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ABSTRACT
In Reinforcement Learning, Unsupervised Skill Discovery tackles

the learning of several policies for downstream task transfer. Once

these skills are learnt, the question of how best to use and combine

them remains an open problem. The General Policy Improvement

Theorem (GPI) creates a policy stronger than any individual skill

by selecting the highest-valued policy at each timestep. However,

the GPI policy is unable to mix and combine the skills at decision

time to formulate stronger plans. In this paper, we propose to adopt

a model-based setting in order to make such planning possible, and

formally show that a forward search improves on the GPI policy

and any shallower searches under some approximation term. We

argue for decision-time planning, and design a family of algorithms,

GPI-Tree Search Algorithms, to use Monte Carlo Tree Search (MCTS)

with GPI. These algorithms foster the skills and𝑄-value priors of the

GPI framework to guide and improve the search. Our quantitative

experiments show that the resulting policies are much stronger

than the GPI policy alone, while our qualitative results provide a

good intuitive understanding of how each method works and of

the possible design choices that can be made.

1 INTRODUCTION
In Reinforcement Learning (RL, Sutton and Barto [28]), an agent
interacts with an environment, performing an action to gather re-
wards in a sequential task, using states as input. Within RL, Transfer

Learning [31] aims to extract and re-use knowledge from previ-

ously learnt tasks for new environments. For example, strong visual

navigation is critical for any downstream embodied agent task.

To capitalize on this transfer learning setting, Unsupervised

Skill Discovery (USD) aims to learn a set of policies
1
to be used for

downstream tasks. USDmethods generally try to create policies that

reach key states [18, 22] or that maximize skill diversity through

a mutual information objective [7, 10]. In a similar line of work,

Successor Features (SFs, Barreto et al. [4, 5]) have been proposed

to efficiently learn 𝑄-values of policies over a range of tasks. The

authors used this property as motivation to introduce the General

Policy Improvement Theorem (GPI) to instantly obtain a combined

policy stronger than any individual skill. In order to achieve this,

the GPI policy simply selects the highest-valued action, according

to the skill 𝑄-values, at each time-step. This is visualized on Figure

1: the GPI policy follows the skills when they directly lead to the

1
“skills" and“policies" will be used interchangeably to refer to the set of behaviors

learnt with USD

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 9-10, 2023, Online, https://ala2023.github.io/ . 2023.

goal. However, if they do not lead to the goal, their𝑄-values are null

and the GPI policy cannot make an informed decision (represented

in red states without arrows). It is clear, though, that a combination
of the skills could lead to the goal from the upper left quadrant, and

that only a few steps are required to join the high-value corridor in

the rest of the state-space. In other words, while the GPI policy
improves on the skills, it is unable to plan and combine them
to achieve a higher return. This observation forms the intuitive

basis for this paper.

In order to allow the GPI to combine skills, it would need to

simulate a few steps of action or skill usage to probe where they

lead. We therefore turn to Model-Based Reinforcement Learning

(MBRL) to allow such simulations. MBRL either assumes an oracle

or learns a model of the environment’s dynamics, which allows

to learn from the model instead of direct interactions [11, 12, 27].

We refer to learning a policy or value function directly from the

model as“backwards planning". In contrast,“decision-time planning"

(terms from Sutton and Barto [28]) focuses on the current state 𝑠

and unrolls the model from there to find the best action to execute,

without explicit learning. In the last years, the most notable algo-

rithms in decision-time planning have used the Monte-Carlo Tree

Search algorithm [6], leading to major breakthroughs in the field

of RL [24, 25].

One of the most interesting properties of the GPI theorem is that

it builds a strong policy without any additional learning, which

allows for quick transfer. In order to maintain this while improving

on the GPI policy, we propose to use a model to perform decision-

time planning. Our contributions are the following:

• We propose to improve on the GPI through model-based RL,

and decision-time planning in particular. We formally show

(Theorem 3.1) that such a search improves on the GPI policy

in the max norm, under some approximation term.

• We propose to leverage the skills and 𝑄-value priors of the

GPI framework to guide a Monte-Carlo Tree Search towards

the most relevant nodes.

