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ABSTRACT
As Reinforcement Learning (RL) solutions are becoming ubiquitous,
so is the study of potential threats to their training and deploy-
ment. While single-learner training-time attacks, capable of "pre-
programming" behavioral triggers into a strategy, receive increasing
attention, attacks on collections of learning agents have been largely
overlooked. We remedy the situation by developing a constructive
training-time attack on a population of learning agents and make the
attack agnostic to the size of the population. The attack constitutes a
sequence of environment (re)parameterizations (poisonings), gen-
erated to overcome individual differences between agents and lead
the entire population to the same target behavior while minimizing
effective environment modulation. Our method is demonstrated on
populations of independent learners in "ghost" environments (learn-
ers do not interact or perceive each other) as well as environments
with mutual awareness, with or without individual learning. From the
attack perspective, we pursue an ultra-blackbox setting, i.e., cross-
policy traces of the victim learners are the only input both for attack
conditioning and attack evaluation during the attacker’s training. To
manage the resulting uncertainty in population behavior, we deploy
a novel Wasserstein distance-based Gaussian embedding of detected
behaviors within the population of victim learners. To align with
prior works on environment poisoning, our experiments are based
on a 3D Grid World domain and show: a) feasibility, i.e., despite the
uncertainty, the attack forces a population-wide adoption of target
behavior; b) efficacy, i.e., the attack is size-agnostic and transferable.

KEYWORDS
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1 INTRODUCTION
Reinforcement learning (RL) has proliferated most AI applications
that investigate unexplored spaces and has bestowed these applica-
tions with remarkable capabilities, superhuman at times [10, 16, 17].
Alas, there is no Superman without Kryptonite. RL methods are sub-
ject to a variety of attacks that can degrade a policy’s performance
during deployment; introduce behavior triggers into it or force an
agent to learn an a priori non-optimal target strategy [4, 8]. To
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achieve this, an adversarial system is constructed that encompasses
an RL agent, its environment, and its task. In these systems, the
RL agent is regarded as the victim, its RL environment, the victim
environment, and the task, the victim task. In addition to the victim,
the system includes an adversary, tasked with attacking the victim
agent. Since the attacker’s task is no easier than the victim’s, ma-
chine learning solutions (and RL, in particular) have been deployed
on the attacker’s side as well. All attack solutions are commonly
classified by 3 features: the form of attack (Train vs Test), the mode
of attack (Reward vs Observation vs Environment), and the level
of access (Whitebox vs Blackbox) to the victim’s inner workings
granted to the attacker.

In this paper, we focus on training-time, environment-poisoning
attacks. That is we seek to influence the training/optimization of
the victim agent policy by means of altering the environment dy-
namics (the way it changes in response to the victim’s actions) akin
to [2, 22, 27]. The goal of the attack being to introduce "backdoors"
or behavioral triggers into the victim’s learned strategy by means
encapsulated within the environment mechanics, avoiding access
to the victim’s inner workings. Furthermore, following this line of
reasoning, we favor a blackbox setting, wherein an attacker estimates
the victim’s behavior policy by observing the victim’s interaction
with the environment and then conditions the attack on this esti-
mated behavior. In fact, we expand this notion. Normally, during the
attacker’s training, the system would have access to a proxy victim’s
inner workings. Such a proxy victim’s actual strategy would then
be used to generate an extrinsic reward signal for the attacker. In
contrast, this paper adopts an Ultra-Blackbox (UB) scenario, where
the reward signal is intrinsic, i.e., generated based on the observed
and perceived behavior of the (proxy) victim without any access to
its inner workings.

Although there is some progress in attacking Multi-agent RL
(MARL) systems (e.g., [3, 5, 11, 12, 19]), to the best of the authors’
knowledge, none have yet studied the question of multiple RL agents
being attacked simultaneously with an environment poisoning attack.
Eyeing social and collective learning settings (e.g., [7, 13, 14, 18,
29]), we seek to attack a population of learners without having the
luxury of access to any single individual inner workings or the inter-
agent relationship. To begin, we adopt scenarios with simplified
collectives: a) an Implicit Collective, where agents are unaware of
each other (essentially inhabit copies of the same environment), and
practice individual learning; b) a Collective, where agents are aware
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of each other’s existence, and learn via individual as well as social
learning; c) a Swarm Collective, where agents are aware of each
other’s existence, but are anonymous to each other, and practice
social learning. We describe these in greater detail in Section 2

