
Inferring Preferences from Demonstrations in Multi-objective
Reinforcement Learning: A Dynamic Weight-based Approach

Junlin Lu
University of Galway

Galway, Ireland
J.Lu5@nuigalway.ie

Patrick Mannion
University of Galway

Galway, Ireland
patrick.mannion@universityofgalway.ie

Karl Mason
University of Galway

Galway, Ireland
karl.mason@universityofgalway.ie

ABSTRACT
Many decision-making problems feature multiple objectives. In
such problems, it is not always possible to know the preferences of
a decision-maker for different objectives. However, it is often possi-
ble to observe the behavior of decision-makers. In multi-objective
decision-making, preference inference is the process of inferring
the preferences of a decision-maker for different objectives. This
research proposes a Dynamic Weight-based Preference Inference
(DWPI) algorithm that can infer the preferences of agents acting
in multi-objective decision-making problems, based on observed
behavior trajectories in the environment. The proposed method
is evaluated on three multi-objective Markov decision processes:
Deep Sea Treasure, Traffic, and Item Gathering. The performance
of the proposed DWPI approach is compared to two existing pref-
erence inference methods from the literature, and empirical results
demonstrate significant improvements compared to the baseline
algorithms, in terms of both time requirements and accuracy of
the inferred preferences. The Dynamic Weight-based Preference
Inference algorithm also maintains its performance when inferring
preferences for sub-optimal behavior demonstrations. In addition
to its impressive performance, the Dynamic Weight-based Prefer-
ence Inference algorithm does not require any interactions during
training with the agent whose preferences are inferred, all that is
required is a trajectory of observed behavior.

KEYWORDS
Multi-objective Reinforcement Learning, Preference Inference, Dy-
namic Weight Multi-objective Agent

1 INTRODUCTION
Many decision-making problems feature multiple objectives, where
a trade-off between different objectives is inevitable. Numerical
weights are applied to specify preferences for each objective. Vary-
ing the weights allows us to approximate the Pareto optimal set of
solutions. However, it is often challenging to numerically specify a
weight vector that corresponds to the user’s true preference. For
example, consider the multi-objective decision-making (MODM)
problem of selecting stocks for a portfolio. A portfolio manager
will select stocks based on their weighting of minimizing risk and
maximizing potential future profits. He/she might want to give a
higher weighting to maximize potential future profits, but should
the weight be 0.7, 0.8, or some other number? Setting weights in
this way is unintuitive and must typically be done by trial and error.
Moreover, even if the user can provide an approximate numerical

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 9-10, 2023, Online, https://ala2023.github.io/ . 2023.

preference, a small error in their preference can result in a signifi-
cantly different policy being learned and executed which may lead
to a sub-optimal solution.

Though it is difficult to precisely express their preference in
numbers, users can always demonstrate preferences by behaviors. It
would be advantageous to utilize these demonstrations to infer their
preferences automatically rather than asking a user to manually
give a numeric weight. Preference inference (PI) is the process of
determining a user’s preference over objectives and representing it
numerically as, e.g., a vector in the case of linear scalarization.

Although there is a great deal of previous work on the PI for
general MODM tasks, inferring preferences from demonstrations
is challenging and has received limited attention in the literature
to date. Many PI works involve active learning approaches, e.g.,
Benabbou et al. [4], Benabbou and Perny [5], Zintgraf et al. [24],
which require feedback from users. Other approaches use ideas from
inverse reinforcement learning (IRL) [16, 23] to infer preferences
from demonstrations by Ikenaga and Arai [10], Takayama and Arai
[19] and heuristically search for the correct weight vector in the
preference space, which can be computationally expensive. It would
therefore be highly advantageous to develop a newmethod that can
perform autonomous PI at a low computational cost and without
ongoing input from the user.

The central idea of our proposed dynamic weight-based prefer-
ence inference (DWPI) algorithm is to train a model for PI tasks
from demonstrations. The proposed algorithm is evaluated using
three environments, i.e., Convex Deep Sea Treasure (CDST) [14],
Traffic and Item Gathering [11]. In the DWPI algorithm, a dynamic
weight MORL agent is trained in the environment to generate a
feature set of reward trajectory and a target set of preference vec-
tors to train a deep neural network model for policy inference. The
DWPI algorithm avoids the computational overhead of heuristic
approaches and requires much less user input than active learn-
ing approaches for PI. It is also more robust than other methods
from the literature as it can infer preferences correctly even if the
demonstrator gives a sub-optimal demonstration.

