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ABSTRACT

MADDPG is an algorithm in multi-agent reinforcement learning
(MARL) that extends the popular single-agent method, DDPG, to
multi-agent scenarios. Importantly, DDPG is an algorithm designed
for continuous action spaces, where the gradient of the state-action
value function exists. For this algorithm to work in discrete ac-
tion spaces, discrete gradient estimation must be performed. For
MADDPG, the Gumbel-Softmax (GS) estimator is used—a repa-
rameterisation which relaxes a discrete distribution into a similar
continuous one. This method, however, is statistically biased, and a
recent MARL benchmarking paper suggests that this bias makes
MADDPG perform poorly in grid-world situations, where the ac-
tion space is discrete. Fortunately, many alternatives to the GS exist,
boasting a wide range of properties. This paper explores several of
these alternatives and integrates them into MADDPG for discrete
grid-world scenarios. The corresponding impact on various perfor-
mance metrics is then measured and analysed. It is found that one
of the proposed estimators performs significantly better than the
original GS in several tasks, achieving up to 55% higher returns,
along with faster convergence.
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1 INTRODUCTION

In recent years, interest in the field of reinforcement learning (RL)
has grown markedly. Though in existence for over three decades,
the discipline’s recent integration with deep learning, often called
deep RL, has catalysed a renewed hope for its capabilities. Such
excitement is certainly warranted: deep RL algorithms have been
excelling consistently on a wide range of challenges, many of which
seemed unthinkable in the past. Commonly cited feats include
conquering popular games, both modern and ancient [5, 37, 44, 47].

An important type of problem in RL is where not only a single
agent acts, but multiple agents. These agents act together, either
adversarially, co-operatively, or some combination thereof. Broadly,
this paradigm is termed multi-agent RL (MARL). Algorithms devel-
oped for single-agent contexts can be applied for multiple agents,
where each agent simply learns independently, e.g. independent Q-
learning [41]. Though suitable for some tasks, this approach strug-
gles to learn desired behaviours in certain complex environments,
such as those with partial observability [32]. As an alternative,
researchers have developed MARL-specific algorithms—either by
extending extant single-agent approaches to multi-agent scenarios,
or by developing new algorithms altogether.
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One of the earliest algorithms proposed for deep MARL (that
is, MARL with the integration of deep learning) was MADDPG,
by Lowe et al. [27]. In this work, the authors extended the single-
agent DDPG [24] method, which is itself an extension of the DPG [38]
method, to multi-agent scenarios. Crucially, DPG and its descen-
dants are designed to work only with continuous action spaces,
where each action comes from an uncountable, continuous domain;
e.g. the torque applied to motor. The alternative is a discrete action
space, which has countable set of possibilities; e.g. choosing to go
up or down. The restriction to continuous domains is because the
gradient of the state-action value function, taken with respect to
the action, must exist. In a discrete action context, this gradient
does not exist.

Despite this restriction, it seems that the authors of MADDPG
desired a unified algorithm, which could be applied to both contin-
uous and discrete problems, while still building on the foundations
of DPG. To enable MADDPG to work in discrete situations, then,
a mathematical trick was applied: the Gumbel-Softmax (GS) repa-
rameterisation [18, 28]. Essentially, this trick ‘relaxes’ the discrete,
non-differentiable action space into a somewhat equivalent, con-
tinuous space—thus allowing an approximation of the gradient to
exist. Relaxing the space in this way, however, introduces statistical
bias into the gradient computation.

Recently, a benchmarking paper by Papoudakis et al. [32] found
that MADDPG achieved decent performance in certain MARL envi-
ronments, but performed markedly worse in grid-world situations,
where the action space is discrete. The authors suggested that this
degradation of performance may be due to the bias from the GS.

Interestingly, this field of discrete gradient estimation appears in
a host of contexts outside of MARL [21, 35, 48]. As a result, a wealth
of alternatives has been proposed for the GS, many of which focus
on lowering the bias it introduces [10, 23, 33]. As of yet, though, it
seems that not many of these techniques have been integrated into
MARL, and certainly not into MADDPG. Accordingly, we ask:
Can alternative discrete gradient estimation methods improve the per-
formance of MADDPG in grid-world environments, when compared
to the original Gumbel-Softmax reparameterisation?

In this paper, we study four alternative estimators: two with
simple changes to the existing GS (decreasing or annealing the
relaxation temperature used), and two novel methods from the
literature [10, 33]. We test these estimators with MADDPG in nine
grid-world tasks, as a subset of those in the benchmarking paper by
Papoudakis et al. [32]. We find that the Gapped Straight Through
(GST) [10] estimator yields the most significant improvements, with
faster convergence and up to 55% higher returns. Finally, we look at
the variance of the gradients from the GST compared to those from
the GS for one of the tasks, to help us understand the performance
gains observed. We release our code online!.

!https://github.com/uoe-agents/revisiting-maddpg
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2 BACKGROUND

We consider a multi-agent learning problem, which we model as a
partially-observable stochastic game (POSG) [16, 36], operating in
discrete time-steps, with a set of N agents, N = {1,..., N}. Denote
the state-space as S, the joint-action space as A = Ay X - - - X AN,
and the joint-observation space as O = O1 X - - - X On. At each time-
step, each agent i € N takes an action a; € Aj;, and perceives a local
observation, o; € O;, which depends on the current state and the
joint-action taken. We define a transition function, P : SXAXS —
[0, 1], which describes the probability of transitioning from one
state to another, given a joint action. We further define a reward
function for each agent, R; : S X A XS + R. Let the reward given

(t). We define the return for

i
S . t
an agent i as its discounted cumulative reward, G; = ZtT:O ytri( ) ,

where T is the number of time-steps in an episode, and y € (0,1] is
a discounting factor—controlling how much we care about future
rewards relative to current rewards. The game begins in an initial
state, which depends on the distribution p = S +— [0, 1].

