attack Time (@Time) is the computation time taken by
the attacker to carry out an attack action. @Time is inclusive of the
observation-time wherein the attacker observes the victim while it
trains in the attacked/poisoned/modified environment.

The core contribution of this work is a novel RL algorithm,
𝛾DDPG that is capable of carrying out dual-priority dual-objective

optimization. We investigate several variations of this algorithm and
compare the best-performing variations to a state-of-the-art baseline,
TEPA. The performance of the various models is demonstrated via
histograms that capture overall statistics as well as line graphs that
depict performance across training time. In line graphs, the mean of
each metric is computed for every attacker training episode and its
maximum value across a sliding-window of length 75 is presented
such that the x-axis represents the attacker training episodes and the
y-axis represents the maximum mean value of the metric within the
window. The attacker training episode is a 15-step sequential attack
on a freshly initialized victim wherein attack step 0 corresponds to
the original environment with default dynamics, and the episode
ends when the victim has adopted the target behavior with 1.0 @Acc
or max attack steps (15) have elapsed. Each histogram and line graph
represents four training runs with different seeds, except for the ones
corresponding to Experiment 4 wherein a single training run is pre-
sented because the baseline model requires an exorbitant amount of
time to carry out the attacker’s training. The effort and time plots
represent negative of mean @Effort and mean @Time respectively
in order to standardize that values on the right in histograms and
graphs on top in line graphs are better, across all metrics.

This work takes state-of-the-art training-time environment-poisoning
attack generation methodology, TEPA [34] as its baseline. TEPA is
an auto-encoder-based model that is shown capable of pushing a
victim agent in whitebox and proxy-blackbox adversarial settings to
adopt a target behavior that is optimal with respect to the victim’s
objectives, but un-adoptable due to environment dynamics. TEPA
uses state, action trajectories to represent the victim’s behavior and
utilizes the negative KLR between the vanilla-current and perfect
processes as the attacker’s reward.
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Figure 4: Accuracy, Effort, and Time of 𝛾DDPG with adaptive Bellman discounts TargetKLR and TargetWD

Experiment 1 is designed to demonstrate the capability of the dis-
count factor to function as a means of bounding the lower-priority ob-
jective (minimize @Effort) while reducing the effect of uncertainty
so as to aid in the optimization of the primary objective (maximize
@Acc) in a high-dimensional space. Figure 2 shows that strategies
found by lower discount factors exert a slightly higher @Effort
to achieve high @Acc and @SoftAcc. This implies that reducing
the search space around the current state, reduces the effect of un-
certainty in the high-dimensional blackbox (partially-observable)
setting; enabling 𝛾DDPG to find strategies that achieve high @Acc
while exerting a bounded @Effort. Additionally, the variance of
@Acc and @SoftAcc across training increases with increasing 𝛾 .
This reflects the difficulty faced by RL algorithms while optimizing
in high-dimensional non-convex spaces and illustrates the potential
of the discount factor in facilitating dual-priority dual-objective op-
timization. In this work, 0.90 is chosen as the best fixed discount
as it offers the best balance between @Acc and @Effort. However,
as this methodology requires a grid-search to find the optimal fixed
discount factor (𝛾), it cannot be used in settings where the victim
task or victim environment changes with time, in a manner that the
optimal discount factor of the attacker also undergoes modification.
This problem associated with fixed discounts is solved in the current
work with the aid of TargetWD based adaptive/dynamic discount
introduced in Section 3.

Experiments 2 and 3 compare different adaptive discounts with
the best fixed discount (0.90) found via grid search. Prior works
[22, 34] utilize negative KLR between the vanilla-current (Eq. 2)
and perfect MDPs (Eq. 4) as the attacker reward because reducing
this KLR pushes the current MDP towards the perfect MDP (high
@Acc and low @Effort). The adaptive discount function proposed
in this paper (TargetWD) on the other hand computes Wasserstein
Distance (WD) between target-current (Eq. 3) and perfect MDPs

(Eq. 4), which only incorporates @Effort with respect to the target
behavior. In order to better understand the individual contributions of
the WD metric and target-current MDP based distance in bounding
the lower-priority objective (@Effort) and reducing uncertainty, we
compare four adaptive discount functions:

• KLR - KLR(Vanilla-Current MDP, Perfect MDP)
• WD - WD(Vanilla-Current MDP, Perfect MDP)
• TargetKLR - KLR(Target-Current MDP, Perfect MDP)
• TargetWD - WD(Target-Current MDP, Perfect MDP)

These four adaptive discount functions must undergo normaliza-
tion as the range of KL divergence [13] and Wasserstein distance
[28] is [0,∞]. A short single-seed experiment of 3k training episodes
was conducted to test the effect of different normalization ranges
on the performance of KLR and WD adaptive discounts. In this ex-
periment, different normalization ranges with lower bounds greater
than 0.5 and higher bounds equal to 0.99 were tested. These values
were chosen to support prioritization of maximizing accuracy over
minimizing effort. WD achieved higher mean @Acc with high fre-
quency in all ranges. In order to give KLR adaptive discounts a better
chance, we optimized both ranges to compare the best performers
from each method.

