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ABSTRACT
In cooperative multi-agent reinforcement learning, the credit as-

signment limits the ability of the agents to learn a policy. Many

state-of-the-art methods use a centralised critic to overcome this

credit assignment problem. However, the disadvantage of using a

centralised critic is that this limits the scalability of the multi-agent

systems following the centralised training and decentralised exe-

cution paradigm. The state-of-the-art has attempted to overcome

this limitation by using factorisation methods. Unfortunately, these

factorisation methods are not usable in every jointly observable

environment. This paper presents the Counterfactual Value De-

composition Critics (CVDC) method that follows the decentralised

training with free critic communication and a decentralised ex-

ecution paradigm. The CVDC method uses the insight that any

Q-function is decomposable into a set of agent-specific Q-functions.

This property is combined with counterfactual reasoning to create

a set of decomposed communicating critics, which is usable within

every jointly observable environment. The agent-specific critic is

then used to train the local policy of an agent without the need for

any centralised training structure. We evaluate and compare the

CVDC method with other state-of-the-art baselines in a set of envi-

ronments from the Multi Particle Environments. The results show

that our method outperforms the baseline algorithms in training

time and obtained return even when parameter sharing is disabled.

KEYWORDS
Value Decomposition, Credit Assignment, Multi-Agent, Reinforce-

ment Learning, Communication Learning

1 INTRODUCTION
Single-agent reinforcement learning (RL) [3, 13, 14, 26, 29, 33] is

a popular research domain that has received a lot of attention

in recent years. In this research domain, a single agent learns a

policy based on an environment-specific reward signal. Multi-agent
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reinforcement learning (MARL) [1, 2, 5, 12] extends this by training

a set of policies in a multi-agent environment.

One of the core challenges of MARL is that the environment

appears non-stationary from the perspective of a single agent. This

is because, from the viewpoint of a single agent, the other agents

are modelled as part of the environment. As a result, any changes

in the agents’ policies as a direct consequence of exploration or

training will cause the environment to appear non-stationary.

This paper focuses on cooperative MARL, in which agents must

collaborate to achieve a common goal. The setting where multiple

actors work together applies to many real-world applications like

industrial robotics or smart grid in energy applications. A shared

team reward encourages agents to collaborate towards this common

goal by learning their policy based on the shared team reward.

However, this causes an additional challenge in which it is difficult

for the agent to determine whether its actions contributed to the

shared team reward. This challenge is called the credit-assignment

problem.

A strategy to tackle the credit-assignment problem is to use the

centralised training and decentralised execution (CTDE) paradigm

[4, 5, 9, 12] which uses global information during training while

still allowing for decentralised policy deployment after training.

The CTDE paradigm allows us to train a centralised critic [5, 12]

that can be used to train the policies of the various agents using

the actor-critic approach [13]. However, the non-stationarity of

the environment hinders the training of the centralised critic. A

centralised critic is more sensitive to the non-stationarity problem

because the centralised critic depends on the actions of every agent.

An alternative to CTDE is the decentralised training and decen-

tralised execution (DTDE) paradigm, where the agents trainwithout

any centralised structure or global information. Unfortunately, ap-

plications with a large number of agents are also very challenging

due to the credit-assignment problem. A hybrid approach between

CTDE and DTDE is DTDE with a free critic communication chan-

nel where limited communication between the critics is allowed

during training. The communication between the critics allows the

agents to share observations and actions during training. These

local observations of the other agents are necessary to be able to
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train the agent-specific critic in all possible decentralised Markov

decision process (Dec-MDP). In a Dec-MDP, the joint observation

of the agents defines the state of the environment, which the agent-

specific critics need to evaluate the agents’ policy.

In this work, we use the DTDE with a free critic communication

channel (DTDE-FCC) paradigm. As far as we are aware, this is

a novel extension of the DTDE paradigm where critics can send

information to each other during training without any cost associ-

ated with sending these messages. This paradigm acts as a stepping

stone to allow future research to limit the amount of information

sent between the critics. It is important to note that with the DTDE-

FCC paradigm, it is still possible to train a global Q-function that

depends on the environment state and the action of every agent.

However, we focus on training a set of decentralised advantage

functions instead of learning a global Q-function or global advan-

tage function for every agent. Each agent uses its agent-specific

critic to evaluate the behaviour of the policy, reducing the credit as-

signment problem. The advantage of creating a set of decentralised

advantage functions compared to training a centralised variant is

that we construct a set of decomposed advantage functions where

not every action or observation of the other agents influences the

decomposed advantage function. This reduction in influence from

the other agents reduces the non-stationarity problem the critics

encounter during training. Additionally, the free critic communi-

cation channel allows us to send actions and observations to the

other agents, which lets us train these critics in any Dec-MDP (as

shown in Section 2 and 4). These advantages are demonstrated with

the Counterfactual Value Decomposition Critics (CVDC) method.

To summarise, the goals of the CVDC methods are shown in the

following list.