Denote each agent’s policy (that is, what action it should take in a
given state) as 7;, with the set of all policies being 7 = {7y, ..., 7N }.
The objective in MARL, then, is to find policies such that the return
of each agent i, following 7;, is maximised with respect to the other
agents’ policies, 7_; := {7\x;}. That is, we aim to find an optimal
set of policies, 7, such that

to agent i at time-step ¢ be denoted as r

Vi:m € argmaxﬁiE[Gi | #i, n_i] (1)

Our focus here is on policy gradient methods, where each agent’s

policy is explicitly encoded as a parametric distribution over actions

given the state: z;(a | s;0). Assuming the policy is differentiable

with respect to its parameters (i.e. W exists), an optimal

policy can be found through gradient ascent of the expected return.

To optimise this expectation, one can apply the Stochastic Policy
Gradient Theorem [40]:

VoEr(r(s.a)] =Ex[Vglogn(a]|s;0) Q" (s.a)] ()

where Q”(si, ai) := E;[Gi | si, ai], the state-action value function.

Notice that the gradient, Vy, is taken with respect to the policy
parameters, which exists if our policy is designed to be sufficiently
smooth. This approach is simple and has been popular; e.g. esti-
mating Q7 (s, a) with the sampled return yields the REINFORCE
algorithm [46]. However, it has been shown to suffer from high
variance [30].

Taking a different angle, Silver et al. [38] introduced the Deter-
ministic Policy Gradient (DPG) method. Here, instead of trying to
learn a stochastic policy, the policy is deterministic: a = u(s; 6).
The result is the Deterministic Policy Gradient Theorem:

VoEu|r(s,a=pu(s;0)] =B, [Vou(s;0) Va Q¥ (s,@)]  (3)
Notice the key difference now: a gradient is also taken with respect
to the actions, V,. Importantly, this difference means one cannot
use DPG in discrete action problems, for this gradient does not
exist.

DDPG [24] extends the DPG method by integrating it with deep
neural networks, and incorporating techniques introduced in the
DON paper [29]: separate ‘behaviour’ and ‘target’ networks with
Polyak averaging, and the use of a replay buffer. MADDPG [27] then
applies DDPG to the multi-agent setting. At the heart of MADDPG is

the Centralised Training, Decentralised Execution (CTDE) paradigm.
Here, each agent’s state-action value function (i.e. critic) is learned
in a centralised manner, endowed with the joint observations and
joint actions taken: Q; (o, @). These critic networks, parameterised
by ¢i, are updated by minimising the loss, L:

_ 2
Vo, Le(9i) = Vg, (ri+yQi(o' i (o). in (o)) - Qico.a)

where fi; denotes the target policy networks, and Q; the target critic
networks.

Whereas the critic networks in MADDPG are centralised, notice
that the policy networks are decentralised—with each agent con-
sidering only their local observation, y;(0;). These networks are
updated using the sampled policy gradient:

=V, La(0;) = Vg, pi(0;) Vq,Qi(0, a1, ...

Notice again, as in (3), that a gradient is taken with respect to
the action, Vg, Q;, which does not exist with discrete actions. The
authors of both DPG and DDPG paid no attention to this restriction,
for their methods were presented explicitly for continuous action
problems. In contrast, the MADDPG algorithm was presented for
both continuous and discrete cases. To enable the gradient to exist
in the latter, the authors used the Gumbel-Softmax (GS) trick [18, 28]
to the discrete actions taken, thus enabling an approximation of
Vg, Qi to exist.

b aN)lai:yi(Oi)

3 DISCRETE GRADIENT ESTIMATION

In this work, we consider four alternatives to the original GS trick:
two of which apply simple changes to the extant method, and two
of which are novel methods drawn from the literature. We now
provide brief explanations of these techniques, starting with the
original GS method.

We consider a situation of a parametric discrete distribution,
p(a; ), specified by an unconstrained vector of parameters, { € RV,
In this context, these parameters represent the outputs of a policy
network, where actions are sampled as a ~ p(a;{). We seek an
estimation of V, p(a; ), but since a is discrete, we must ‘relax’ the
distribution for this gradient to exist.

3.1 Baseline (STGS-1)

The GS method was introduced concurrently by Jang et al. [18]
and Maddison et al. [28], as a differentiable approximation of the
arg max function. As its name suggests, a tempered softmax is used,
with a temperature parameter, 7 > 0: softmax;(x) := softmax(Z).
In the limit of 7 — 0, this operation is equivalent to the arg max,
and thus the GS approaches the original distribution. Conversely,
as T — oo, the GS approaches a uniform distribution, where each
category is equally-likely. The temperature thus controls the degree
of relaxation.
Using £gs(+) to notate the GS, the relaxed distribution is:

&es(p(ai; Q) = softmax,({i +¢gi) , ¢gi ~G(0,1) 4

where g; is noise sampled from the Gumbel distribution [31].