The main contributions of this paper are:

• We propose the DWPI algorithm, a time-efficient method for
MORL PI that utilizes demonstrations and requires no active
feedback.
• We demonstrate the generalization ability of the DWPI al-
gorithm by evaluating it in three environments with differ-
ent characteristics, i.e., fully observable with deterministic
transitions, fully observable with stochastic transitions, and
partially observable with stochastic transitions.
• We investigate the robustness of the DWPI algorithm to
sub-optimal demonstrations.

https://ala2023.github.io/

• We show the flexibility of the proposed DWPI algorithm
by implementing it with both tabular Q Learning and Deep
Q-Network.

The remainder of this paper is organized as follows. We outline the
necessary background knowledge for this paper in Section 2. In
Section 3, we describe the preference inference problem. In Section
4, we present the formal model for the DWPI algorithm. In Section
5, we illustrate the design of our experiment, and the results of
experiments and discuss the results. In Section 6, we conclude the
paper and propose some future research directions that have arisen
from this work.

2 BACKGROUND & RELATEDWORK
In this section, we review the existing works on MORL and PI in
MORL.

2.1 Multi-Objective Reinforcement Learning
MORL is a branch of RL that considers multi-objective decision-
making problems [9]. A MORL agent learns a policy by interact-
ing with the environment. MORL algorithms are similar to single-
objective reinforcement learning (SORL), where a reward signal is
calculated to evaluate an agent action based on a state. However,
in MORL, a reward vector rather than a scalar reward is given to
the agent. For the convenience of training, reward scalarization is
often used in MORL. The scalarization function, also called utility
function, is the function that maps the value vector of a policy to a
scalar value. Linear scalarization is one of the most frequently used
scalarization methods [1, 3, 6, 18]. With utility functions, we can
tell whether a policy is dominated by another by comparing their
utility values. A policy that maximizes the user utility can be drawn
from the set of non-dominated policies. This optimal policy set is
usually considered as the Pareto Optimal Set (POS) [17], where no
one solution is said to be optimal for all objectives simultaneously.

2.2 Preference Inference
Giving numerical preference vectors for MORL is not an intuitive
way for a user to express their preferences [20]. The process where
users provide a preference numerically is termed absolute feedback
in the work of [24], where users’ feedback based on the comparison
of different solutions is noted as relative feedback. Relative feedback
is the most frequently used method in PI. This method is usually
implemented as querying the user for feedback about the solutions
[4, 5, 24]. In these works, during the process of getting feedback
about the solutions, the admissible preference schemes are reduced
and an approximate preference vector can be identified. This also
involves frequently interacting with users during the PI process by
asking questions.

Ikenaga and Arai [10] propose an IRL-based method is used for
PI. By comparing the expert policy’s reward expectation ‘� and the
resulting reward expectation ‘ using the inferred preference, the dis-
tance between ground truth preference and the inferred preference
is measured. After the reward expectation from the inferred prefer-
ence converges to the expectation from ground truth preference,
the inference is supposed to be correct. To get the reward expecta-
tion of inferred preference, the RL agent needs to be trained from
scratch every time. This is not time-efficient for high-dimensional

preference spaces. To speed up the inference process, [19] proposed
an advanced method based on DRL and multiplicative weights ap-
prenticeship learning (MWAL). Rather than updating the inference
randomly in the work of [10], they update the inference along the
direction pointed out by the difference between the expert’s feature
expectation and the feature expectation from the inference.

3 PROBLEM STATEMENT
There are similarities between concepts in PI and IRL. IRL is a
methodology concerned with estimating a reward function that
explains the agent’s behaviour. The inferred reward function can
lead to a maximum reward from the existing trajectory. In PI, as-
suming the utility function is the linear combination of each reward
element, the aim of PI is then to infer a preference vector that max-
imizes the utility given the observed reward trajectory.
There are two assumptions for our work. The first assumption is
that the behaviors/trajectories observed given are optimal or near-
optimal. This is a widely accepted assumption in existing literature
for both IRL [16, 22, 23] and PI [19]. The other assumption is that the
expectation of reward trajectory is solely decided by preferences.
The agent’s reward trajectory is Z = {r1� r2� � � � rC }. The utility of
a trajectory is the sum of discounted scalarized rewards. Linear
scalarization functions are the most frequently used utility function
[7, 8, 12, 13]. Using linear scalarization function, we have Equation
2:

rZ =
Õ
rC ∈Z

WC rC (1)

DC8;8C~ (rZ) = 𝝎) rZ =
Õ
rC ∈Z

𝝎)WC rC (2)

The PI problem happens when we are given a point assumed
to be on the POS based on some unknown weights for the utility
function, and we would like to know what exactly the weights
are. In this work, to fit a real-life scenario better, we also consider
dominated points that are close to the points on the POS, known
as sub-optimal policies to extend the PI problem. In the work of
[10] and [19], their methods do not consider sub-optimal reward
trajectories where the demonstrator may not be a perfect expert
for the problem. Using the heuristic method, they have a chance
of making correct inferences, but their design cannot guarantee
that. Even if the demonstrator cannot give a perfect demonstration
that is Pareto optimal, a sub-optimal reward trajectory should be
inferred to align with a preference vector close to the preference
vector for the closest optimal reward trajectory.