(1) Train decentralised critics using a free critic communication

channel

(2) Train a set of critics within any Dec-MDP

(3) Tackle the credit assignment problem

(4) Reduce the non-stationarity from the point of view of the

agent-specific critic

CVDC achieves this by using the novel insight that any Q-function

is decomposable into a set of agent-specific Q-functions using the

joint observation and the joint action of all the agents. Our theoret-

ical contributions (see Section 5) show that we can use this insight

combined with counterfactual reasoning from the COMA method

[5] to train a set of decomposed critics. In Section 4, we discuss our

CVDC method in more detail.

2 RELATEDWORK
The credit-assignment problem [2, 5, 12, 30] is omnipresent within

the cooperativemulti-agent reinforcement learning domain because

a shared team reward is required to learn cooperating policies. A

centralised critic under the CTDE paradigm is a popular approach

to address the credit-assignment problem. Foerster et al. [5] pre-

sented the counterfactual multi-agent (COMA) policy gradients

method that trains a centralised critic and uses counterfactual rea-

soning to extract an agent-specific advantage function. We discuss

this method in more detail in Section 3.3. The COMA method is

extended to allow for counterfactual communication learning by

Vanneste et al. [30] in the multi-agent counterfactual communica-

tion (MACC) learning method. These methods use counterfactual

actions to create an agent-specific advantage compared to other

methods that use counterfactual states or actions to achieve addi-

tional objectives (e.g. Counterfactual explanations [18]).

Lowe et al. [12] presents an alternative method to learn a set

of policies using a centralised critic in the multi-agent deep deter-

ministic policy gradient (MADDPG) method. MADDPG trains the

policies by backpropagating through the critic and actors following

the DDPG method [24]. Sheikh and Bölöni [23] explored another

approach by extendingMADDPG to handle agent-specific and team

rewards. This approach combines MADDPG for the team reward

and DDPG for the agent-specific reward. However, this method

requires an environment that can provide both a team and agent-

specific reward. Next, Yang et al. [35] presented the Learning to

Incentivize Others (LIO) method in which agents learn an incentive

function that is added to the reward function of the other agents to

influence them. The incentive function is trained to maximise the

extrinsic reward of the agents. However, training a centralised Q-

function can be very challenging as the number of agents increases

due to the non-stationarity of the changing policy of the agents.

Castellini et al. [2] described the difference reward policy gradients

(DRPG) method. In this method, the centralised critic learns the

global reward function (which remains stationary during training)

instead of learning a global Q-function.

The centralised critic approaches [2, 5, 12, 30] are challenging

to train and very sensitive to the used hyperparameters when the

number of agents increases. Additionally, by creating a global Q-

function that depends on the joint action of all the agents, the

non-stationarity of Q-function (caused by the learning agents) can

make the training of the centralised critic unstable. Decomposition

methods try to tackle these problems by splitting the global Q-

function into a set of agent-specific Q-functions. Sunehag et al. [25]

presented value decomposition networks (VDN) which assume that

the global Q-function can be composed of the sum of agent-specific

Q-functions 𝑄 (𝑜,𝑢) = ∑
𝑎 𝑄

𝑎 (𝑜𝑎, 𝑢𝑎). This assumption allows this

method to train the agent-specific Q-functions by backpropagating

gradients through the global Q-function, constructed as the sum of

the agent-specific Q-functions. These agent-specific Q-functions

are directly usable as a policy after the training process. The multi-

agent decomposed policy gradient method (DOP) [32] is an actor-

critic variant of VDN in which the decomposed critic is used to

train the policy of an individual agent.

Rashid et al. [20] extend this method by using a mixing network

instead of summing the agent-specific Q-values within the QMIX

method. This mixing network will mix the agent-specific Q-values

monotonically based on the complete environment state. In later

work, QMIX is extended in the Weighted QMIX method [19] in

which suboptimal actions are down-weighted during the training

of the global Q-function. Additionally, the Attentive-Imaginative

QMIX method [7] extends QMIX by using an attention-based mix-

ing network. An actor-critic variant of QMIX is the LICA method

[36], in which a set of policies are directly decomposed using a mix-

ing network. Instead of mixing the agent-specific Q-values, LICA

use the output distribution of the actors in combination with the

mixing network to create a Q-value estimate.



Table 1: An overview of which methods can learn an ad-
vantage or Q-function for different MDP classes. When a
method cannot learn an advantage or Q-function for every
MDPwithin a specific class, the number of plus signs denotes
the MDP set size where the technique can learn a Q-function.

MMDP Dec-MDP Dec-POMDP

Centralized Critic FC [5] ✓ ✓ ✗ (++)

VDN [25], DOP [32] ✓ ✗ ✗

QMIX [20], LICA [36] ✓ ✗ (+) ✗ (+)

CVDC (this work) ✓ ✓ ✗ (++)

Our work differs from other state-of-the-art methods by creating

a set of decentralised critics to train agent-specific policies. We

achieve this by training the critics using a counterfactual decompo-

sition method. The CVDC method can tolerate the non-stationarity

problem because the agent-specific critics can learn how much

actions from the other agents need to be taken into account. This

method reduces the effect of the non-stationarity as not every

changing policy impacts every critic. Additionally, the state-of-the-

art decomposition methods limit the information available to the

agent-specific Q-function to decompose the global Q-function to a

subset of Dec-MDPs.