By relaxing the distribution in this way, it becomes differentiable,
meaning we can incorporate it into a gradient-based optimisation
procedure. There is a downside, however: in relaxing, we introduce
statistical bias [33]. To understand this bias intuitively, consider



again the limit 7 — co, where the distribution becomes uniform.
In such a case, we have removed all parametric information, ¢,
about our problem—each category simply has a probability of 1/N.
Hence, as we relax, we also steer further away from the original
distribution. Herein lies a trade-off: turning the temperature too low
means having extreme gradients (or non-existent gradients when
7 = 0), but turning the temperature too high means introducing a
large bias.

Though such a bias is inevitable when relaxing the distribution,
there is an easy improvement to the vanilla GS. By naively ap-
plying the relaxation, we introduce bias in both the forward pass
(when we sample from the distribution) and in the backward pass
(when we calculate the gradients, e.g. for updating our neural net-
work). However, it is only the latter that requires differentiability.
Hence, building on the so-called Straight-Through estimator pro-
posed by Bengio et al. [4], Jang et al. [18] also introduce the STGS
estimator—where, in the backward pass, the GS relaxation is ap-
plied, but in the forward pass, the original arg max operation is
used. MADDPG uses this variant, and all further discussions focus
on it.

In both the original MADDPG paper [27] and the benchmarking
paper by Papoudakis et al. [32], it seems that the authors simply
use a temperature of 1.0 for the STGS relaxation?. Thus, we use
this configuration as our baseline, denoted as STGS-1.

3.2 Lower Temperature Gumbel Softmax
(STGS-T)

Recall that Papoudakis et al. [32] suggest it is the bias that is prob-
lematic in the STGS, which is positively correlated to the tem-
perature of relaxation—lowering the temperature lowers the bias.
Accordingly, our first alternative estimator is the simplest: the STGS
estimator with a temperature of 7 < 1.0, where 7 is a tunable hy-
perparameter, denoted as STGS-T.

3.3 Temperature-Annealed Gumbel Softmax
(TAGS)

The exploitation-exploration dilemma [39]—which describes the
trade-off between taking actions that yield known, good rewards
(exploiting), and taking actions which may or may not yield better
rewards (exploring)—is often discussed in RL. In the continuous-
action formulation of MADDPG [27, Appx: Alg. 1], exploration
is achieved via the addition of noise to the policy output: a; =
1i(oi) +1i, where n is drawn from some random process (originally
discussed in DDPG [24]). However, in discrete cases, the STGS itself
provides some degree of exploration, since relaxing the distribution
places some probability mass onto other actions. As a result, the
amount of exploration is controlled by the temperature parameter:
more relaxation implies more exploration. Notice, then, the coupling
between the exploration achieved and the bias introduced.

Since exploration is usually desirable in the beginning of a train-
ing procedure, we propose setting the temperature to be high early-
on, and then annealing it to be lower over time. This strategy allows
agents to explore, while still reducing the bias in later stages of

2Nothing is explicitly stated about the temperature used in these papers; we are making
such conclusions by looking at their code implementations: Link to snippet from Lowe
et al. [27]; Link to snippet from Papoudakis et al. [32].

training. Huijben et al. [17] highlight temperature-annealing as a
strategy incorporated by several authors in various experiments
with the STGS. Specifically, they mention using an exponentially-
decaying annealing scheme, which we adopt here. We define this
estimator as the Temperature-Annealed Gumbel Softmax (TAGS).

3.4 Gumbel-Rao Monte Carlo (GRMCK)

The next estimator is drawn from the literature, entitled the Gumbel-
Rao Monte Carlo (GRMC), by Paulus et al. [33]. Here, the authors
seek a way to lower the STGS’s variance. Notating the gradient of
the original STGS estimator as Vstgs = Vaéstgs, we have:

dsoftmax;({ + g)
B Pe— ®)

With this notation, the authors propose the Gumbel-Rao estimator:

Vstgs =

(6)

Ve = E dsoftmax,({ + g) | a]

da

Thatis, Vgr = E[VsTgs | a]. This estimator is a Rao-Blackwell [6]
version of the original STGS estimator. It can be shown that it thus
enjoys the same mean as the STGS, but with lower (or at most, the
same) variance:

E [IIVer - V¢II?] < E [IIVstas - VeII?] (7)

where V is the true gradient. For rigorous mathematical details
about the estimator’s impact on variance, the reader is encouraged
to see the full paper [33]. Recall that Papoudakis et al. [32] consider
the bias of the estimator to be the problem for MADDPG, not the
variance. Though guarantees are only made about the latter, the
authors of the GRMC argue that with a lower variance, one can
safely train the estimator at lower temperatures—i.e. with a lower
bias. Empirically, they show this idea to be true.

Though theoretically appealing, there is still the challenge of
actually computing E[dsoftmax,({ + g)/da | a]—indeed, a closed-
form expression is shown to be difficult. Therefore, the authors
provide a Monte Carlo estimate, with K samples, which they term
the GRMCK estimator. They first show a distributional equiva-
lence:

d [—1og(Ej) +1log Z({) ifj=1i
Gro1 05 og( B L B omerwise ©
exp(g

where a is a one-hot sample with a 1 at index i, E; are i.i.d. samples
from the exponential distribution, and Z({) = 3 ; exp({j).
They then define the GRMCK estimator as:

K
1 dsoftmax;({ +
VGRMCK = I Zk: % s gk~ (C+gla) (9

In other words, we first sample a ~ p(a; (), and then average
over K Gumbel noise samples conditioned on a.