• We develop a family of algorithms, GPI-Tree Search, instan-

tiating these ideas through different angles, and we provide

quantitative and qualitative results to understand their dif-

ferences and performances.

https://ala2023.github.io/
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(a) 𝜋1 (𝑠 ) = right ∀𝑠
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(b) 𝜋2 (𝑠 ) = down ∀𝑠
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(c) GPI policy over {𝜋1, 𝜋2}

Figure 1: Two skills and the associated GPI policy for an open, sparse-reward gridworld environment. The GPI policy is unable
to reach the goal (blue) from the upper left quadrant of the world through a combination of the right and down skills.

2 BACKGROUND
Reinforcement Learning. In RL, interactions are generally formal-

ized with a Markov Decision Process (MDP)𝑀 = (S,A,R, 𝑝, 𝛾), re-
spectively representing the state space, action space, reward space,

dynamics function and discount factor. The dynamics function

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) dictates the next state and reward, and therefore gen-

erates the reward function 𝑟 (𝑠, 𝑎) = ∑
𝑠′,𝑟 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) 𝑟 .

Unsupervised Skill Discovery. USD refers to the learning of a set

of policies {𝜋1, 𝜋2, · · · } (which can be infinite). The objective is to

combine these skills to maximize reward. The learning is often

broken down into building task-agnostic skills at first, followed by

a transfer learning phase where they are combined to maximize

the reward function.

General Policy Improvement. The GPI Theorem [5] provides an

efficient way to use a finite skill set. It makes the assumption that

we have access to the action-value functions of the skills, 𝑄𝜋 𝑗
, to

build a stronger policy:

𝜋0 (𝑠) ∈ arg𝑎 max

𝑎,𝑗
𝑄𝜋 𝑗 (𝑠, 𝑎)

𝜋0 ⩾ 𝜋 𝑗 ∀𝑗 .

For convenience, we define𝑄0 (𝑠, 𝑎) = max𝑗 𝑄
𝜋 𝑗 (𝑠, 𝑎) and 𝜋0 (𝑠) ∈

argmax𝑎 𝑄
0 (𝑠, 𝑎). Note that this is not the action-value function

of 𝜋0: indeed, 𝑄𝜋0

⩾ 𝑄0
according to the GPI theorem itself. In-

tuitively, if 𝑄0 (𝑠, 𝑎) = 0 = 𝑄𝜋
𝑗
(𝑠, 𝑎) ∀𝑠, 𝑎, 𝑗 , we might still have

𝑄𝜋 > 0 (for example at state (11,11) of Figure 1 where the GPI

might randomly take actions right or down).
We call the assumptions of the GPI theorem –i.e., the skill set

and knowledge of their value functions– the GPI framework. In this

paper, we build onto those assumptions to build stronger policies.

Monte Carlo Tree Search. MCTS [6] is a decision-time planning

algorithm. Starting from the current state 𝑠0 as a root node, the

algorithm builds a tree of possible outcomes, branching out at the

chosen actions. More precisely, each node state 𝑠 keeps track of

variables𝑄 (𝑠, 𝑎), an estimate of its state-action value function, and

𝑁 (𝑠, 𝑎), the amount of visits of each actions. It then alternates the

following 4 steps: (𝑖) selection, climbing down the tree from the

root node to a leaf 𝑠𝑙 according to a tree policy 𝜋 tree; (𝑖𝑖) expansion,
creating a new node at the leaf 𝑠𝑙 ; (𝑖𝑖𝑖) simulation, generating a

return𝐺𝑙 from that leaf, using themodel by unrolling a rollout policy
𝜋 rollout; (𝑖𝑣) backup, updating𝑄 and 𝑁 for all the nodes up the tree

with the obtained return 𝐺 for the action taken. This process is

repeated for a certain amount of rollouts 𝑁 . The tree policy 𝜋 tree is

most often the Upper-Confidence Bound bandit algorithm (UCB;

Agrawal [1], Katehakis and Robbins [19]) or one of its variants,

while the rollout policy can either be random or any policy prior

with fast inference time. MCTS was designed for deterministic

environments, we also follow this setting.

The Options framework . Options [30] refer to temporally ex-

tended actions. In Hierarchical RL, the task is broken down into

smaller and easier sub-tasks to be solved by lower-level controllers.

An option formalizes a lower-level controller: it is defined as a

triple (I, 𝜋, 𝛽), where I ⊂ S is the option’s initiation set, i.e.,

states in which the option can initiate; 𝜋 is the option’s policy; and

𝛽 : S → [0, 1] is the option’s termination condition. A higher-level

controller can then call options as if they were actions, substantially

cutting down the problem depth.