Now, to finalize our approach and define an optimal sequence of
environment poisonings, we would need the capability to efficiently
capture the distribution of policies used by the victim collective and
measure the effect a poisoned environment has on such a distribution.
Technically, our approach to these issues is structurally more related
to the Optimal Transport Kernel Embedding (OTKE) [15], than any
other set representation method, such as [20, 23, 30]. Specifically,
we use a two-step representation for the set of all policies found
in a population: a) representing uncertainty in each agent’s policy,
given a cross-policy interaction trace; b) capturing the distribution
of behaviors at the population level. The former is achieved by an
application of VAE, and the latter by a Wasserstein barycenter in
the resulting latent space. Notice that we somewhat presume that
environment poisoning is effective and only use a single barycenter,
disregarding a potential sub-structure at this research stage. In par-
ticular, we address the following two hypotheses: H1) Wasserstein
distance-based Gaussian embedding is capable of capturing the be-
havior of different-sized victim populations; and H2) Attack strategy
learned on a given population is transferable to other populations of
different sizes.

To sum up, we introduce: a) Collective Environment Poisoning
(CEP) framework, which we experimentally instantiate for three
scenarios: implicit collectives, collectives and swarm collectives; b)
Size-Agnostic Population Behavior Representation based on a
Wasserstein distance-based Gaussian embedding; c) Ultra-Blackbox
(UB) Adversarial Setting, wherein across-policy behavior traces
of the victim population are used to both condition and evaluate the
attack.

2 VICTIM POPULATION SETTINGS
Collective learning frameworks where agents train on copies of the
same environment fall under three lines of research [7, 13, 14, 18,
29]. The first line aims to decrease the complexity of solving large
Markov decision processes that model sizeable multi-agent systems
[14]. They do so by breaking down the problem into tasks that are
executed in parallel. Each task houses one or more agents and co-
ordinates at run-time in order to push the agent population towards
optimal behavior. The second line of research enables a single agent
to better explore the given environment in a more efficient manner,
by interacting with it in parallel using different policies [7]. In the
third line of research, the agent aims to learn how to learn and strives
to be able to perform efficiently across a family of tasks (Meta RL)
[18]. Herein, the agent trains on different tasks, in parallel. In all
three domains, the agents exchange information in order to learn
better strategies more quickly. [28] points out that an optimal balance
between individual and social learning is critical for learning optimal
behaviors in a population. Herein, individual learning is when each
agent explores, interacts, and learns from the environment separately
while social learning is when agents copy each other’s behaviors.
Therefore, individual learning leads to innovations which can then
efficiently spread through the population via social learning. How-
ever, individual learning incurs high exploration cost. On the other

hand, social learning is cost-effective but requires construction of a
strategy by which the population chooses which behaviors (success-
ful vs majority) to copy. The optimality of these strategies, akin to
meta-control strategies in the human brain [6], are sensitive to envi-
ronment variability. In environments that change frequently, social
learning might hamper the population’s learning as the exchanged
information can become invalid very quickly. This work proposes
three learning settings namely; Implicit Collective, Collective, and
Swarm Collective; wherein individual learning decreases while so-
cial learning increases progressively. In these settings, each agent
trains to learn its individual task with the support of a separate re-
ward signal while the attacker trains to push the complete (victim)
populations towards a target behavior.

In the Implicit Collective setting, the innovation capability of
the population is maximized via individual learning (at the cost of
exploration), as agents practice Decentralized Training, Decentral-
ized Execution (DTDE). This is achieved as a collection of learning
agents individually experience a commonly parameterized environ-
ment, and interact only implicitly via observations of environment
modifications. The environment observations serve as a medium of
implicit interaction as the attacker takes a single attack action to
modify/poison the blueprint of the victim environment, conditioned
on the behaviors of all agents present in the population. Agents,
therefore, have some influence on each other, since a failure or stub-
bornness of one of them has an effect on the next attack presented
to the entire population. Drawing inspiration from [7], exploration
is made more efficient during testing by assigning an independent,
random number generation seed to each agent in the victim popula-
tion. This increases diversity as well as commitment of the victim
agents. The Implicit Collective setting can find application in the
development of an adaptive single-player computer game engine
wherein the adaptive game engine represents an attacker that strives
to simultaneously push a complete population of victims (players)
towards a target behavior (with maximum player stickiness) and
each attack action represents a new release/version of the game.

In Collective and Swarm Collective settings the agents occupy
the same copy of the victim environment. Herein, each agent ob-
serves (anonymized version of) every other agent, and takes actions
conditioned on this observation (along with its own position inside
the victim environment). The agents practice Centralized Training,
Decentralized Execution (CTDE) where a single network is trained
using all victims’ interactions. As the agents learn from each other’s
experiences, these settings support social learning. In Collective
setting, individual learning is enhanced by inculcation of "agent
indication" i.e. addition of an indication of the observing agent to its
observations [24]. This enables the same neural network to represent
diverse victim behaviors. In addition, each agent is committed to a
separate, diverse behavior by assigning it an independent, random
number generation seed [7]. Collective setting, therefore, presents
a balanced scenario that houses high support for both individual
and social learning. On the other hand, Swarm Collective does not
inculcate agent indication and independent random seeds, and there-
fore strongly promotes social learning. The centrally trained neural
network in this setting learns a single optimal victim behavior using
all victims’ interactions. Lastly, a soft competition is injected into
both settings by terminating victim-training episodes as soon as at
least one victim reaches the goal state (or maximum training time



has elapsed); to enable faster adoption of optimal behaviors inside
the victim population.