3.5 Gapped Straight-Through (GST)

The final estimator considered is the most recently introduced: the
Gapped Straight Through (GST), by Fan et al. [10]. Here, the authors
find that the Gumbel randomness used in the STGS and GRMCK
can be replaced with two deterministic perturbations, resulting in
an estimator with lower variance.


https://github.com/openai/maddpg/blob/3ceefa0ada3ff31d633dd0bde8ff95213ce99be3/maddpg/common/distributions.py#L205
https://github.com/uoe-agents/epymarl/blob/96db475082b7227f295b927927654b2dd91d80d4/src/learners/maddpg_learner.py#L95

As in the GRMC estimator, we first draw a ~ p(a;{)—a one-
hot representation of the selected action—for the straight-through
sample. In GRMC, we would then perturb each of the logits, ,
with Gumbel noise conditioned on a; now, we perturb with two
functions, mi({, a) and my({, a). Detailed justifications of these
functions are given in the paper itself [10].

Firstly, we desire consistency in the estimator: we want the sam-
ple conditioned on a to have the same largest logit as the input
distribution; i.e. max; {;. To this end, the first perturbation, mj,
pushes the sample to the correct realisation, if necessary:

m1(§,a)=(m]aXé’j—(§,a>)~a (10)

where (., -) indicates the inner product. Consider how this works:
if a has already selected the largest logit, then ({,a) = max; {j,
and m; = 0. If not, then m; # 0, and the sample is moved in the
direction of the largest logit.

If non-zero, the first perturbation makes the largest logit the
same as the a-selected logit. However, we also want a strict gap
between these values—that is, we want the unselected logits to be
smaller. Accordingly, we define my to create a gap of k between
them:

mg({,a):—(K+§—m;1x§j)+®(1—a) (11)

where (x); := max(0, x), © indicates the Hadamard product. The
value of x can usually be set to 1.0 [10]. Here, the term (1 — a) takes
all the unselected logits in the one-hot representation, and moves
their parameter values away from the selected logit, with a gap of
at least k.

With these perturbation functions defined, the GST estimator is
then:

Eest(p(a;{)) = softmax; ({ +mi(d,a) +ma(L,a))  (12)

4 EXPERIMENTAL METHODS

4.1 Environments

To test the performance of the proposed gradient estimators com-
pared to the original STGS estimator, we train on two grid-world
environments, across a total of nine tasks (i.e. configurations). For
simplicity, we choose to focus solely on co-operative contexts,
where agents are working together to maximise their cumulative
reward—we feel this approach is sufficient to answer our research
question. We use a sensible subset of the choices made by Pa-
poudakis et al. [32] in their benchmarking paper: seven tasks in
Level-Based Foraging (LBF)? [1, 8], and two in Multi-Robot Ware-
house (RWARE)* [2, 8].

4.2 Evaluation Metrics

To understand the success (or failure) of the new gradient estimation
techniques compared to the original STGS approach, metrics for
evaluation are now defined.

Returns: Maximum & Average. Recall that we define our
MARL goal, in (1), as trying to find an optimal set of policies, such
that each agent maximises their expected return with respect to the
other agents’ policies. Since we focus on co-operative situations

3Code: https://github.com/semitable/Ib-foraging
4Code: https://github.com/semitable/robotic-warehouse

for this paper, we simply consider the sum of the achieved returns
from all agents. Importantly, we are not concerned with the returns
achieved here relative to those achieved in, e.g., the MARL bench-
marking paper by Papoudakis et al. [32]. Instead, for cogent and
consistent analysis, we focus solely on the relative performance of
the various estimators against each other.

For this evaluation metric, we run the MADDPG algorithm in
each task, with each of the proposed gradient estimators. We train
the algorithm for a fixed number of time-steps, updating the net-
works with a defined period. Throughout training, we evaluate
the achieved returns 100 times every 50 000 time-steps. Each train-
ing iteration is done over five random seeds and a 95% confidence
interval is calculated over the results.

Under this heading, we consider two distinct aspects of the
achieved returns, following the lead of Papoudakis et al. [32]. Firstly,
we consider the maximum return: the evaluation time-step at which
the return, averaged over the five seeds, is highest—indicating the
peak performance of the algorithm when using a given estimator.
Secondly, we consider the average return: the mean of the evalua-
tion returns over all time-steps and seeds, for a given estimator in
a given task—a proxy for understanding not just the magnitude of
the returns, but how quickly the training converges.

Compute Time. Though this paper revolves around—and is
motivated by—the MADDPG algorithm, notice that the gradient
estimators can also be compared in isolation. That is, when compar-
ing the computational burden of the various estimation procedures,
we need not integrate them into the broader MADDPG problem.
Instead, we can take a closer look solely at each estimator’s perfor-
mance, unhindered by potential bottlenecks elsewhere.

Accordingly, we define here a simple, toy problem for the estima-
tors. We define a set of input logits, ¢, of various dimensionalities,
and measure the time it takes for each estimator to calculate the
corresponding relaxations. Because STGS-1, STGS-T, and TAGS
all have the same underlying mechanics, we consider these under
the single umbrella of the STGS. For the GRMCK, we consider
three values of K: 1, 10, and 50. For each dimensionality, the esti-
mation procedure is repeated 10 000 times, over five different logit
instances. These results are reported over a 95% confidence interval.