Experiment 2, presented in Figure 3 compares KLR and WD adap-
tive discounts to 0.90 fixed discount, while Experiment 3, presented
in Figure 4 compares TargetKLR and TargetWD adaptive discounts
to 0.90 fixed discount. WD and TargetWD adaptive discounts fre-
quently find strategies with higher @Acc and @SoftAcc than KLR
and TargetKLR adaptive discounts respectively. Moreover, some of
the strategies found by WD and TargetWD have better @SoftAcc
than majority of the strategies found by best fixed discount found via
grid-search (0.90). Furthermore, all adaptive discounts are able to
achieve these accuracies while executing a bounded level of @Effort
on the victim environment. These results imply that in the given
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Figure 5: Accuracy, Effort, and Time of baseline TEPA vs 𝛾DDPG with adaptive Bellman discounts WD and TargetWD

setting, in order to ensure a high level of adoption (@Acc) as well
as adherence (@SoftAcc) to the target behavior, the adaptive dis-
count function must respect the underlying geometry of the metric
space; compute the difference between two Markov processes using
distances between 𝑘𝑡ℎ step probability distributions instead of diver-
gence between trajectory distributions; and be insensitive to small
differences in the 𝑘𝑡ℎ step probability distributions corresponding
to the Markov processes. Furthermore, the @Time graph in Figures
3 and 4 show that adaptive discounts find strategies that take lesser
time to carry out the attack compared to strategies found by the best
fixed discount.

Experiment 4, presented in Figure 5 compares the best-performing
models in experiments 2 and 3 i.e. WD and TargetWD, with the
state-of-the-art baseline TEPA, in order to highlight the overall con-
tribution of this work. In comparison to strategies found by WD and
TargetWD adaptive discounts, TEPA strategies achieve much lower
@Acc and @SoftAcc in spite of taking 180 times more @Time to ex-
ecute. Moreover, it is interesting to note that after approximately 11k
training episodes, @Acc and @SoftAcc of TEPA begin to fluctuate
within very small fixed ranges while @Effort and @Time plots be-
come almost constant. This suggests that TEPA gets stuck in a local
optima and is unable to completely exit it even after approximately
20k training episodes. On the other hand, while both WD and Tar-
getWD strategies perform better than the baseline w.r.t. all metrics;
WD strategies achieve higher @Acc and @SoftAcc compared to Tar-
getWD whereas TargetWD strategies execute lower @Effort. Given
that lower @Effort is preferred in this work, we choose TargetWD
as the best adaptive discount.

5 CONCLUSION AND FUTURE WORK
This paper introduces a novel category of training-time environment-
poisoning attacks wherein the attacker pushes the victim towards a

strictly sub-optimal target behavior. This strictly sub-optimal target
behavior is un-adoptable in the original environment due to both,
environment dynamics as well as sub-optimality with respect to
victim’s objectives. In order to make an attacker capable of carrying
out such attacks, we introduce a novel reinforcement-learning algo-
rithm titled 𝛾DDPG that utilizes an adaptive Bellman discount factor
to support dual-priority dual-objective optimization in a partially
observable setting. This dynamic discount bounds 𝛾DDPG’s search
space conditioned on the accumulated modifications executed on the
victim environment until the current attack step. The bounded search
space, on one hand, bounds the lower priority objective (minimize
Attacker Effort) and on the other hand, reduces uncertainty associ-
ated with the partially-observable environment and thereby aids in
optimization of the primary objective (maximize Attack Accuracy).
We show that Wasserstein distance based adaptive discounts perform
better than Kullback Leibler divergence based adaptive discounts.

The attacker approximates the victim’s policy using the last action
taken by the victim in each environment state. This mechanism can
however only be used for victims training in an environment with
discrete state space. Similarly, the current formulation of TargetWD
adaptive discount requires the underlying target-current MDP and
perfect MDP to be constructed on an environment with discrete state
and action spaces. Our next step entails extension of the proposed
methodology to continuous environments. Moreover, the proposed
algorithm supports only dual-objective optimization with two levels
of priority. Future work constitutes expanding the developed method-
ology to multi-objective optimization with more than 2 objectives
and priority levels.
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