3 METHODOLOGY

Figure 1: Bi-Level Attack Framework in Implicit Collective
Setting

This section describes the developed methodology in increasing
levels of detail. First, the overall interaction structure between the
attacker and a population of victim learners is presented. Then, the
specifics of encoding a distribution of behaviors within a population
are described.

3.1 Bi-Level System Architecture

Figure 2: Attack Deployment

We formalize our method as a bi-level hierarchical framework
wherein the attacker as well as each member of the victim population
is an independent reinforcement-learning agent with its individual
learning algorithm, memory, and policy. The victim population is a
collection of learners where each member trains to learn the given
task in a common environment under the Collective and Swarm
Collective settings; and in an environment copy based on the com-
mon blueprint, in the Implicit Collective setting. In order to learn
the given task, each agent trains to maximize its individual cumu-
lative discounted rewards, which correspond to its individual task.
The attacker on the other hand observes the interaction of the pop-
ulation of victims with their environment and, based on the set of
observed behaviors, takes an action that modifies the victim environ-
ment/blueprint. The goal of the attacker is to sequentially and mini-
mally modify the victim environment dynamics to drive the victim

population to adopt the attacker-desired target behavior. Therefore,
the overall system is formed by two nested closed-loop learning pro-
cesses, wherein the attacker and members of the victim population
are modeled as Markov Decision Processes (MDPs).

Victim Population MDP: The victim population’s Markov pro-
cess can be denoted by the tuple < 𝑆,𝐴,𝑇𝑢𝑖 , 𝑅𝑣, 𝑞0, 𝛾𝑣 > where
𝑆 = 𝑠1, 𝑠2, ..., and 𝐴 = 𝑎1, 𝑎2, ... are the victims’ states and actions
respectively; 𝑅𝑣 : 𝑆 × 𝐴 × 𝑆 → R is the reward function which en-
codes each victim’s task; 𝛾𝑣 ∈ (0, 1) is the discount factor, 𝑞0 (𝑆) is
the distribution over initial states; and,𝑇𝑢𝑖 : 𝑆 ×𝐴×𝑆 → [0, 1] is the
probabilistic transition function, where 𝑢𝑖 denotes the environment
parameterization that has resulted from the first 𝑖 interventions on the
environment, by the attacker. In particular, 𝑇𝑢0 refers to the original,
unaltered dynamics of the victim environment. A single attack ac-
tion modifies the victim environment dynamics for the entire victim
population. The objective of each member of the victim population
is to find an optimal policy within the experienced environment.

Attacker MDP: In our ultra-blackbox setting, the attacker’s
Markov process is partially observable in nature as the attacker does
not have access to the victim policies; and instead, constructs an ap-
proximation of the victim population’s behavior. However, explicitly
solving a POMDP is computationally expensive. Taking inspiration
from Belief MDPs [9], this work reduces the attacker POMDP to an
MDP. The attacker observation is treated as the attacker state and
any underlying uncertainty is absorbed by the stochastic transition
function. The attacker’s Markov process can be represented by the
tuple < Θ,𝑈 , 𝐹, 𝑅𝑎, 𝜏

∗, 𝛾𝑎 >, where: Θ = [𝑇𝑢𝑖 , 𝜙𝑢𝑖 ] is the attacker’s
state space comprising the victim environment dynamics, 𝑇𝑢𝑖 and
the victim population’s behavior, 𝜙𝑢𝑖 that emerged in response to
those dynamics; 𝑈 is the attacker’s action space, i.e., the set of all
permissible changes that can be applied to the victim environment
dynamics, such that action 𝑢𝑖 when applied on the environment with
dynamics 𝑇𝑢𝑖−1 results in an environment with dynamics 𝑇𝑢𝑖 . It is
important to note here that environment dynamics at attack time
step 𝑖 are a result of accumulated changes caused by attack actions
𝑢1, 𝑢2, ..., 𝑢𝑖 . 𝐹 : Θ ×𝑈 × Θ → [0, 1] is the probabilistic transition
function that describes the response of the victim population to envi-
ronmental experiences, i.e., how the distribution of behaviors within
the population changes in response to changes in the environment
dynamics; 𝑅𝑎 : Θ ×𝑈 × Θ → R is the attacker reward function that
describes the combined efficiency (how concentrated is the victim
population behavior distribution around the ideal behavior, 𝜏∗) and
effort of (how small is) the accumulated environment modifications;
where 𝜏∗ is the attacker-desired target victim policy. The attacker
optimizes these dual objectives of efficiency (maximize) and effort
(minimum) to learn the best attack generation strategy of the form
𝜎 : Θ → 𝑈 , 𝜎 (𝑢𝑖 |Θ𝑖−1). I.e., the attacker seeks the most efficient
way to force all individual behaviors within the victim population to
converge to the target policy 𝜏∗.