Gradient Variance. Suppose one of the alternative gradient
estimation techniques performs significantly better or worse than
the original STGS, based on the returns achieved. The natural follow-
up question is: why? As an initial step to answering this question,
we choose one of the tasks where there is a notable difference in
performance between two estimators: between the baseline STGS-1
method and one which performs much better (or worse). We then
retrain the MADDPG algorithm in this task, using each of the two
estimators, now logging the variance of the computed gradients
across each training mini-batch, over the course of training.

We hypothesise that uninformative gradients, i.e. those due to a
poor discrete gradient estimator, will yield a mini-batch with low
variance, since there are no elements in particular which ‘stand
out’. In contrast, we believe that informative gradients will have
higher variance across the mini-batch, for the opposite reason. We
hope for this metric to stimulate future discussion into why we
might observe a difference in estimator performance.


https://github.com/semitable/lb-foraging
https://github.com/semitable/robotic-warehouse

4.3 Training Details

Hyperparameter tuning is an important, though time-consuming,
component of training RL algorithms. For simplicity, then, the opti-
mal hyperparameters for the core MADDPG algorithm suggested
by Papoudakis et al. [32] are adopted here, mostly without any
changes. Our hyperparameter search is thus limited to be over
the novel gradient estimation techniques and their associated pa-
rameters. Bayesian optimisation [11] is performed for this search,
and we use search-range suggestions from the literature, when
available [17, 33]. Each parameter is optimised for one task in a
particular environment, and then used for all other tasks in that
environment. The resulting hyperparameters can be found online®,
along with the code used for all experiments.

5 EXPERIMENTAL RESULTS & DISCUSSION

5.1 Returns: Maximum & Average

Table 1 shows the maximum and average returns achieved using
each gradient estimation technique, across each of the nine tasks.
Discussion of these results follows, per environment, with plots
shown when relevant.

Table 1: Maximum returns (Average returns) shown across all
tasks and all algorithms, presented with a 95% confidence in-
terval over 5 seeds. Bold indicates the best performing metric
for a situation. An asterisk () indicates that a given metric is
not significantly different from the best performing metric
in that situation, based on a heteroscedastic, two-sided t-test
with 5% significance. Under each task name is the number of
time-steps used for training,.

Tasks STGS-1 STGS-T TAGS GRMCK GST
5| 8xs-2p-2fc 1.00£0.00 1.00+0.01  1.00£0.01  1.00+0.00  1.00 +0.00
~ [5M] (0.88 +£0.05)  (0.91+0.04) (0.87£0.05) (0.88+0.05)  (0.89 +0.04)
8x8-2p-2f-2s-c | 0.79 £0.07*  0.83+0.03  0.78 £0.03*  0.81+0.05*  0.81+0.02*
[5M] (0.65+0.04)  (0.66 +0.04) (0.62+0.04) (0.67 +£0.04) (0.68 +0.03)
10x10-3p-3f 0.75 + 0.03 0.75 + 0.03 0.74 + 0.06 0.71 £ 0.07 0.79 + 0.04
[6M] (0.58 +£0.04)  (0.59+0.03) (0.51+0.04) (0.57+£0.03) (0.66 +0.03)
10x10-3p-3f-2s | 0.55+0.05*  0.58+0.06  0.54+0.03  0.56+0.03*  0.56 +0.05
[6M] (048 £0.01)  (0.48+0.01)  (0.46£0.01) (0.49+0.01)  (0.50 = 0.01)
15x15-3p-5f 0.24 £ 0.02 0.28 + 0.06 0.20 + 0.03 0.26 £ 0.05 0.31 +0.04
[7.5M] (0.12+0.01)  (0.15+0.01)  (0.08+0.01) (0.16£0.01)  (0.20 +0.01)
15x15-4p-3f 0.79 +0.03 0.79 + 0.06 0.77 + 0.06 0.79 +0.04 0.83 +0.04
[7.5M] (0.54£0.04)  (0.58+£0.04) (0.45+0.04) (0.58+£0.04) (0.67 = 0.03)
15x15-4p-5f 0.33 £ 0.06 0.46 £ 0.12 0.24 £ 0.05 0.43 £ 0.06 0.48 + 0.06
[7.5M] (0.13+£0.02)  (0.22+0.02)  (0.10+£0.01)  (0.21 £0.02)  (0.30 +0.02)
1]
5 tiny 2ag 1.37 £0.22"  1.37+049"  1.50+0.46  1.37+£040*  1.40 +0.58"
< [7.5M] (0.55+0.07)  (0.64+0.08)  (0.60 +0.08) (0.65+0.07) (0.65=0.07)
=4
tiny 4ag 2.68 £ 0.49 3.18 + 0.60 2.23 +0.50 3.17 £ 0.85 4.16 £ 0.97
[7.5M] (0.84+0.12)  (1.09+0.15)  (0.78+0.11) (1.15+0.15)  (1.82+0.21)

Level-Based Foraging. We consider now the seven LBF tasks.
Firstly, we look at two tasks with two agents over an 8 X 8 grid: one
with full-observability (8x8-2p-2f), and one with partial-observability
(8x8-2p-2f-2s). Notice in these results, in Table 1, that performance
differences across the estimation techniques is statistically insignifi-
cant. In 8x8-2p-2f, we see that STGS-T trains marginally faster than
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the other approaches, and in 8x8-2p-2f-2s, we see that TAGS trains
marginally slower than the other approaches—both based on the
average returns observed. Nonetheless, each algorithm arrives at a
similar maximum return. Due to the insignificance of this result,
the training curves are uninteresting, and are not plotted here.