To tackle this problem and further increase the inference speed,
we trained an RL agent which can handle dynamic weights and
generate a mapping between the optimal reward trajectory and
preferences. This mapping function is used to train the inferring
model. By adding sub-optimal noise to augment the data, we enable
the inferring model to be robust on sub-optimal reward trajectories.
The inferring model based on our DWPI algorithm also gives more
accurate preference inference compared to [10] and [19].

4 FORMAL MODEL
In this section, we introduce the process of training a MORL agent
with dynamic weights and present the proposed DWPI algorithm.

4.1 Dynamic Weights MORL Agent Training
The DWPI algorithm is constructed based on a dynamic weights-
based MORL (DWMORL) agent. We applied two algorithms to train
dynamic weights MORL agents in di�erent experiments to evaluate
the robustness and generality of our DWPI algorithm.

4.1.1 Dynamic Weights Tabular Q-learning.The dynamic weights
tabular Q-learning (DWTQ) algorithm is outlined in Algorithm 1.
A DWTQ agent maintains a set of Q tables, where each of the Q
tables is indexed by a possible preference vector. At the start of each
episode, a preference vector is sampled from the preference space by
a speci�c interval. The DWTQ agent interacts with the environment
and updates the Q table corresponding to the preference vector
until it has converged.

Algorithm 1 Dynamic Weights Multi-objective Tabular Q-learning
adapted from [11]

Initialize the learning rateU, discounted factorW
Initialize the number of episodes" , the maximum number of timesteps
per episode#
Sample a list of preference vectorsf 8 g from the preference space

for each8 in f 8 g do

Initialize the environment
Initialize a Q table&8
for i � 1 to " do

for t � 1 to # do
Take action0C based on stateBC usingn � 6A443~policy
Get the scalarized rewardAC = rC � 8
&8 ¹BC• 0Cº � &8 ¹BC• 0Cº ¸ U»AC ¸ W <0G0&8 ¹BÇ 1• 0º �
&8 ¹BC• 0Cº ¼

end for
end for

end for

The DWTQ algorithm is proposed for simple environments
with low-dimension preference spaces, i.e., Deep Sea Treasure (2-
dimension preference vector). In these environments, this approach
converges faster than other deep learning-based MORL dynamic
weights algorithms. For more complex MO environments with
higher dimension preference spaces, DWTQ would require signif-
icantly more computational time. Therefore, we propose a DQN-
based PI method for higher-dimension preference spaces.

4.1.2 Dynamic Weights Deep Q Network.To mitigate the scala-
bility problem of DWTQ, the deep Q network (DQN) is used as
an alternative approximator of the Q function. Unlike the tradi-
tional DQN proposed in [15], we utilize a DQN variant [11] that
can incorporate dynamic weights among objectives.

We refer to this variant asDynamic Weights Deep Q Network
(DWDQN), in order to distinguish it from DWTQ. A preference
vector is sampled at the start of each episode as part of the state
to DWDQN. DWDQN can learn a single policy that is capable of
handling preferences that change during runtime. The algorithm
for training DWDQN is outlined in Algorithm 2.

4.2 DWPI Algorithm - Training Phase
The trained dynamic weight RL agent provides a mapping function
from the preference space to the reward space that conditionally

Algorithm 2 Dynamic Weights Deep Q Learning, adapted from[11]

Initialize episodes number" , training thresholdC�A4B�>;3
Initialize the environment, agent, replay memeory and preference space

for i � 1 to " do

Sample a preference vector8 from

done = False
while not donedo

Agent observe the stateBC and select an action0C with n-greedy
Environment returns a reward vectorrC and next stateBÇ 1
Scalarize rewardAC = rC � 8
Put the tuple¹BC• 0C•BÇ 1•AC•8 º in the replay memory

end while
if i>C�A4B�>;3then

Sample batch experience from replay memory
Update Q network

end if
end for

depends on some optimal policy and the environment's transition.
The weight vector has one entry representing the preference for
each objective. During training, a preference vector is sampled from
the preference space as part of the input to the Q table/DQN. This is
the core of the generation of data to train the inference model. With
this mapping function, we propose our DWPI algorithm to train a
PI model for MODM. The inference model estimates the preferences
of an expert, given the reward trajectory from a demonstration by
the expert. In this paper the expert trajectories are generated by
trained DWRL agents, however, the same methodology could be
easily applied to infer preferences from observed expert trajectories.