Table 1 compares CVDC and a centralised critic with a fully

connected (FC) neural network architecture for different decompo-

sition methods and different MDPs combinations. This table shows

that the VDN and QMIX methods are not able to learn within

every Dec-MDP. This limitation is caused by the agent-specific

Q-functions not having access to the global state but only to the

local observations, which is not always sufficient in a jointly ob-

servable MDP. The centralised FC critic or CVDC have access to

the joint observation and joint action, which allows them to learn

an advantage or Q-function within any Dec-MDP.

3 BACKGROUND
3.1 Cooperative Multi-Agent Systems
A cooperative multi-agent system can be described as a decen-

tralised POMDP (Dec-POMDP)[17] which is defined by the tuple

M = ⟨D, S,U, 𝑃,O,𝑂, 𝑅, ℎ, 𝑃0⟩. In this tuple, D is the set of 𝑛 agents

in the Dec-POMDP in which the current agent is denoted by the

superscript 𝑎 and the other agents are denoted by the superscript

−𝑎. Additionally, the subscript 𝑡 is used to indicate a certain time

step. The global state 𝑠𝑡 ∈ S of the environment is sampled from

the transition function 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑡 ) : S × U × S → [0, 1]. The
state at time step 𝑡 = 0 is defined by the initial state distribution

𝑃0. The joint action 𝑢𝑡 ∈ U is a tuple of the individual actions

𝑢𝑡 = ⟨𝑢0𝑡 , 𝑢1𝑡 , ..., 𝑢𝑛𝑡 ⟩ from the 𝑛 different agents. Every individual

agent 𝑎 can perform an action 𝑢𝑎𝑡 ∈ U𝑎 in which U𝑎 is the set of

actions that are available to agent 𝑎. These individual actions are

selected by the policy of the agent 𝜋𝑎 (𝑢𝑎𝑡 |𝑜𝑎𝑡 ) based on the local

observation 𝑜𝑎𝑡 ∈ O𝑎 . The set of observations O𝑎 is the set of all

possible observations for agent 𝑎. The tuple of joint observations

for all agents 𝑜𝑡 is defined by 𝑜𝑡 ∈ O which is drawn from the

observation function 𝑂 (𝑠𝑡 , 𝑢𝑡 ) : S × U → O. The horizon ℎ is

Actor 0 Actor n

Environment

COMA Critic (VDN/QMIX)

Figure 1: The COMA or MACC method using a centralised
critic. The optional messages that are used in the MACC
method are shown with a dotted line.

the number of time steps the agents are interacting with the en-

vironment. The policy 𝜋𝑎 of agent 𝑎 at time step 𝑡 is trained with

the team reward signal 𝑟𝑡 which is defined by the reward function

𝑅(𝑠𝑡 , 𝑢𝑡 ) : S×U→ R. The agents adapt their policy to maximise the

discounted expected reward 𝐺 (𝑠𝑡 , 𝑢𝑡 ) =
∑ℎ
𝑘=𝑡

𝛾𝑘−𝑡𝑅(𝑠𝑘 , 𝑢𝑘 ) with a

discount factor 𝛾 ∈ [0, 1]. A jointly observable Dec-POMDP is a de-

centralised Markov decision process (Dec-MDP) [17] in which the

joint observation of the agents defines the state of the environment.

However, an individual agent still only has a partial view of the

state. The Dec-POMDP in which the individual agents observe the

global state is called a multiagent Markov decision process (MMDP)

[17].

3.2 Policy Gradient
In this section, we discuss the single-agent policy gradient which is

extended to a multi-agent variant in the following section. Policy

gradient methods directly optimise the parameters of the agents’

policy using gradient ascent in which the gradient approximation

is denoted by 𝑔 (see Equation 1).

𝑔 = E
[ ∞∑︁
𝑡=0

Ψ𝑡∇𝜃 ln𝜋𝜃 (𝑢𝑡 |𝑠𝑡 )
]

(1)

In this paper, we use the actor-critic approach [10, 22, 27] where

Ψ𝑡 is defined as 𝑄 (𝑠𝑡 , 𝑢𝑡 ) or 𝐴(𝑠𝑡 , 𝑢𝑡 ) = 𝑄 (𝑠𝑡 , 𝑢𝑡 ) − 𝑏 (𝑠𝑡 ) in order

to learn the policy of the actor. In many cases the baseline 𝑏 (𝑠𝑡 ) is
defined as the utility of a state 𝑉 (𝑠𝑡 ). The value function, that is
used to train the actor, is learned by the critic.

3.3 Counterfactual Training
The counterfactual multi-agent (COMA) policy gradients method

[5] uses the actor-critic architecture in which the centralised critic

learns a global Q-function 𝑄 (𝑠𝑡 , 𝑢𝑡 ) using the global state 𝑠𝑡 of the

environment and the joint actions 𝑢𝑡 of the different agents. The

value for Ψ𝑎
𝑡 , to train the policy for agent 𝑎 using policy gradient

(see Section 3.2), is defined as the agent-specific advantage function

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ). This agent-specific advantage function is created using

the global Q-function as shown in Equation 2 by iterating over all



possible counterfactual actions 𝑢′𝑎𝑡 .