We next look at two tasks with three agents over an 10 X 10
grid, with similar situations as before: one with full-observability
(10x10-3p-3f), and one with partial-observability (10x10-3p-3f-2s).
Plots of the evaluation returns over the duration of training are
given in Figure 1.
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Figure 1: Evaluation returns for two LBF tasks (10 X 10) over
the training period, where the shaded region indicates the
standard error as calculated over 5 seeds.

In the first task, seen in Figure 1a, we see an improvement with a
novel gradient estimation technique: the GST achieves the highest
maximum and average returns for the task, beating the baseline
STGS-1 method with statistical significance. It is clear in the figure
how training with the GST converges faster than with the other
methods. STGS-T and GRMCK perform similarly to the baseline.
TAGS, however, performs much worse in average returns—i.e. it
converges slower for the task—though it eventually achieves similar
maximum returns.

In the task with partial observability, seen in Figure 1b, we are
less successful—the alternative techniques achieve statistically sim-
ilar returns to the baseline, across both maximum and average
metrics. The exception is TAGS, which again performs worse than
the baseline, though not markedly so.

We consider now the remaining three tasks in LBF, with a fully-
observable, 15 x 15 grid, with three or four agents: 15x15-3p-5f,
15x15-4p-3f, and 15x15-4p-5f. We note that MADDPG performed
particularly poorly in these larger, more-complex LBF situations,
according to the benchmarking paper by Papoudakis et al. [32]. The
training curves for each of these tasks is given in Figure 2.

We notice here significant improvements over the baseline. Yet
again, TAGS markedly underperforms, both in maximum and av-
erage returns; but the other estimators perform well. STGS-T and
GRMCK beat the baseline in average returns for 15x15-3p-5f and
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Figure 2: Evaluation returns for three LBF tasks (15X 15) over
the training period, where the shaded region indicates the
standard error as calculated over 5 seeds.

15x15-4p-3f, and in both average and maximum returns for 15x15-
4p-5f. GST is superior throughout: across all three tasks, it yields
significantly higher returns and converges faster than the baseline
(and the other techniques). Indeed, these improvements are clearly
noticeable in the plots provided.

Multi-Robot Warehouse. Next, we consider the RWARE en-
vironment for two tasks over a 10 X 11 grid: one with two agents
(tiny-2ag) and one with four agents (tiny-4ag). Figure 3 shows the
returns for these two environments, over the training period.

In tiny-2ag, we see insignificant differences across the estima-
tion techniques, with each achieving similar maximum returns.
The alternative techniques do converge slightly faster, particularly
GRMCK and GST, with marginally higher average returns, but not
by much.

In tiny-4ag, we see the most significant improvements yet. Bar-
ring TAGS, which somewhat underperforms, we notice substantial
improvements from the other proposed estimators, for both average
and maximum returns. GST triumphs once more, achieving 55%
higher maximum returns over the baseline, and over double the
average returns. This result is again clear in the plot, in Figure 3b.

Discussion. This section presented the results from training
MADDPG with each of the proposed gradient estimation tech-
niques, across nine tasks from two grid-world environments. In
simpler tasks, the alternative techniques do not make a significant
difference to the returns achieved. We suspect this outcome is be-
cause informative gradients are not as crucial in simple tasks. That

Return M STGS-T W TAGs
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0 ™ am - Step

(a) rware-tiny-2ag

M STGS-T W TAGS B GRMCK W GST

0 M am &M Step

(b) rware-tiny-4ag

Figure 3: Evaluation returns for two RWARE tasks (tiny grid)
over the training period, where the shaded region indicates
the standard error as calculated over 5 seeds.

is, the gradient estimation is not a problematic aspect of the training,
and limitations arise elsewhere in the mechanics of MADDPG.

Interestingly, in some of the more challenging tasks, particularly
in LBF with a grid-size of 15 X 15, and tiny-4ag in RWARE, we
see significant improvements. We note that simply lowering the
temperature (and hence, the gradient estimator’s bias), as in STGS-
T, can improve the results somewhat—supporting the hypothesis
that the bias introduced by the STGS is a problem for MADDPG.
The Rao-Blackwellisation procedure of GRMCK also sees better
returns and faster convergence. Much better than these alterna-
tives, though, is the GST. With this estimator, we consistently see
marked improvements across the two return metrics, and these are
statistically significant.

Though a lower temperature seems to yield better returns, our re-
sults suggest that annealing the temperature, as in TAGS, performs
poorly. This result may be due to the coupling of exploration and ex-
ploitation, as highlighted earlier, but more investigation is required.
Alternatively, it may simply be the hyperparameters chosen—the an-
nealing start and end points were taken from the advice of Huijben
et al. [17]. It is conceivable that using lower values here may yield
better returns, especially considering the improvements seen with
STGS-T. Future work could also explore using alternative annealing
schemes, or annealing with a different underlying estimator—e.g.
one could try a temperature-annealed GST.

From these results, considering both the maximum returns and
the time to convergence, we note that alternative gradient estima-
tion techniques can indeed yield better returns when incorporated
into MADDPG, particularly the recently proposed GST, from Fan
et al. [10].