3.2 Population Behavior Representation
Development of an attack generation function that is capable of
pushing victim populations of different sizes towards a target be-
havior using a single, constrained attack action at every attack time
step, under Blackbox and Ultra-Blackbox settings, entails two major
challenges, as mentioned in Section 1.



The first challenge is an accurate approximation of individual be-
haviors present inside the victim population. Due to the Blackbox/Ultra-
Blackbox nature of settings, individual victim behaviors can only be
approximated (through observation of across-policy behavior traces)
and never be captured completely with 100% certainty. The second
challenge is to make the attack generation function agnostic to the
size of the victim population.

The attacker observes the actions taken by the victims in different
states, as they train to learn their tasks in the victim environment. As
the victim population is under training, victims update their internal
policies periodically. Depending on the frequency of these updates,
each state-action pair of a behavior trace can potentially be generated
by a different policy. In this paper, the authors work with a highly in-
teractive setting wherein the victims update their policies after each
interaction with their environment. In prior works, the attacker strives
to capture a victim’s behavior by noting its trajectories in the victim
environment and conditioning each attack action on the last trajec-
tory observed prior to the attack action [26, 27]. The last trajectory
however on one hand, does not capture information about frequently
visited states that were not visited in the last trajectory; and on the
other hand, does not retain any information about states/regions that
are entirely unvisited and hence unimportant to the victim. Storing
multiple recent trajectories can help add information regarding other
frequently visited states as well as help capture the stochastic behav-
iors of a victim. However, in the Blackbox/Ultra-Blackbox settings,
it is impossible for the attacker to discern between discarded (old)
behaviors and stochastic (current) behaviors of a victim. Moreover,
this uncertainty is further exacerbated in multi-agent victim settings
wherein victim identities are not stored by the attacker. To do away
with this uncertainty, reduce memory requirements, and retain infor-
mation regarding unvisited (and hence unimportant) states; in this
work, the attacker stores the last observed victim action correspond-
ing to each state while a symbolic "no-action" is used to demarcate
unvisited states. Information regarding environment configurations
that are unimportant with respect to a victim agent’s objectives, can
prove crucial to the attacker while deciding stealthy and efficient
environment modifications that push the complete victim population
towards the attacker-desired target behavior. This individual behav-
ior information corresponding to a given victim 𝑘 will hereafter be
denoted as 𝜏𝑘,𝑢𝑖 = {𝑠1, 𝑎1; 𝑠2, 𝑎2; ...; 𝑠𝑁 , 𝑎𝑁 }∀𝑠𝑛 ∈ 𝑆 , 𝑎𝑛 is the latest
action taken by victim 𝑘 in state 𝑛 or a no-action symbol in case
state 𝑠𝑛 was never visited by the victim, and 𝑁 is the total num-
ber of states in the given environment with dynamics 𝑇𝑢𝑖 . As 𝜏𝑘,𝑢𝑖
contains the latest action / no-action symbol corresponding to all
environment configurations, 𝜏𝑘,𝑢𝑖 ’s size can become extremely large
in high-dimensional environments. Furthermore, in size-agnostic
multi-agent victim attacks, the attacker needs a mechanism to gen-
erate a uniform-sized representation of all behaviors of the victim
population. In this work, these two problems are solved by the at-
tacker by learning a distributional low-dimensional latent space, Φ
of individual behaviors using a variational auto-encoder model. The
latent behavior distribution corresponding to a given victim’s indi-
vidual behavior 𝜏𝑘,𝑢𝑖 is denoted by 𝜙𝑘,𝑢𝑖 . Herein the dimensionality
of 𝜏𝑘,𝑢𝑖 >> 𝜙𝑘,𝑢𝑖 . The variational model consists of an encoder 𝑞𝑒
that takes a given victim agent’s 𝜏𝑘,𝑢𝑖 as input and outputs parame-
ters to it’s latent behavior distribution 𝜙𝑘,𝑢𝑖 ; and a decoder 𝑞𝑑 that
takes two inputs, a sample 𝑧 from the latent distribution 𝜙𝑘,𝑢𝑖 and a

victim environment state 𝑠𝑛 , and outputs the probability with which
victim 𝑘 will take each available action in the given state 𝑠𝑛 . The
prior distribution 𝑝 (𝑧) on the latent variables is the standard normal
𝑁 (𝑧; 0, 𝐼 ) while the evidence lower bound, to be maximized over all
𝑘 is:

IE𝑧∼𝜙𝑘,𝑢𝑖 [ 𝑙𝑜𝑔 𝑞𝑑 (𝑎𝑛 |𝑧, 𝑠𝑛)] − 𝐷
𝑘𝑙 (𝜙𝑘,𝑢𝑖 | | 𝑝 (𝑧)) (1)

The generative capability of the variational individual-behavior
model is crucial in solving the second challenge of developing a
size-agnostic attack strategy that is transferable across different pop-
ulations of varied sizes. The authors exploit the regularity of the
distributional latent space and utilize the Wasserstein distance [25]
to generate a latent distribution that is representative of all individual
behaviors approximated from the victim population. Wasserstein dis-
tance respects the underlying geometry of the metric space in which
the distributions reside. Therefore, unlike other distances like Eu-
clidean, Total Variation, Hellinger, etc, Wasserstein distance provides
an aggregation mechanism (Barycenter) that preserves the structure
of individual behavior distributions. This property is highly useful
for the development of the population behavior representation as it
enables the attacker to understand prevalent victim behaviors and
thereby learn an efficient attack strategy for the population. Secondly,
Wasserstein distance is insensitive to small changes in distributions
which is a crucial property for this work as 𝜏𝑘,𝑢𝑖 s are approximate
representations of the actual policies of the victims and hence inher-
ently possess a sizable margin of error. Lastly, Wasserstein distances
can be computed between two discrete, two continuous as well as
a discrete and a continuous distribution. This property ensures the
scalability of the developed methodology to large, continuous envi-
ronments on one hand, and on the other hand, enables the developed
approach to be agnostic to the nature (discrete/continuous) of 𝜙𝑘,𝑢𝑖 .
In this work the authors use a fixed-point approach for fast compu-
tation of the Wasserstein barycenter (Fréchet mean), 𝜙𝑢𝑖 [1] of the
individual latent behavior distributions 𝜙𝑘,𝑢𝑖 corresponding to all
𝐾 agents present in the victim population; [𝜙1,𝑢𝑖 , 𝜙2,𝑢𝑖 , ..., 𝜙𝐾,𝑢𝑖 ].
In formula 2 given below, 𝑊 stands for L2-Wasserstein distance,
and 𝜆 corresponds to the importance of a particular latent behavior
distribution 𝜙𝑘,𝑢𝑖 . Herein 𝜆𝑘 is assigned the value of 1/K for all 𝑘 as
the behavior of each victim is equally important for the attacker to
consider.

𝐾∑︁
𝑘=1

𝜆𝑘𝑊
2 (𝜙𝑘,𝑢𝑖 , 𝜙𝑢𝑖 ) = min

𝜙∈Φ

{
𝐾∑︁
𝑘=1

𝜆𝑘𝑊
2 (𝜙𝑘,𝑢𝑖 , 𝜙)

}
(2)

4 EXPERIMENTS
One of the primary cognitive capabilities is the ability to navigate
in a new environment. This work tests and establishes the quality of
the proposed methodology by training an attacker to learn to attack
a population of navigational agents in a stochastic grid environment
titled 3D Grid World [21]. This environment simulates an uneven
terrain on a grid of 2 dimensional cells. The unevenness corresponds
to the 3𝑟𝑑 dimension of the grid and is due to the elevation/altitude
associated with each grid cell. The relative elevation between two
cells decides the transition probabilities between them. A change in
this relative elevation thus changes how the environment responds



Figure 3: Accuracy, Softmax Accuracy and Effort of attacks, trained and tested on same sized Implicit Collective victim populations

Figure 4: Accuracy, Softmax Accuracy and Effort of attack strategies trained and tested on same sized Collective victim populations

Figure 5: Accuracy, Softmax Accuracy and Effort of attacks, trained and tested on same sized Swarm Collective victim populations

to a navigating agent’s actions. The navigating agent’s task is to
find the optimal path from the start cell to the goal cell and its state
is its position inside the grid world in Implicit Collective setting
and its position along with the position of all other members of the
population, in Collective and Swarm Collective settings. At each
time step, the navigating agent observes its state and takes one step
in any of the four cardinal directions (N,S,E,W). Each agent receives
a reward of -1 for every action it takes until it reaches the goal state.
A given victim training episode terminates once all agents in Implicit