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝑄 (𝑠𝑡 , 𝑢𝑡 ) −
∑︁
𝑢′𝑎
𝑡

𝜋𝑎 (𝑢′𝑎𝑡 |𝑜𝑎𝑡 )𝑄 (𝑠𝑡 , ⟨𝑢′𝑎𝑡 , 𝑢−𝑎𝑡 ⟩)

= 𝑄 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]
(2)

An extension to COMA is the Multi-Agent Counterfactual Com-

munication (MACC) learning method [30] which learns an addi-

tional communication policy to send discrete messages𝑚 to other

agents. Using these received messages 𝜇, the actors of the other

agents will generate a new action and message. MACC uses coun-

terfactual reasoning about alternative messages and their impact

on the policy distribution of the other agents to train their commu-

nication policy. The global COMA/MACC architecture is shown

Figure 1.

3.4 Centralised Critic Architectures
The COMA/MACC method uses a global Q-function to create an

agent-specific advantage. However, when the number of agents in-

creases, learning the global Q-function becomes infeasible without a

specialised neural network architecture. The first architecture uses

a fully connected (FC) neural network (see Figure 2a) in which the

preprocessing sections of the neural network are agent specific. The

advantage of this architecture is that the network parameters be-

tween identical agents are shared within the global Q-function. We

define identical agents as agents that share neural network parame-

ters following the CTDE paradigm. The subsequent architecture is

based on the Value Decomposition Networks (VDN) method [25]

(see Figure 2b). The VDN method uses the sum of agent-specific

Q-functions to create the global Q-function. This idea within a

centralised critic allows us to share the neural network parameters

between identical agents. However, the agent-specific Q-functions

only use the local observation and action of the agent to predict

the Q-function. This property limits the ability of VDN to learn the

global Q-function within certain MDPs (as discussed in Section 2

and 4). The final architecture uses a set of agent-specific Q-functions

mixed monotonically based on the global state in a mixing network,

as described in the QMIX method [20]. Here, we can again use

parameter sharing between the different agent-specific Q-function

between identical agents. This QMIX critic neural network archi-

tecture is shown in Figure 2c. In the experiments of this work, the

COMA/MACC method, with these different architectures, is used

as a set of baselines.

4 METHODS
This section introduces our novel Counterfactual Value Decomposi-

tion Critics (CVDC) method. The cornerstone of this method is the

insight that any global Q-function 𝑄𝑡𝑜𝑡 (𝑜𝑡 , 𝑢𝑡 ) in a Dec-MDP can

be defined as the sum of the agent-specific Q-functions 𝑄𝑎 (𝑜𝑡 , 𝑢𝑡 )
for agent 𝑎, as shown in Equation 3.

𝑄 (𝑜𝑡 , 𝑢𝑡 ) ≜
∑︁
𝑎

𝑄𝑎 (𝑜𝑡 , 𝑢𝑡 ) (3)

FC

Agent 0 Agent n

(a) FC architecture

Sum

Agent 0 Agent n

(b) VDN architecture

Mixing Network

Agent 0 Agent n

(c) QMIX architecture

Figure 2: The baseline neural network architectures for the
centralised critic.

This property may seem trivial at first glance, although it is only

valid when the agent-specific Q-functions take the joint observa-

tion and joint action as input. This requirement allows the agent-

specific Q-function to learn a scaled version of the global Q-function

𝑄𝑎 (𝑜𝑡 , 𝑢𝑡 ) = 1

𝑛𝑄 (𝑜𝑡 , 𝑢𝑡 ), which means that any global Q-function

can be composed of the summed agent-specific Q-functions. How-

ever, many Q-functions can be decomposed much more efficiently

(e.g. when not every agent influences every other agent-specific

Q-function), which we further discuss in Section 4.1. Alternatively,

when the agent-specific Q-functions do not use the joint observa-

tion of the other agents, the agent-specific Q-function model needs

to learn an expectation of the joint observation of the other agents

as shown in Equation 4. This approach works for any MMDP but

not for every Dec-MDP. In a Dec-MDP, the full state is no longer

uniquely defined based on the agents’ observation which prevents

the convergence of the agent-specific Q-function model.

𝑄𝑎 (𝑜𝑎𝑡 , 𝑢𝑡 ) = E𝑜−𝑎
𝑡

[
𝑄𝑎 (𝑜𝑡 , 𝑢𝑡 )

��𝑃 (𝑜−𝑎𝑡 |𝑜𝑎𝑡 )
]

(4)

Similarly, when the joint action of the other agents is not used as

an input for the agent-specific Q-function, the model needs to learn

an expectation of the actions of the other agents (see Equation

5). However, in a multi-agent reinforcement learning system, the

probability of the actions of the other agents will change due to

their changing policy during training. This changing expectation

will make the environment appear non-stationary causing learning

instabilities and preventing the agent-specific Q-function models

from converging. These properties of the joint action of the other

agents are independent of the type of MDP.

𝑄𝑎 (𝑜𝑡 , 𝑢𝑎𝑡 ) = E𝑢−𝑎
𝑡

[
𝑄𝑎 (𝑜𝑡 , 𝑢𝑡 )

��𝑃 (𝑢−𝑎𝑡 |𝑜𝑎𝑡 )
]

(5)

So to learn an agent-specific Q-function in a Dec-MDP and limit the

non-stationarity of the environment, the agent-specific Q-functions

require the joint action and observation of the agents.