5.2 Compute Time

We now consider the computational requirements for each of the
algorithms, using the toy problem outlined earlier. Recall that we



perform these tests for three classes of estimator: STGS (which ac-
counts for STGS-1, STGS-T, and TAGS); GRMC (with three different
K values); and GST. Table 2 shows the outcome of these tests.

Table 2: Time-per-relaxation, in us, for the three classes of
gradient estimators, when using logits of various dimension-
ality as input. Results are given over a 95% confidence interval
from 5 different logit instances, where each procedure is re-
peated 10 000 times. Underneath each metric, using round
brackets, (-), we indicate how much slower the alternative
techniques are, when compared to the baseline STGS.

imensionality - - -
| Di li STGS GRMC-1 GRMC-10 GRMC-50 GST
3 135.28 £ 0.19 445.91 + 11.38 446.65 + 0.86 486.36 + 1.7 357.56 + 1.04
(1.0) (3.3) (3.3) (3.6) (2.64)
5 135.65 + 0.51 438.52 £ 0.63 446.66 £ 0.7 501.9 + 1.16 356.95 £ 0.6
(1.0) (3.23) (3.29) (3.7) (2.63)
10 135.83 +£0.48 438.95 + 1.01 451.65 + 0.82 531.97 £ 0.45 356.52 + 0.55
(1.0) (3.23) (3.33) (3.92) (2.62)
50 134.05 + 0.89 440.46 £ 1.01 484.77 £1.29 765.56 + 2.09 356.77 £ 1.77
(1.0) (3.29) (3.62) (5.71) (2.66)
100 139.23 £ 0.25 455.54 = 2.97 520.06 = 0.78 1055.18 + 4.16 359.26 + 1.26
(1.0) (3.27) (3.74) (7.58) (2.58)
1000 154.17 £ 0.45 533.12 £ 1.01 1060.74 £ 2.92 6171.59 + 8.67 386.57 + 1.36
(1.0) (3.46) (6.88) (40.03) (2.51)

We notice firstly that STGS scales well with dimensionality—the
computational overhead when increasing the dimension does not
change significantly. Even in the high-dimensional case of 1 000, the
technique is only marginally slower. These benefits are common to
the baseline STGS-1 approach, as well as the proposed techniques
of STGS-T and TAGS.

Next, we see that GRMCK is at least three times slower than
the baseline approach. Moreover, using a larger K value does, un-
derstandably, increase the computational burden of the relaxation.
Though this effect is not substantial for low-dimensional inputs,
for higher-dimensional problems, K has a marked impact—e.g. with
K =50, computation slows down considerably, becoming 40 times
slower than the baseline for an input dimension of 1 000.

The computational burden of GST sits somewhat in-between the
baseline, STGS, and the GRMCK approach. Importantly, though,
this method also scales well with dimensionality, staying at just
over 2.5 times slower than the baseline, irrespective of the input
size—an attractive property.

From these results, and the insights drawn from the previous
section, we can draft general guidelines for choosing an alternative
estimator: if minimising the computational burden is paramount
for a given problem, it may be worth using the STGS-T, for it has
the same overhead as the STGS-1, and it does yield improvements
in both the achieved returns and convergence time. However, if one
can afford a more expensive relaxation procedure, the GST is a good
fit—it is somewhat slower, but the benefits are significant. Since
GRMCK is more expensive than the GST, yet usually yields lower
returns, it does not seem like a sensible option as an estimator in
either case. Granted, it could be that better performance comes from
increasing K further (e.g. Paulus et al. [33] use K = 1000 in some of

their experiments), but the computational burden will only worsen
in such a case, which is undesirable. TAGS, as it was presented here,
should not be used.

5.3 Gradient Variance

We have previously seen marked improvements in some tasks when
using the proposed gradient estimators, particularly the GST. We
now stimulate further discussion by presenting a cursory look into
why. We reconsider the LBF task of 15x15-4p-5f (see Figure 2c),
and retrain with two algorithms: the baseline STGS-1, and the best
performing alternative, GST. Figure 4 shows the variance of the
gradients across mini-batches, for each of the layers in the policy
networks, over the course of the training.
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Figure 4: Plots showing the gradient variance (left: gradients
of weight parameters, right: gradients of bias parameters),
for each layer in the policy networks, for the 15x15-4p-5f
task in LBF. The results are aggregated across the 4 agents
in this task—the shaded region indicates the maximum and
minimum values across agents, the solid line indicates the
mean.

Immediately, we notice a trend in these graphs: the variance of
the gradients, taken across a mini-batch, increases more rapidly
for the GST algorithm than those for the baseline. Though not
definitive, such results indicate that more informative gradients
are being propagated through the policy networks. Informative
gradients, in turn, allow the algorithm to achieve higher returns
and converge faster—as evidenced in the results seen previously.

6 RELATED WORK

A core insight of this work is that discrete gradient estimation
does not exist solely in the domain of RL. In fact, the original
GS papers [18, 28] demonstrated the technique on problems such
as structured output prediction and density estimation. Indeed,
discrete gradients arise in a wide variety of contexts—including
discrete variational auto-encoders [19, 35], hard attention [15, 48],



generative adversarial networks for text [22, 49], and convolutional
networks [43]. As aresult, the biased reparameterisation of the GS is
problematic in a wide variety of domains, and accordingly, a signif-
icant research effort has focused on improving the method. In this
paper, we drew two methods from the literature: the GRMCK [33]
and the GST [10]. Various other approaches could, conceivably, be
integrated into the MADDPG algorithm to handle discrete-action
environments. We outline them briefly here.