3 GENERAL ALGORITHMIC FRAMEWORK
One of themain benefits of the GPI theorem is the ability to generate

a stronger policy at inference, without additional learning. We

therefore aim to improve on the GPI policy using a forward search

at inference and without learning. For this reason, we focus our

efforts on decision-time planning.

3.1 𝑄 priors
We propose to use the 𝑄0

assumed by the GPI framework to guide

a MCTS tree search. We explain this idea in this section.

Since the goal of the MCTS simulation step is to provide a return

estimate 𝐺𝑙 at the leaf node, one can note that if we had a value-

function prior 𝑉 , we could simply use 𝐺𝑙 = 𝑉 (𝑠𝑙 ) as a backup

value and bypass the simulation. This essentially borrows from



Figure 2: Maximum value backup: the backup value is
max𝑎 𝑄 (𝑠, 𝑎) rather than the Monte-Carlo return. The max
operator is indicated by the arc over actions, backed up in
red arrows to the parent state-action.

Temporal-Difference Learning [26] and was already used in prior

work on MCTS to bypass the simulation step [25]. One can see

this as turning the“rollout algorithm" that is MCTS into a“heuristic

search" [28].

However, if we assume an action-value prior �̂� instead of 𝑉 , we

can also use it to guide the UCB tree policy. The idea is very similar

to using the policy as a prior in the pUCT algorithm used in the

AlphaZero family of methods [23, 25]. To understand how, note

that the UCB formula is

𝜋 tree = argmax

𝑎
(𝑄 (𝑎) + 𝑐𝑈 (𝑎)) (1)

𝑈 (𝑎) =

√︄
ln

∑
𝑏 𝑁 (𝑏)

𝑁 (𝑎) (2)

A prior �̂� would provide an estimate of 𝑄 before any sample is

observed, allowing to directly dive into actions that the prior deems

superior. This idea is explored in Heuristic MCTS [9] and later

SAVE [13], where the authors choose to include this prior at the

creation of the leaf node 𝑠𝑙 : 𝑄0 (𝑠𝑙 , 𝑎) = �̂� (𝑠𝑙 , 𝑎), 𝑁0 (𝑠𝑙 , 𝑎) = 1. In

other words, the method acts as if the prior was a single observed

return for this state-action pair.

We propose to use �̂� = 𝑄0
as a prior action-value function to

guide MCTS within the GPI framework. Note that in this scenario,

𝜋𝑡𝑟𝑒𝑒 |𝑐=0= 𝜋0; in other words, the UCB policy with 𝑄0
priors

collapses to the GPI policy without exploration (or additional ob-

servations to change the values).

3.2 Maximum value backup
In the original MCTS [6], the author explores different backupmeth-

ods for MCTS. The max operator is dismissed for the following

reasons:“When the number of moves is high, and the number of

simulations is low, move estimates are noisy. So, instead of being

really the best move, it is likely that the move with the best value

is simply the most lucky move. Backing up the maximum evalua-

tion overestimates the best move, and generates a great amount of

instability in the search." This idea aligns with concepts explored

in Double Q Learning [15] – the max operator propagates overes-

timations. However, in the context of MCTS with 𝑄-value priors,

the issues of number of moves and simulations is entirely deflected

to the quality of the 𝑄 estimates. Since the GPI assumes knowl-

edge of the 𝑄𝜋 𝑗
with a small error, we opt for usage of the max

operator, visualized in Figure 2. This step yet again draws us closer

to a heuristic search. This operator allows us to benefit from the

guarantees of Theorem 3.1 that we now introduce.

3.3 Improvement guarantees of an exhaustive
search

In this section we present our main theoretical contribution: the

𝑘-step GPI Theorem, which justifies the usage of a search over the

GPI:

Theorem 3.1 (𝑘-step GPI). Let {𝜋1, · · · , 𝜋𝐷 } be a set of policies
with value functions 𝑄𝜋 𝑗 . Let �̃�𝜋 𝑗 be their approximations such that��𝑄𝜋 𝑗 (𝑠, 𝑎) − �̃�𝜋 𝑗 (𝑠, 𝑎)

�� ⩽ 𝜖 for all state-action pairs 𝑠, 𝑎 and policies
𝑗 .
Define Δ�̃� � max𝑗 max𝑠,𝑎1,𝑎2

���̃�𝜋 𝑗 (𝑠, 𝑎1) − �̃�𝜋 𝑗 (𝑠, 𝑎2)
��.