4.1 Counterfactual Value Decomposition Critics
In this section, we will use the insight from Equation 3 to create

our Counterfactual Value Decomposition Critics (CVDC) method.

This method aims to learn a policy within any Dec-MDP, tackle the

credit assignment problem, reduce the non-stationarity (from the

viewpoint of the critics) and train the critics decentralised using a

free critic communication channel.

The CVDC architecture (see Figure 3) adapts the COMA [5] or

MACC [30] architecture (see Figure 1) by replacing the centralised



Environment

Free Critic Communication Channel

Critic nCritic 0

Actor 0 Actor n

MLP

Multi-Head
Attention

MLP

Q K VQ K V

Multi-Head
Attention

Figure 3: The CVDC method with decentralised critics. The
optional messages that are used in the MACC method are
shown with a dotted line.

critic with a set of decentralised critics. Every critic learns a person-

alised advantage and utility function (see Section 4.1.1 and 4.1.2)

using a free communication channel in which observations, actions,

advantages and utilities are shared between the critics. The agent

trains its policy (see Section 4.2) by using the advantage function

of the agents’ critic.

4.1.1 Advantage Decomposition. The decomposed agent-specific

advantage function𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ), used by CVDC, adapts the COMA [5]

definition of the agent-specific advantage function without the need

for a global Q-function. We achieve this adaptation by combining it

with the property that the global advantage is the sum of the agent-

specific advantage functions 𝐴(𝑜𝑡 , 𝑢𝑡 ) ≜
∑
𝑎 𝐴

𝑎 (𝑜𝑡 , 𝑢𝑡 ) which can

be derived from Equation 3. In Equation 6, we show the resulting

agent-specific advantage function where the advantage of the other

agents is defined as 𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 ) =
∑
𝑎′≠𝑎 𝐴

𝑎′ (𝑠𝑡 , 𝑢𝑡 ). It is important

to note that the agent-specific advantage function uses the joint

observation and actions to reduce the non-stationarity problem and

to allow us to train on every Dec-MDP. The theoretical contribution

used in creating this equation is discussed in Section 5.

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝐴(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )] (6)

The intuition behind this equation is that the critics learn a

customised agent-specific advantage function to train the agents’

policy. This effect of using the expected advantage of the other

agents E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )] is shown in Equation 7.

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝐴(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]
𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) +𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]

0 = 𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]
𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 ) = E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]

(7)

Here we see that Equation 6 is only correct when the expected

advantage of the other agents is equal to the advantage of the

other agents. This equality is only valid when the advantage of

the other agents is independent of the policy of the current agent.

So when learning the agent-specific advantage functions, the opti-

misers attempt to make the agent-specific advantage functions as

independent as possible from the current actions and policies of

the other agents. This novel property allows us to decompose the

global advantage function into a set of agent-specific advantage

functions that can be used directly to train the agents’ policy.

However, we cannot directly use the definition of the agent-

specific advantage function as stated in Equation 6 because𝐴(𝑠𝑡 , 𝑢𝑡 )
is used in the function definition, which causes a circular refer-

ence. Nevertheless, we can create a target advantage approximation

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) using a combination of the reward, advantages of the

other agents and the utility as shown in Equation 8.

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝐴𝜃− (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎
𝜃− (𝑠𝑡 , 𝑢𝑡 )]

= 𝑄𝜃− (𝑠𝑡 , 𝑢𝑡 ) −𝑉𝜃− (𝑠𝑡 ) − E𝜋𝑎 [𝐴−𝑎
𝜃− (𝑠𝑡 , 𝑢𝑡 )]

= 𝑟𝑡 + 𝛾𝑄𝜃− (𝑠𝑡+1, 𝑢𝑡+1) −𝑉𝜃− (𝑠𝑡 ) − E𝜋𝑎 [𝐴−𝑎
𝜃− (𝑠𝑡 , 𝑢𝑡 )]

= 𝑟𝑡 + 𝛾 (𝐴𝜃− (𝑠𝑡+1, 𝑢𝑡+1) +𝑉𝜃− (𝑠𝑡+1))
−𝑉𝜃− (𝑠𝑡 ) − E𝜋𝑎 [𝐴−𝑎

𝜃− (𝑠𝑡 , 𝑢𝑡 )]
(8)

We use target networks [15] (noted as 𝜃− in Equation 8) to calculate

the target advantage value to improve the training stability. Finally,

this definition of the agent-specific advantage function is used to

create an advantage loss function, as shown in Equation 9.

L(𝜃𝑎𝐴) =
(
𝐴𝑎
𝜃
(𝑠𝑡 , 𝑢𝑡 ) −𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 )

)
2

(9)

4.1.2 Utility Decomposition. The agent-specific advantage func-
tion requires us to learn a global utility function, as shown in Equa-

tion 8. However, the goal of our approach is to create a set of decen-

tralised critics which do not require us to learn any global function.

So to create the global utility from a set of agent-specific utility func-

tions, we use the property that the global utility can be defined as

the sum of agent-specific utility functions𝑉 (𝑠𝑡 , 𝑢𝑡 ) =
∑
𝑎 𝑉

𝑎 (𝑠𝑡 , 𝑢𝑡 ).
This property is then used to create the target approximation of

the agent-specific utility function 𝑉𝑎 (𝑠𝑡 ), as shown in Equation 10.