The training of the inference model is conceptually the reversed
process of DWRL agent training. With the hypothesis that a DWRL
can always learn a policy that gives (close to) optimal utility for
the preferences used during training, the process of training the
preference inference model can therefore be constructed as a su-
pervised learning problem. The feature set consists of the sum of
reward vectors by the demonstrator (a DWRL agent in this paper),
while the target set is the corresponding preference vector. The
loss function is the mean squared error between the ground truth
preference vector and the inferred preference vector.

DWPI inferring models for the three environments use the same
structure, i.e., 3 fully connected hidden layers with 64, 64, and 32
neurons each, ReLU is the activation function. The hyperparameters
for training the inference model have illustrated in Table 1.

Table 1: DWPI Inferring Model Training Hyperparameters

Environment Loss Function Optimizer Learning Rate

DST MSE Adam 0.001

Tra�c MSE Adam 0.001

Item Gathering MSE Adam 0.005

Another limitation of previous methods in the literature is the
prerequisite that the demonstrator has provided optimal demon-
strations. However, this assumption may not always hold in real
life where a demonstration cannot be guaranteed as the optimal

solution. DWPI addresses this limitation by introducing noise to
a portion of the reward vectors to ensure that the DWPI method
experiences sub-optimal demonstrations. 75% of the reward tra-
jectories in the PI model training dataset are sub-optimal. Adding
noise to the reward trajectories ensures that the inference model
does not over�t the optimal policies.

As we use 3 environments that have time as an objective in
the experiments in this paper, sub-optimal reward trajectories are
generated by adding extra unnecessary time steps that result in an
extra time penalty. This is a realistic imitation of a true sub-optimal
demonstration as a demonstrator may know how to reach their
desired outcome but may not know the most e�cient way to reach
it. Figure 1 and Algorithm 3 illustrate the training phase of the
DWPI algorithm.

Figure 1: DWPI Training Phase

Algorithm 3 Dynamic Weight Preference Inference Algorithm

Initialize inferring modelI , sub-optimal noise spaceSN , environment
E, and preference space

Load the trained dynamic weights RL agent��
Initialize feature set- , target set.
while not enough entries in- do

Sample a preference vectors8 from

�� plays one episode with8 , generates reward trajectory3r
Sample a noise vector%from SN
Store the noisy reward trajectory3r ¸ %in - , store8 in .

end while
while I not convergedo

Sample batch from- to train the inferring model, lossL =
"(� ¹8̂ •8 º

end while

4.3 DWPI Algorithm - Evaluation Phase
The reward trajectories generated by an agent with a speci�c prefer-
ence are �rstly averaged and passed to the trained inference model
for the estimation of the preference vector.

Figure 2 outlines the process of inferring preferences from a
demonstration that can be either based on optimal or sub-optimal
policies. We use multiple metrics to compare the performance of
the DWPI algorithm and the baseline algorithms. Moreover, as
the Pareto optimal policy is unknown in some of our experiment
environments, these metrics are not used over all environments.
The metrics for the environment with a known Pareto front use
di�erent metrics from the environments with an unknown Pareto
front.

Figure 2: DWPI Evaluation Phase

4.3.1 Metric - Time E�iciency.This metric works for all environ-
ments. Because the baseline methods [10, 19] need to train an RL
agent for each round of preference search which exponentially
increases time consumption for preference spaces with higher di-
mensions, time e�ciency is an important evaluation dimension.
We compare the time consumption of DWPI and the baseline algo-
rithms. We assigned a similar length of time budget for each of the
algorithms being evaluated.

4.3.2 Metric - Direct Comparison.This metric works for the Con-
vex Deep Sea Treasure [14] environment in that the Pareto front is
known. The intervals of the ground truth preference corresponding
to reward trajectories are known. If the inferred preference falls
within the correct interval, the inference is correct. The accuracy of
the inferred result on all of the 10 possible Pareto optimal policies
of CDST is calculated to evaluate the overall inference accuracy of
the algorithms.

4.3.3 Metric - Mean Squared Error.This metric works for the Item
Gathering and the Tra�c environments, where typical behaviour
patterns were speci�ed in [11] but the Pareto fronts are unknown.
Mean squared error is calculated between the inferred preference
vector and the ground truth preference vector that speci�es typical
behaviour patterns.

4.3.4 Metric - Distributional Distance.To check how close the dis-
tribution of the inferred preference is to the ground truth preference,
KL-divergence is used to compare the results in Item Gathering and
Tra�c environments.