Collective setting and at least one agent in Collective and Swarm
Collective settings, reaches the goal state or maximum time has
elapsed. This pushes the agents to find the shortest path(s) to the
goal cell. 3D Grid World also allows the presence of an additional
agent, the elevation expert who can view the altitude of each grid
cell and take a constrained action to modify it. The elevation expert’s
state space comprises of the grid cells’ altitudes along with the
navigational population’s behavior, while its action space is a vector
of real numbers [𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑀 ], 𝑥 ∈ [−1.0, 1.0] where 𝑀 is the



total number of cells in the grid. In this work, each member of the
victim population is a navigating agent while the attacker is the
elevation expert. The attacker’s objective is to efficiently force the
victim population to follow a target path to the attacker’s desired
destination. The target path is not an optimal path in the original
environment and thus is not the optimal choice for the victims under
default environment dynamics.

The performance of the attacker is measured in terms of the ac-
curacy (Attack Accuracy) and strength (Attack SoftMax Accuracy)
with which the victim population (unknowingly) adopts the target
behavior as well as the cumulative changes brought about in the
victim environment by the attacker (Attacker Effort). Attack Ac-
curacy (abbreviated as @Acc) computes the level of adoption of
the target behavior by the victim. A target state (state included in
the target path) is assigned an adoption accuracy of 1.0 if the victim
assigns the highest probability to the target action (attacker-desired
victim-action) in that state. The final accuracy is the sum of the
adoption accuracies of all target states, divided by the number of
target states. The convergence rate of this measure reflects how
quickly the attack led to target behavior adoption in the population.
Attack SoftMax Accuracy (@SoftAcc) computes the probability
assigned to the target path by the victim and is computed as the sum
of the target actions’ probabilities in the target states, divided by
the number of target states. This measure reflects the strength with
which the population adopts the target behavior. Attacker Effort
(@Effort) computes the degree to which the attacker has modified
the environment and is computed as the mean of the absolute dif-
ference between the previous and current attack time step’s grid
cells’ altitudes. The plots of these three measurements are provided
for each experiment conducted in this study. The attacker training
episodes are 15-step sequential attacks on freshly initialized vic-
tim populations wherein attack step 0 corresponds to the original
environment with default dynamics. After each episode, the attack
strategy employed in that episode is saved if it is better or equal
to the best attack strategy found so far. These best strategies are
selected by prioritizing @Acc, because the main goal of this work
is to find strategies that push victim populations to adopt the target
behavior, while, the amount of changes made to the environment in
order to achieve this (@Effort) is the lower priority objective, and the
strength of target behavior adoption (@SoftAcc) demonstrates addi-
tional capabilities of the attack strategies. @Acc and @SoftAcc are
measured along the victim timescale to observe how the accuracies
change (and thereby understand how the victim population behaves)
in-between attack actions. @Effort on the other hand can only be
measured corresponding to each attack action and hence is measured
along the attacker timescale. Due to this difference, accuracy plots
begin from attack step 0 while effort plots begin from attack step 1.
Each graph corresponds to attacks carried out on 20 separate victim
populations.

Given that this is the first work that studies a multi-victim at-
tack via a common adversarial action, we have constructed a high-
performance artificial baseline for comparison by extending the
single-agent SOTA environment-poisoning model, TEPA [27] to the
multi-agent setting. TEPA is an auto-encoder-based model that is
shown capable of extracting the behavior of a single victim agent in
whitebox and proxy-blackbox adversarial settings. TEPA uses state,
action trajectories to represent the single victim’s behavior. In this

work, TEPA becomes capable of attacking a population by utilizing
the concatenation of latent representations of individual behavior
trajectories as the representation of the population’s behavior. This
population behavior representation includes all available informa-
tion from individual behavior representations, in its entirety, which
on one hand empowers the attacker with more information but on
the other hand, does not support learning of size-agnostic and/or
transferable attacks. This method of concatenation is utilized for
comparison in order to demonstrate the performance of an attack
that makes use of the maximum available information compared
to one that utilizes less information but has size-agnostic capabili-
ties. Two experiments are used to aid this comparison under each
multi-victim setting. In experiment A - Behavior Concatenation vs
Barycenter, attack strategies are trained and tested on populations
of same size. Each strategy is tested on 20 populations. In Implicit
Collective setting with Q-learning victim agents, 10 test populations
use the same seed as the one used by the victim populations during
training, while each agent in each of the remaining 10 populations
uses a different seed. In Collective and Swarm Collective settings
with DQN victim agents, neural networks corresponding to 10 test
populations are initialized using random numbers from the same
range as the range used for initializing populations during training,
while the remaining 10 test populations are initialized using a differ-
ent range. Experiment B - Size Agnosticity of Behavior Barycenter
demonstrates the size-agnostic and transferable capabilities of the
developed barycenter-based approach. The attacker learns attack
strategies on populations of sizes 3,5,10, and 20. Each of these
strategies is tested on 4 sets of 20 populations of sizes 3,5,10, and
20 respectively. Each set of 20 populations is created in the same
manner as described above.