The utility of the other agents is defined as the sum of the utility of

the other agents 𝑉 −𝑎 (𝑠𝑡 , 𝑢𝑡 ) =
∑
𝑎′≠𝑎 𝑉

𝑎′ (𝑠𝑡 , 𝑢𝑡 ), which is similar

to the notation used in the advantage definition.

𝑉𝑎 (𝑠𝑡 ) = 𝑉𝜃− (𝑠𝑡 ) −𝑉 −𝑎
𝜃− (𝑠𝑡 )

= (𝑟𝑡 + 𝛾𝑉𝜃− (𝑠𝑡+1)) −𝑉 −𝑎
𝜃− (𝑠𝑡 )

(10)

In order to stabilise the learning, we used target networks (noted as

𝜃− ) of the global utility of the next state and the utility of the other

agents. This definition of the utility approximation can then be used

in the agent-specific utility loss function, as shown in Equation 11.

L(𝜃𝑎𝑉 ) =
(
𝑉𝑎
𝜃
(𝑠𝑡 ) −𝑉𝑎 (𝑠𝑡 )

)
2

(11)

4.1.3 Model Architecture. The agent-specific advantage and utility

functions for our CVDC method are represented by a neural net-

work (see Figure 3) which both uses the multi-head attention [31]

architecture for the observation and actions of the other agents. The

keys and values for the multi-head attention network are created

based on the observations 𝑜−𝑎 and actions𝑢−𝑎 of every agent apart

from the current agent by a fully connected network. The query

for the multi-head attention network is directly created from the

observation 𝑜𝑎 of the current agent to let the multi-head attention

network filter the observations and actions of the other agents

based on this observation. The output of the multi-head attention is



concatenated with the observation 𝑜𝑎 and action 𝑢𝑎 of the current

agent in a fully connected network. The attention part of our neural

network architecture allows the agent to handle a larger number

of agents or a variable number of agents and represent this in a

fixed representation size. This kind of neural network architecture

is similar to the work of Iqbal and Sha [8], where a multi-head at-

tention mechanism is used to encode the actions and observations

of the other agents.

4.2 Actors
In this section, we describe the actors’ training and exploration. The

learned agent-specific advantage function 𝐴𝑎
𝜃
(𝑠𝑡 , 𝑢𝑡 ) is a learned

approximation of the true agent-specific advantage 𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ). In
order to improve stability, we define Ψ𝑎

𝑡 as defined in Equation 12

by subtracting a baseline [34] from the advantage.

Ψ𝑎
𝑡 = 𝐴𝑎

𝜃
(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴𝑎

𝜃
(𝑠𝑡 , 𝑢𝑡 )] (12)

The resulting Ψ𝑎
𝑡 is used to train the policy of the agent using the

policy gradient method as defined in Section 3.2. In the baseline

actors, we use the COMA definition of Ψ𝑎
𝑡 (see Section 3.3).

In the experiments for CVDC and the baselines, we learn with a

large number of agents, which requires a considerable amount of

exploration to find a set of suitable policies. Tomake this exploration

explicit, we use the off-policy actor-critic [3] learning rule as it

allows for a different behaviour policy 𝜋𝑎
𝑏
(𝑢𝑎 |𝑜𝑎) from the agent

policy 𝜋𝑎 (𝑢𝑎 |𝑜𝑎) (see Equation 13).

𝑔 = E
[
Ψ𝑡∇𝜃𝑎

𝜋𝑎 (𝑢𝑎 |𝑜𝑎)
𝜋𝑎
𝑏
(𝑢𝑎 |𝑜𝑎) ln𝜋

𝑎 (𝑢𝑎 |𝑜𝑎)
]

(13)

The behaviour policy explicitly enforces exploration by balanc-

ing between following the agent policy and uniformly exploring the

different actions by a decaying weight 𝜖 from 1 to 0 (see Equation

14).

𝜋𝑎
𝑏
(𝑢𝑎 |𝑜𝑎) = 𝜖

1

|𝑈 | + (1 − 𝜖)𝜋𝑎 (𝑢𝑎 |𝑜𝑎) (14)

This exploration strategy is based on the work of Liu et al. [11],

where off-policy methods can use a separate exploration policy

from the target policy. However, we use a uniform distribution

exploration policy instead of training an exploration policy. We do

this off-policy actor-critic learning and exploration for both CVDC

and the baseline methods to allow us to compare the performance

of the methods critic with identical actors. The advantage of making

the exploration explicit is that the different methods achieve better

results while requiring less hyperparameter tuning because the

epsilon-decay parameters are more intuitive.

In conclusion, the agents in our methodology learn an agent-

specific advantage function 𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ), agent-specific utility func-

tion 𝑉𝑎 (𝑠𝑡 ) and an agent-specific policy 𝜋𝑎 (𝑢𝑎 |𝑜𝑎) by sharing ob-

servations, actions, advantages and values between the different

agents. The advantage and utility functions of the different agents

interact with each other to learn a valid policy for every agent in

the multi-agent system. It is important to note that this method

does not rely on any centralised structure to learn these policies

but a set of agent-specific critics to reduce the non-stationarity

problem, tackle the credit assignment problem and is able to train

within every Dec-MDP.