4.3.5 Metric - Resulting Utility.The metrics above mathematically
evaluate the performance of the algorithm. However, there are
possible cases where two mathematically di�erent preference vec-
tors can still deliver similar utilities. If the utility from an inferred
preference vector is very close to the utility from the ground truth
preference, it can be regarded as a good inference. The utility from
inference and the ground truth utility are compared by the magni-
tude of absolute errorsjDCAD4� D8=5 4A4=24j between the utilities.

5 EXPERIMENT
In this section, we outline the experimental settings and the imple-
mentation of the baseline algorithms.

5.1 Experiment Setting
5.1.1 Convex Deep Sea Treasure.The Convex Deep Sea Treasure
(CDST) [14] is a variant of Deep Sea Treasure (DST) environment
[21] where the globally convex Pareto front is known. The state
space is the current position of the agent. The action space consists
of moving up, down, left, or right. An episode starts with the agent
in the left top corner and ends when the agent reaches any of the

Figure 3: Convex Deep Sea Treasure Environment (left):
Agent in blue, treasures in yellow with numbers, walkable
grids in light blue, unwalkable grids in black. Tra�c Environ-
ment (middle): Agent in blue, item to collect in green, cars
in red, roads in yellow, and walls in white. Item Gathering
Environment (right): Agent in blue, �xed-preference agent
in pink, three categories collectable items in green, red and
yellow. A �xed number of each category of items is randomly
placed in the environment at the start of each episode.

treasure grids in yellow. Each of the 10 treasures corresponds to a
di�erent policy. The agent receives a reward vector where the �rst
element is the time penalty of -1 per time step until the episode
terminates and the second element is the treasure reward it gets. The
agent needs to balance between the time penalty and the treasure
reward. This trade-o� requires a 2-dimension preference vector
over the two objectives. As the environment has a 2-dimension
preference space, the DWRL agent is implemented with the DWTQ
algorithm.

5.1.2 Tra�ic.The Tra�c Environment [11] has a collectible item
on each of the upper corners. The yellow area is the road part where
the red cars move. The car moves vertically in a random direction
and it reverses the direction when hit by the wall or the edge of
the frame. The agent, starting from the left bottom corner, is not
supposed to step on the road. If the agent steps on the road it risks
being hit by a car. It must make a trade-o� between obeying the
tra�c rules, maintaining tra�c safety and the time it takes to get
the collectible items. Each item is worth reward 1, stepping on the
road causes reward -1, being hit by a car causes reward -1, hitting
on the wall or the edge of the frame causes reward -1, and the
time penalty is -1. In [11], four di�erent simulation scenarios are
given, leading to four typical behavior patterns. We normalize the
original preference vector in their work and �ne-tune them to avoid
negative weights while guaranteeing they o�er the same behavior
patterns. The elements of the preference vector are ordered as
[steps, item collection, break tra�c rules, collisions, wall hitting]. The
preference vector is rounded to 2 decimal places. The DWRL agent
is implemented with DWDQN. The scenarios are shown below.
Always Safe: [0.01, 0.45, 0.09, 0.44, 0.01]
The agent tries its best to avoid illegal behavior and collisions. It
takes the longest but safest path to collect the two items.
Always Fast: [0.12, 0.62, 0.12, 0.13, 0.01]
The agent tries to collect the two items as fast as possible. It thinks
a detour is costly and therefore does not care about the risk of
collision and breaking tra�c rules by taking a short path.
Fast and Safe:[0.05, 0.47, 0.00, 0.47, 0.01]
The agent cares about time consumption but also the safety of the

path. It is encouraged to break tra�c rules and walk on the yellow
path to spend less time.
Slow and Safe:[0.01, 0.49, 0.00, 0.49, 0.01]
The agent will walk on the road if there is a low risk of being hit
by cars. It would rather take a longer path if the tra�c condition is
not ideal.

5.1.3 Item Gathering.The Item Gathering Environment [11] con-
tains three di�erent categories of collectibles in di�erent colors.
The positions of the items are randomly initialized at the start of
each episode to evaluate the robustness of the algorithm. There
is a second agent with �xed preferences that only wish to collect
red items. The agent with dynamic weights, except the preferences
for di�erent categories of item and time penalty, however, also has
a preference for the �xed-preference agent's success of getting a
red item. This other-agent-related preference decides whether the
agent behaves cooperatively or competitively. Each category item
leads to reward 1, when the �xed-preference agent gets a red item
this gives reward 1, and the time penalty is -1. The routes of the
�xed-preference agent are randomly picked as the red items are
generated randomly at the start of each episode.