Experiment A under Implicit Collective setting presented in Fig-
ure 3 encapsulates the feasibility study of this work wherein the
proposed and artificially-constructed baseline methods are trained
to attack populations of sizes 1,2, and 3. The concatenation-based
baseline converges to 1.0 @Acc within 3 attack actions when trained
to attack a population of size 1. However, as the size of the victim
population increases, mean @Acc decreases with an increase in vari-
ance. Moreover, @Acc of attacks on size-3 populations, initialized
using different seeds is much lower than attacks initialized using the
same seed. This shows that the baseline attack strategy finds it harder
to attack larger populations as well as populations with greater differ-
ences from the ones used during training, suggesting that complete
information regarding multiple victim trajectories confuses the at-
tacker, especially when those trajectories correspond to differently
initialized victim agents. Population behavior barycenter attacks
on the other hand display the opposite trend. The attack strategy
trained on populations of size 1 performs worse than those trained
on populations of sizes 2 and 3, in terms of rate of convergence to
1.0 @Acc as well as its variance. Also, interestingly, attacks on pop-
ulations initialized with different seeds converge slightly faster than
those initialized with the same seed. @SoftAcc graph shows that
barycenter-based attacks cause stronger adoption of target behavior
as the victim population assigns higher probabilities to attacker-
desired actions. On the other hand, @Effort graph shows that at
the beginning of the attack, concatenation-based strategies modify
nearly all cells by almost maximum permissible amount exerting
@Effort between 0.8 and 1.0; while Barycenter-based approaches



Figure 6: Accuracy, Softmax Accuracy and Effort of Barycenter attacks, tested on Implicit Collective victims of sizes 3, 5, 10 and 20

Figure 7: Accuracy, Softmax Accuracy and Effort of Barycenter attacks, tested on Collective victim populations of sizes 3, 5, 10 and 20

Figure 8: Accuracy, Softmax Accuracy and Effort of Barycenter attacks, tested on Swarm Collective victims of sizes 3, 5, 10 and 20

begin the attack at approximately half the level of modifications
(between 0.4 and 0.6). By the end of the attack, all strategies are
able to bound environment modifications between 0.0 and 0.2. This
experiment, therefore, shows the feasibility of multi-victim attacks
by demonstrating successful and efficient attacks on different-sized
Implicit Collectives.

Experiment A under Collective setting presented in Figure 4
serves to test the capabilities of the proposed and artificially-constructed
baseline methods, by training attacks against populations of sizes 3,
5, 10, and 20. In this setting, the baseline achieves high @Acc only

when trained to attack small 3-agent populations. On the other hand,
barycenter-based attacks on all population sizes achieve high @Acc
by the end of the attack. @Acc achieved by the last attack time step
decreases with increasing population size but remains above 0.8
throughout. It is interesting to note that @SoftAcc also displays the
same trends as @Acc. These results imply that barycenter-based
strategies not only push the victim population to assign the maxi-
mum probability to attacker-desired target actions but also ensure
that this probability is high (roughly between 0.7 and 1.0) by the end
of the attack. @Effort of most concatenation-based strategies begins



at high values (near 1.0) and reaches low values (below 0.1) by the
end of the attack. Whereas, @Effort of barycenter-based strategies
begins at medium values (between 0.5 and 0.8) and reaches low val-
ues (between 0.0 and 0.1) for smaller populations and medium-low
values (between 0.3 and 0.4) for larger populations by the end of the
attack. Therefore, with increasing population size, concatenation-
based approach minimizes effort without achieving high accuracy.
In contrast, barycenter-based approach finds strategies that continue
to exert some effort by the end of the attack in order to achieve high
accuracy. In addition, it is interesting to note that all barycenter-
based attacks in Collective setting demonstrate a climbing zig-zag
behavior in terms of @Acc and @SoftAcc. During this climbing zig-
zag behavior, the attack accuracies suffer a dip as soon as an attack
action poisons the environment but eventually reaches the largest
value seen so far; before the next poisoning takes place. Barycenter-
based approach, therefore, seems to possess the capability of finding
involved/complex attack strategies that choose to suffer short-term
losses in order to obtain long-term gains.

Figures 6 and 7 present experiment B under Implicit Collective
and Collective settings respectively. In Implicit Collective setting
test performance across all three measures are agnostic to the test-
ing population size and all barycenter-based strategies converge to
the perfect @Acc of 1.0, high @SoftAcc of 0.5, and low @Effort
below 0.15, by the end of the attack. In Collective setting, for each
strategy, accuracy decreases with increasing test population size.
This decrease however reduces with increasing training population
size. Barycenter-based approach, therefore, is not completely size-
agnostic under Collective setting, especially w.r.t strategies trained
on very small populations and tested on large populations, but per-
formance degrades gracefully.