The STGS, GRMCK, and GST are all instances of the pathwise-
derivative approach to gradient estimation, which is underpinned
by a more-general form of the Deterministic Policy Gradient Theo-
rem, seen in (3). The Invertible Gaussian Reparameterisation [34]
also belongs to this class, where Gaussian noise is used instead
of Gumbel noise. Andriyash et al. [3], too, move away from using
Gumbel noise in their method, and propose a simple piecewise-
linear relaxation instead. Other methods steer further away from
the STGS. For example, Lee et al. [23] generalise the reparameteri-
sation trick through manifold sampling, and are able to create an
unbiased and reduced-variance estimator. Lorberbom et al. [25]
avoid the need to relax the categorical distribution altogether by
applying the technique of direct optimisation.

The other approach to gradient estimation is score-function meth-
ods, which is underpinned by a more-general form of the Stochastic
Policy Gradient Theorem, seen in (2). Alternatives here include:
subtracting a baseline [13, 45]; using a Taylor expansion of a mean-
field network, as in MuProp [14]; and using copula-based sampling,
as in CARMS [9]. However, it is unclear how using a score-function
method would change the underlying DPG mechanics when applied
in MADDPG.

Authors have also combined score function and pathwise deriv-
ative methods, leveraging desirable qualities from both approaches.
For example: using both REINFORCE and the GS in conjunction,
as in REBAR [42]; training a surrogate neural network as a control
variate, as in RELAX [12]; and using sampling without replace-
ment [20].

7 CONCLUSION

This paper explored the impact of the Gumbel-Softmax (GS) repa-
rameterisation [18, 28] on MADDPG [27] when applied to grid-
world environments. Firstly, some necessary theoretical founda-
tions were presented and the problem was framed in the context of
the broader literature. Thereafter, we looked closely at the straight-
through GS (STGS) and discrete gradient estimation more generally,
highlighting the key concepts therein. After presenting a handful
of candidate STGS alternatives—two with simple tweaks to the
STGS, and two from the literature [10, 33]—these estimators were
implemented into the MADDPG algorithm. A suite of nine MARL
tasks across two environments was used for testing, and various
metrics were analysed.

On some of the tasks—particularly the simpler ones, where MAD-
DPG already performed well—no significant changes were observed,
in terms of returns achieved and the speed to convergence. On other
tasks though, particularly in the more challenging ones, substantial
improvements occurred. It was found that even an easy change to
the original STGS estimator, simply lowering the temperature pa-
rameter, yielded good results. The proposed temperature-annealing

scheme in TAGS, however, was shown to be a bad choice for the
estimator—though we acknowledge a different set of hyperparam-
eters may have helped here. The GRMCK estimator [33] showed
promising results, but was hindered by a below-par computational
burden. Finally, far superior to the other methods was the GST esti-
mator [10]. This method achieved the best results across a range of
tasks, with up to 55% higher returns, as well as faster convergence,
when compared to the original STGS. Though it did introduce addi-
tional computational burden, at around 2.5 times slower than the
STGS, the method nonetheless scaled well with dimensionality, and
is certainly a viable technique for many use-cases.

We are now in a good position to support the suggestions made
by Papoudakis et al. [32] in their benchmarking paper. Based on the
empirical data observed, we agree that the bias of the STGS method
is indeed problematic for MADDPG. As a result, by improving
the estimator used—i.e. by lowering its bias—we can improve the
returns achieved by MADDPG. To answer our research question
from Section 1, then: yes, alternative discrete gradient-estimation
techniques can improve the performance of MADDPG in discrete
grid-worlds.

Notice the benefit of our findings. We can take the extant MAD-
DPG algorithm, replace only the gradient estimation technique—
that is, swap out, e.g., the STGS for the GST, and leave everything
else the same—and the resulting performance may likely improve.
Though our algorithm becomes slightly more expensive computa-
tionally, we witness faster convergence and higher returns, with
minimal development overhead.

8 FUTURE WORK

Many avenues of future work extend from this paper—we highlight
a handful here.

Firstly, it would be useful to evaluate the performance of the
proposed algorithms on a wider variety of tasks—in particular, the
results in RWARE were promising but distinctly limited, with only
two tasks tested. Moreover, only co-operative tasks were tested
here, and adversarial configurations should be explored too.

Secondly, much more investigation ought to be done into why
the GST is boasting better performance. Though an interesting
foray, the analysis into the gradient variance was just a first step.
Future research should continue to focus on the mechanics of the
algorithms, and probe at various points.

Thirdly, the core MADDPG algorithm designed for this paper
did not incorporate various extensions suggested in the literature,
e.g. parameter sharing [7, 8]. Combining the benefits observed here
with other strong extensions elsewhere would be an interesting
exercise. Furthermore, a wider hyperparameter search, now with
the alternative estimators involved too, may be helpful.

Finally, we note that only two alternative methods from the
literature were presented here—the GRMCK [33] and the GST [10].
Though sufficient for our analysis, it would be useful to explore the
other options synthesised from the literature (e.g. [3, 23, 26]). Some
of these, though more complex, boast many attractive properties,
and may prove to be even more fruitful.
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