Also, four di�erent simulation scenarios are given in [11]. Orig-
inal preference vectors are normalized and �ne-tuned to avoid
negative weights while guaranteeing they o�er the same behaviour
patterns. The elements of the preference vector are ordered as[steps,
wall hitting, green item collected, red item collected, yellow item col-
lected, items collected by the other agent]. The preference vector is
rounded to 2 decimal places. The DWRL agent is implemented with
DWDQN. The scenarios are shown below.
Competitive : [0.02, 0.08, 0.15, 0.30, 0.15, 0.30] Cooperative Flag=0
The agent dislikes the other player getting the red items. It will
behave competitively, and it will be harder for the �xed-preference
agent to get the red items.
Cooperative : [0.02, 0.08, 0.15, 0.30, 0.15, 0.30] Cooperative Flag=1
This is the scenario where the agent would like the �xed-preference
agent to get red items.
Fair: [0.01, 0.05, 0.25, 0.19, 0.25, 0.25] Cooperative Flag=1
The agent prefers yellow and green items to red items and it is
happy with the �xed-preference agent getting red items.
Generous: [0.02, 0.08, 0.30, 0.00, 0.30, 0.30] Cooperative Flag=1
The agent does not care about the red items at all. It will avoid
collecting red items and will be happy with the �xed-preference
agent getting them.

5.1.4 Sub-optimal Demonstration.The sub-optimal demonstra-
tions are given as taking 1 or 2 more unnecessary extra steps to get
to the target in each of the three environments.

5.2 Baseline
We re-implement the algorithms from [10] and [19] as the two
baseline algorithms to compare our DWPI algorithm against. The
algorithm by Ikenaga and Arai[10] is based on the apprenticeship
learning and projection method (PM). Their algorithm randomly
starts from a preference and compares the resulting reward trajec-
tory with the expert trajectory. The algorithm by Takayama et al.
uses multiplicative weights apprenticeship learning (MWAL). Simi-
lar to the algorithm from [10], it infers preferences by comparing

the agent’s and expert’s reward trajectories. Instead of randomly
searching for preferences as [10], they use Equation 3 to update the
preference element, where l= is the nth element of the preference,
k is the number of feature elements, N is the total number of itera-
tions, and ‘= and ‘�= is the nth element of the feature expectation
from current RL agent and the expert.

l= ←− l= · (1 +
r

2;>6:

#
)−(‘=−‘�=) (3)

To tailor their models to fit our environment, we change their RL
part to the same algorithms, i.e. DWTQ and DWDQN algorithms.

5.3 Results and Analysis
For clarity, Table 2 describes the notation used in the presentation
of the results. Note that for the DST environment, symbols men-
tioned in Table 2 all denote the treasure preference. The inference
mechanism in the proposed algorithm differs from the baseline com-
parison methods. To ensure a fair comparison, the baseline methods
terminated once the difference between the expert’s rewards expec-
tation and the expectation of rewards from the inference converges.

The time requirements of each algorithm are illustrated in Figure
4. As this figure illustrates, the DWPI algorithm outperforms the
baseline PM and MWAL algorithms in terms of time requirements
by 76.73% and 70.83% in the DST experiments, 30.92% and 29.24%
in the Item Gathering experiments, and finally 15.62% and 16.13%
in the Traffic experiments, respectively.

Figure 4: Time Efficiency Comparison between DWPI algo-
rithm and Baselines.

5.3.1 DST environment. For the DST environment, each PI algo-
rithm is compared based on its ability to find preference values
within the preference ranges that are calculated for the optimum
policy. This can be done for the DST environment as the optimum
policies are known for given preference ranges.

The preference vector has 2 dimensions and sums to 1. The
preference for treasure objective is represented by l while the
preference for time is calculated as 1 − l . Therefore l values are
presented in Table 3, where #1 - #10 are the 10 treasures located in
DST and Acc. is the accuracy of the inference. Incorrect inferences
are colored red.

The results in Table 3 demonstrate that our proposed DWPI algo-
rithm can infer the preference with 100% accuracy when presented