5 THEORETICAL CONTRIBUTIONS
In this section, our theoretical contributions are described. These

contributions allow us to create a novel agent-specific advantage

definition. The first step is to show that the expected value of the

agent-specific advantage function is zero (see Lemma 5.1).

Lemma 5.1. E𝜋𝑎

[
𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 )

]
= 0

Proof.

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝑄 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]
E𝜋𝑎 [𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 )] = E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]]

= E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )] − E𝜋𝑎 [E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]]
= E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )] − E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]
= 0

(15)

□

The next step is to rework the original COMA [5] definition of

the agent-specific advantage function. We do this by combining

the COMA definition with the property that the global advantage

is constructed from a set of agent-specific advantages to create the

novel agent-specific advantage definition.

Theorem 5.2. The agent-specific advantage function 𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) is
equal to the difference between the global advantage and the expected
advantage of the other agents over the policy of the current agent.

Proof.

𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) = 𝑄 (𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝑄 (𝑠𝑡 , 𝑢𝑡 )]
= 𝐴(𝑠𝑡 , 𝑢𝑡 ) +𝑉 (𝑠𝑡 ) − E𝜋𝑎 [𝐴(𝑠𝑡 , 𝑢𝑡 ) +𝑉 (𝑠𝑡 )]
= 𝐴(𝑠𝑡 , 𝑢𝑡 ) +𝑉 (𝑠𝑡 ) −𝑉 (𝑠𝑡 ) − E𝜋𝑎 [𝐴(𝑠𝑡 , 𝑢𝑡 )]
= 𝐴(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 ) +𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]
= 𝐴(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴𝑎 (𝑠𝑡 , 𝑢𝑡 )] − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]

(use Lemma 5.1)

= 𝐴(𝑠𝑡 , 𝑢𝑡 ) − E𝜋𝑎 [𝐴−𝑎 (𝑠𝑡 , 𝑢𝑡 )]

(16)

□

6 EXPERIMENTS
In this Section, we describe the experiments aiming to compare

our CVDC method with the different baselines. We approach these

experiments as an ablation study. So the architecture and hyperpa-

rameters are identical between the different methods apart from

the methods’ architecture and hyperparameters for the critic. The

three baselines use the COMA or MACC method to train the actors

but only differ in neural network architecture. These architectures

are a fully connected (FC) architecture, VDN [25] architecture and

a QMIX [20] architecture. The baseline architectures are described

in more detail in Section 3.4. The hyper-parameters for the different

critics are found empirically for each method. However, the param-

eters for the actor are the same for the different critic methods for a

given environment to only compare the difference in critic perfor-

mance. The different baseline methods are trained using parameter

sharing (PS) because they follow the CTDE paradigm, as discussed

in the COMA [5] method. So to compare CVDC equally with the

different baseline methods, we also used parameter sharing in the

experiments. However, this means that CVDC no longer follows
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Figure 4: Results for different experiments in the Particle Environment

the DTDE-FCC paradigm but also uses the CTDE paradigm. So to

also evaluate CVDC in the DTDE-FCC paradigm, we also train the

CVDC method with all parameter sharing disabled for the different

critics and actors.

We evaluate these different methods and configurations in three

different environments from the Multi Particle Environment (MPE)

[12, 16], which Gorsane et al. [6] showed is one of the most popular

MARL environments. The scenarios from the MPE are available in

the PettingZoo project [28]. Since the number of agents (𝑁 ) impacts

the extent of the credit-assignment problem, we test every method

on multiple values for 𝑁 .

The first environment is a multi-agent version of the simple envi-

ronment from the MPE. In the multi-agent simple environment, 𝑁

agents need to navigate to their goal landmark in a 2D world based

on the relative position of this landmark. The team reward is the

average distance between the agents and their corresponding goal

landmark. We selected this environment because the agent-specific

value for the agents does not depend on actions or observations

from other agents. These actions and observations are independent

because the team reward is the sum of the agent-specific rewards,

which makes it easy for the agents to factorise the global value.

The second environment is the simple-spread environment from

the MPE. In this environment, the agents do not have a target land-

mark, but the 𝑁 agents have to cover 𝑁 landmarks. The agents do

this while observing the relative position of the landmarks and the

other agents. In this environment, the reward function is the sum

of the minimum distance between all the landmarks and the agents.

The environment is challenging compared to the multi-agent simple

environment because the agent-specific value function is dependent

on the other agents’ actions making the non-stationarity problem

difficult. This property makes the environment suitable to validate

the different methods on their ability to handle an environment

where the non-stationarity problem is pronounced.

The last environment is an adapted version of the speaker-

listener environment from the MPE to support 𝑛 listeners with

a single speaker. The listener agents have to go towards their target

landmark without knowing which of the landmarks is their tar-

get. The landmarks are uniquely identifiable because they have a

specific colour. This target colour is identical between the differ-

ent listener agents and is available within the observation of the

speaker agent. The speaker aims to encode this information into a

message and send it to the listener agents. The agents train with

a shared team reward, which is defined as the average distance

between the listeners and their landmarks. The speaker-listener

environment is a jointly observable environment (Dec-MDP) where

the agent-specific value function depends directly on the observa-

tion of another agent, making the training of a critic challenging.