The Swarm Collective setting is utilized to further test the capa-
bilities of the proposed barycenter-based method. In this setting, as
shown in Figure 5, the majority of both concatenation and barycen-
ter based strategies achieve better accuracies while exerting higher
effort, compared to their Collective setting counterparts. All baseline
strategies except the strategy trained on size-3 populations achieve
high @Acc and SoftAcc between 0.6 and 0.8, in contrast to the
Collective setting, wherein they achieve @Acc and @SoftAcc be-
tween 0.4 and 0.6, by the end of the attack. Size-3 baseline strategy
achieves high @Acc and @SoftAcc ( 0.9) by the end of the attack
in both Collective and Swarm Collective settings. Higher accuracies
for Swarm Collectives are accompanied by higher @Effort as all
strategies except size-3 strategy exert effort between 0.3 and 0.6, in
contrast to Collective setting wherein they reduce @Effort to below
0.2 by the end of the attack. Size-3 strategy in both Collective and
Swarm Collective settings converge towards 0.0 @Effort by the end
of the attack. This shows that the baseline method that uses concate-
nation of trajectory-based individual victims’ behaviors to capture
the population behavior is less capable of accurately understanding
population behavior of populations of sizes ≠ 3. Barycenter-based
strategies that achieve high @Acc of above 0.8 and high @SoftAcc
of above 0.7 in Collective setting achieve even higher accuracies
under Swarm Collective setting with majority of the strategies reach-
ing above 0.9 @Acc and @SoftAcc by the end of the attack. This
performance boost comes with slightly higher @Effort which is
between 0.2 and 0.4 for Swarm Collectives compared to between
0.0 and 0.4 in the Collective setting. Lastly, like Collective setting,

barycenter-based attacks also exhibit the climbing zig-zag behavior
w.r.t. @Acc and @SoftAcc under Swarm Collective setting. Experi-
ment B under Swarm Collective setting presented in Figure 8 shows
that strategies trained on smaller populations and tested on larger
populations perfectly retain the climbing zig-zag behavior but this
behavior slightly degrades for strategies trained on larger and tested
on smaller populations. @SoftAcc shows similar trends to @Acc
while @Effort remains largely unchanged across tests on different
sized test populations. Therefore, barycenter-based approach under
Swarm Collective setting is highly size-agnostic in nature.

These results imply that barycenter-based strategies are more
effective at attacking collectives that practice individual (Implicit
Collective) or social (Swarm Collective) learning than at attacking
collectives that exploit both (Collective).

5 CONCLUSION AND FUTURE WORK
This paper develops an extension of environmental poisoning attacks
to populations of reinforcement (RL) agents and introduces the Col-
lective Environment Poisoning (CEP) framework that constitutes; a)
Implicit Collective (Blackbox); b) Collective (Ultra-Blackbox); and
c) Swarm Collective (Ultra-Blackbox) settings. The authors show
that concatenation-based population behavior representation, not
only creates attack strategies that are non-transferable to different-
sized populations but also overloads the attacker with information
inhibiting it from finding strategies that ensure high attack accuracy
with low effort. In contrast, barycenter-based population behavior
representation achieves both of the aforementioned feats in Implicit
Collective setting wherein population members practice individ-
ual learning. In Collective and Swarm Collective settings wherein
victim agents learn via individual+social and social learning respec-
tively, barycenter-based attack strategies achieve high accuracies
with bounded effort when trained and tested on same-sized popula-
tions. These strategies are transferable to different-sized populations
except for strategies trained on very small populations (∼3) and
tested on very large populations (∼20). However, even in such cases,
the performance degrades gracefully.

The current framework approximates each individual victim’s
policy using the last action taken by the victim in each environment
state. This data can however only be captured for victims training
in a discrete environment. Similarly, KLR that is used to create the
extrinsic (Blackbox) and intrinsic (Ultra-Blackbox) attacker reward
signals requires the underlying MDP to be based on an environment
with discrete state and action spaces. Our next step entails expansion
of the proposed methodology to continuous environments, e.g., by
utilizing discrete latent space encoders. Moreover, the CEP frame-
work does not include the provision of attacking open multi-victim
systems wherein victims can freely enter/exit the system or het-
erogeneous victim populations. Future work constitutes expanding
CEP to study attacks on heterogeneous, open multi-victim systems.
Ultimately our goal is to understand these attacks so as to develop
defense mechanisms and contribute towards safe and robust RL
solutions.
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