Table 2: Nomenclature of Symbols

Symbol Definition

l Ground truth preference

l̂c∗ DWPI inference of optimal policy demonstrations

l̂c DWPI inference of sub-optimal policy demonstrations

l̂�!1�c∗ PM[10] inference of optimal policy demonstrations

l̂�!1�c PM[10] inference of sub-optimal policy demonstrations

l̂�!2�c∗ MWAL[19] inference of optimal policy demonstrations

l̂�!2�c MWAL[19] inference of sub-optimal policy demonstrations

Table 3: DST Preference Inference Results

l l̂c∗ l̂c l̂�!1�c∗ l̂�!1�c l̂�!2�c∗ l̂�!2�c

#1 0.00-0.05 0.02 0.02 0 0.03 0.04 0.03

#2 0.06-0.07 0.07 0.06 0.07 0.04 0.07 0.07

#3 0.08-0.09 0.08 0.08 0.09 0.09 0.08 0.005

#4 0.10-0.11 0.11 0.10 0.16 0.11 0.10 0.11

#5 0.12-0.14 0.13 0.13 0.18 0.14 0.12 0.12

#6 0.15-0.16 0.15 0.15 0.16 0.15 0.29 0.39

#7 0.17-0.20 0.18 0.18 0.2 0.18 0.18 0.19

#8 0.21-0.33 0.26 0.26 0.21 0.24 0.31 0.22

#9 0.34-0.50 0.42 0.40 0.39 0.36 0.44 0.68

#10 0.51-1.0 0.75 0.75 0.98 0.65 0.67 0.82

Acc. – 100% 100% 80% 90% 90% 80%

with both optimal and sub-optimal policies with 100% accuracy.
This is not true for either the baseline comparison algorithm.

5.3.2 Tra�ic environment. The inference result rounded to 2 deci-
mal points for the Traffic environment is presented in Table 4.

5.3.3 Item Gathering environment. The Item Gathering environ-
ment is evaluated on the same metrics as the Traffic environment.
The inference result rounded to 2 decimal points is presented in Ta-
ble 5. Cooperative Flag (shortened asCF) is used to notify the DWRL
agent about whether the weight for "other agent collection" is a
negative value. This is done for the convenience of normalization.

Due to the high-dimension nature of the Traffic and Item Gather-
ing environments, further analysis based on the metrics discussed
in Section 4 is presented.

The error metrics of each algorithm on the Traffic and Item Gath-
ering environments are displayed in Figure 5. The distributional
distance metric of the Traffic environment (upper left) and Item
Gathering environment (upper right) compares the inferred pref-
erences to the ground truth with KL-divergence between weight
vectors. In case there is a preference element of 0, we replace it
with an extremely small value of 10−5 to avoid computing the
KL-divergence metric for values where it is not defined.

The mean squared errors of each algorithm when evaluated on
the Traffic environment (Figure 5 middle left) and Item Gathering

Table 4: Traffic Preference Inference Results

Traffic Always Safe Always Fast Fast & Safe Slow & Safe

8 0.01, 0.45, 0.09, 0.44, 0.01 0.12, 0.62, 0.12, 0.13, 0.01 0.05, 0.47, 0.00, 0.47, 0.01 0.01, 0.49, 0.00, 0.49, 0.01

8̂c∗ 0.04, 0.45, 0.04, 0.44, 0.03 0.09, 0.64, 0.10, 0.18, 0.02 0.03, 0.46, 0.01, 0.49, 0.01 0.02, 0.48, 0.01, 0.49, 0.00

8̂c 0.05, 0.44, 0.04, 0.43, 0.04 0.10, 0.60, 0.11, 0.16, 0.02 0.04, 0.46, 0.02, 0.47, 0.01 0.02, 0.48, 0.01, 0.48, 0.00

8̂�!1�c∗ 0.14, 0.71, 0.14, 0.00, 0.01 0.07, 0.46, 0.09, 0.37, 0.01 0.09, 0.45, 0.14, 0.32, 0.00 0.09, 0.64, 0.13, 0.13, 0.01

8̂�!1�c 0.10, 0.69, 0.20, 0.00, 0.01 0.05, 0.63, 0.19, 0.13, 0.00 0.07, 0.51, 0.10, 0.31, 0.01 0.07, 0.70, 0.07, 0.14, 0.02

8̂�!2�c∗ 0.99, 0.01, 0.00, 0.00, 0.00 1.00, 0.00, 0.00, 0.00, 0.00 1.00, 0.00, 0.00, 0.00, 0.00 1.00, 0.00, 0.00, 0.00, 0.00

8̂�!2�c 0.16, 0.00, 0.00, 0.00, 0.84 1.00, 0.00, 0.00, 0.00, 0.00 0.98, 0.00, 0.00, 0.00, 0.02 0.99, 0.01, 0.00, 0.00, 0.00

Table 5: Item Gathering Preference Inference Results

Item
Gathering Competitive, CF = 0 Cooperative, CF = 1 Fair, CF = 1 Generous, CF = 1

8 0.02, 0.08, 0.15, 0.30, 0.15, 0.30 0.02, 0.08, 0.15, 0.30, 0.15, 0.30 0.01, 0.06, 0.25, 0.16, 0.26, 0.26 0.01, 0.07, 0.27, 0.11, 0.28, 0.26

8̂c∗ 0.02, 0.08, 0.15, 0.31, 0.15, 0.30 0.01, 0.07, 0.28, 0.07, 0.28, 0.29 0.01, 0.07, 0.27, 0.09, 0.27, 0.28 0.01, 0.07, 0.28, 0.09, 0.29, 0.26