In this environment, the agents can achieve a mean return of -35



without communication by moving to the equidistant between the

landmarks. The agents can obtain a mean return of -20 by learn-

ing a communication protocol. The speaker-listener environment

requires the agents to communicate to achieve their goal, so the

different baseline algorithms use the MACC method to learn this

communication protocol.

7 RESULTS
The results of the experiments, as discussed in Section 6, are shown

in Figure 4. Every method and environment combination is evalu-

ated over five independent runs with a different random seed. These

results are combined using the interquartile mean and the 90% con-

fidence interval, using the Bootstrap method and bootstrapping

25 times. We used the interquartile mean instead of an Arithmetic

mean to minimize the impact of the outliers.

The results show that our CVDCmethod with parameter sharing

(PS) outperforms the baseline methods for all the evaluated environ-

ments. This performance difference is caused because we selected

a set of environments that expose different problems the critics can

encounter. The Multi-Agent Simple environment focuses on the

scaling performance of the methods in an environment where the

agents are easily decomposable. The Simple Spread environment is

difficult for the agents because the optimal policy of an agent is im-

pacted by the other agents’ policies, which makes the environment

appear non-stationary. Finally, the Speaker Listener environment

is a Dec-MDP which requires the critics to combine information

from different agents. These results show that the CVDC method

can handle environments with a larger number of agents, minimize

the non-stationarity problem and train within a Dec-MDP.

The fully connected critic architecture shows that it experiences

scaling problems for environments with more agents because it

suffers heavily from the non-stationarity problem. However, in

a Dec-MDP environment (Speaker Listener), the FC architecture

outperforms the other baselines for a larger number of agents. The

FC architecture can achieve this performance because it has no

problem combining information from different agents.

Next, when we increase the number of agents in the Multi-

Agent Simple environment, the VDN and QMIX methods expe-

rience learning failures because of the combination of the credit-

assignment problem and the non-stationarity problem. The VDN

method achieves good results in the Simple Spread environment,

which shows that this method can tolerate some amount of non-

stationary. However, the QMIX method can not reach the same

performance due to training instabilities when using more agents

because the global state becomes more complex, making the mixing

of the Q-values problematic. The VDN and QMIX methods do not

work within a larger Dec-MDP environment because these methods

cannot use observations of the other agents as effectively as a fully

connected network, as shown in the Speaker Listener experiments.

Finally, we evaluated the CVDC method without parameter shar-

ing for the critics and actors for the different agents. Doing so

allows us to evaluate the CVDC method using the DTDE-FCC par-

adigm. The results show that CVDC without PS can outperform

the other baseline methods. Even when comparing CVDC without

PS to CVDC with PS, we see very comparable results. Only in the

Speaker Listener environment is the CVDC method without PS

unable to accomplish the same results as CVDC with PS. The PS is

important in communication learning because when the receiving

agents react differently to a received message, the sender has prob-

lems finding a communication protocol that works for the receiving

agents. This difference is caused because, in this environment, the

agents need to learn a communication protocol, which benefits

from parameter sharing to learn a global communication protocol.

8 CONCLUSION AND FUTUREWORK
In this work, we introduced our novel CVDC method for value

decomposition. This method aims to reduce the credit assignment

problem, reduce the critics’ non-stationarity problem and learn

within a Dec-MDP. This while also training in a decentralised train-

ing and decentralised execution using a free critic communication

channel paradigm in contrast to the state-of-the-art methods that

use the centralised training and decentralised execution paradigm.

Our CVDC method uses the insight that any Q-function is decom-

posable into a set of agent-specific Q-functions. The theoretical

results show that this insight can be used to calculate the target

advantage based on the state-of-the-art COMA method. These tar-

get advantages allow us to train a set of decomposed agent-specific

critic networks that are as independent of the other agents as possi-

ble and can directly be used to learn the agent’s policy. The exper-

iments show that CVDC significantly outperforms the VDN and

the QMIX methods. The state-of-the-art baseline methods suffer

from the non-stationarity problem and credit assignment problem,

which causes significant learning instabilities when using a large

number of agents. The Speaker Listener experiments show that

the architecture of MACC CVDC can use the observations from

the other agents effectively to estimate the advantage when learn-

ing to communicate. In contrast to the baseline methods that do

not succeed in using the observation information from the other

agents effectively since their policies fail to learn to communicate.

Additionally, we evaluated the CVDC method without parameter

sharing to validate its performance under the decentralised train-

ing and decentralised execution using a free critic communication

channel paradigm. The CVDC method without parameter sharing

can achieve similar results to CVDC with parameter sharing in dif-

ferent environments apart from the Speaker Listener environment.

These results from the Speaker Listener environment are caused

by the problems when learning a communication protocol when

the different agents are not synchronised using parameter sharing.

However, the results show that CVDC without parameter sharing

can outperform every baseline in the evaluated environments. In

future work, we want to apply this method to different environ-

ments like the StarCraft Multi-Agent Challenge (SMAC) [21] and

focus on limiting the amount of information shared between the

critics.
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