8̂c 0.01, 0.07, 0.15, 0.30, 0.15, 0.30 0.01, 0.06, 0.26, 0.16, 0.26, 0.24 0.00, 0.07, 0.24, 0.14, 0.26, 0.29 0.00, 0.07, 0.25, 0.15, 0.26, 0.28

8̂�!1�c∗ 0.02, 0.12, 0.24, 0.38, 0.12, 0.12 0.03, 0.16, 0.32, 0.00, 0.00, 0.48 0.02, 0.11, 0.11, 0.00, 0.33, 0.43 0.02, 0.12, 0.24, 0.00, 0.38, 0.24

8̂�!1�c 0.03, 0.14, 0.00, 0.28, 0.42, 0.13 0.03, 0.16, 0.00, 0.32, 0.33, 0.16 0.02, 0.14, 0.00, 0.00, 0.42, 0.42 0.04, 0.16, 0.16, 0.16, 0.00, 0.48

8̂�!2�c∗ 0.99, 0.00, 0.01, 0.00, 0.00, 0.00 0.99, 0.00, 0.01, 0.00, 0.00, 0.00 0.99, 0.00, 0.01, 0.00, 0.00, 0.00 0.98, 0.00, 0.01, 0.01, 0.00, 0.00

8̂�!2�c 0.03, 0.12, 0.15, 0.23, 0.36, 0.11 0.99, 0.00, 0.01, 0.00, 0.00, 0.00 0.99, 0.00, 0.00, 0.00, 0.01, 0.00 0.99, 0.00, 0.00, 0.00, 0.01, 0.00

environment (Figure 5 middle right) are presented to illustrate the
difference between the value of inference and ground truth.

To calculate the absolute error of utility (Figure 5, bottom row),
a trained DWPI agent is evaluated with both the inference and
ground truth on the environment by playing 100 episodes each.
The average of the sum of utilities is calculated and the absolute
value of the difference between the utilities is then presented.

5.4 Discussion
The preference inference results demonstrate that our DWPI algo-
rithm outperforms the baselines in all environments when evalu-
ated for both demonstrations from optimal and sub-optimal policies
on all of the five metrics. In the DST environment, the DWPI model
can infer the preferences for both optimal and sub-optimal demon-
strations with 100% accuracy. This is 10pp and 20pp higher than
both benchmark comparison methods for optimal and sub-optimal
policies, respectively.

Table 6 summarizes the improvement in preference inference for
Traffic and Item Gathering environments over the average perfor-
mance for all four scenarios. In this table, the upper arrows denote
the improvement over baselines.

Apart from the improvements in terms of PI accuracy, another
key benefit of the proposed DWPI over the baseline approaches is
that it is significantly more computationally efficient. After training
the DWRL agent and generating the set of expert trajectories and
corresponding ground truth preferences, the preference inference
model for DWPI can be trained in seconds for the tested domains.

Table 6: Performance Improvement

Environment Traffic Item Gathering

KL-divergence PM MWAL PM MWAL

Optimal Demo DWPI 90.8%↑ 99.56%↑ 98.01%↑ 99.13%↑
Sub-optimal Demo DWPI 89.55%↑ 99.53%↑ 96.89%↑ 99.25%↑

MSE PM MWAL PM MWAL

Optimal Demo DWPI 97.7%↑ 99.8%↑ 85.91%↑ 98.1%↑
Sub-optimal Demo DWPI 94.13%↑ 99.83%↑ 83.81%↑ 98.9%↑

Utility PM MWAL PM MWAL

Optimal Demo DWPI 60.56%↑ 98.93%↑ 90.67%↑ 82.62%↑
Sub-optimal Demo DWPI 71.87%↑ 90.60%↑ 99.85%↑ 94.50%↑

Furthermore, after training the inference model, it can be reused to
infer preferences for any desired expert trajectory without the need
for any further training. The trained DWPI preference inference
model can infer preferences for any expert trajectory within a very
low computational envelope (<1 second to infer the preferences for
an expert trajectory for all domains tested). In contrast, the baseline
approaches, PM and MWAL, are significantly less computationally
efficient. With these methods, the full training process must be
repeated each time a new preference is inferred for a new previously
unseen expert trajectory.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Multi-Objective Reinforcement Learning
	2.2 Preference Inference

	3 Problem Statement
	4 FORMAL MODEL
	4.1 Dynamic Weights MORL Agent Training
	4.2 DWPI Algorithm - Training Phase
	4.3 DWPI Algorithm - Evaluation Phase

	5 Experiment
	5.1 Experiment Setting
	5.2 Baseline
	5.3 Results and Analysis
	5.4 Discussion

	6 Conclusion
	Acknowledgments
	References