Let𝑄0 (𝑠, 𝑎) = max𝑗 �̃�
𝜋 𝑗 (𝑠, 𝑎) be the 0-step GPI𝑄-prior. Let 𝜋0 (𝑠) ∈

argmax𝑎 𝑄
0 (𝑠, 𝑎) be the 0-step GPI policy. Let

𝑄𝑘 (𝑠, 𝑎) = 𝑇𝜋𝑘−1
𝑄𝑘−1 (𝑠, 𝑎)

=
∑︁
𝑠′,𝑟

𝑝
(
𝑠′, 𝑟 | 𝑠, 𝑎

) [
𝑟 + 𝛾 max

𝑎′
𝑄𝑘−1 (𝑠′, 𝑎′) ]

be the 𝑘-step GPI 𝑄-prior, with 𝑇𝜋 the Bellman operator for 𝜋 . In
other words, 𝑄𝑘 is the 𝑘-step greedy search over 𝑄0. Let 𝜋𝑘 (𝑠) ∈
argmax𝑎 𝑄

𝑘 (𝑠, 𝑎) be the 𝑘-step GPI policy. Then, for search depth 𝑘 ,𝑄∗ −𝑄𝜋𝑘

∞
⩽

2𝛾𝑘

1 − 𝛾

(
𝛾Δ�̃� + (1 + 𝛾) 𝜖

)
with ∥·∥∞ � max𝑠,𝑎 |·|.

The proof is derived from 𝑘-step Value Iteration. Through the

exponentially decaying 𝛾 , Theorem 3.1 guarantees that a 𝑘-step

look-ahead greedy search over𝑄0
improves on the (0-step) GPI and

any search of lower depth than 𝑘 , under the max norm and some

approximation term. In the context of decision-time planning with

MCTS and a UCB tree policy, we can guarantee that all actions are

visited at least once at the root node, with minor constraints on the

UCB 𝑐 hyperparameter and the range in 𝑄-values.

4 GPI-TREE SEARCH ALGORITHMS
We now turn to the design of algorithms for decision-time planning

using the GPI framework. As far as we are aware, no method exists

in the literature to search in these conditions, even for model-based

RL as a whole. We call GPI-Tree Search Algorithms (GPI-TS) any
method that make use of the𝑄0

or 𝜋 𝑗 policy priors assumed by the

GPI framework to enhance MCTS, as detailed in Section 3.

We will be directly showcasing the algorithms along with exper-

iments on Figure 3, as the open gridworld allows a good intuitive

understanding of each method. For this purpose, we start by clari-

fying this environment.

4.1 Environment, policies and visualization
We use an open griworld of 15×15with a terminal reward of 1 at the

goal state (12, 12) (origin in the upper left at 0, 0). The actions are up,
down, right, left, without any form of noise. We pick our policy
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(a) GPI-Tree Search
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(b) GPI-Constrained Tree Search
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(c) GPI-Option Search

Figure 3: GPI-TS Algorithms: [left] the states visited by the search from a given root node at (3, 8). [middle] The resulting MCTS
𝑄s of the nodes visited during the search. [right] The search applied to the entire state space, with a visualized greedy policy.
States with uniform 𝑄 (𝑠, ·) = 0 priors are shown with an empty greedy policy, to highlight the lack of a preferred action. All
experiments are made with 𝑁 = 30 rollouts.

set: two skills that, respectively, repeatedly use actions right, and
down: {𝜋1 (𝑠) = right, 𝜋2 (𝑠) = down ∀𝑠}. In Figure 1 (left, middle),

we visualize them with their value functions, in other words the

𝑄𝜋 𝑗
assumed known by GPI framework. On the right of Figure 1,

we visualize 𝑄0
and 𝜋0 only for states where 𝑄0 > 0. We leave

the policy blank otherwise (it should be random over all actions).

We do this instead of computing 𝑄𝜋0

in order to highlight what

information is available at inference time, and the actual decision

of the method. From here onward, all plots similar to Figure 1 will

use this visualization choice.

4.2 GPI-Tree Search
We start instantiating the GPI-TS algorithms with an implemen-

tation of MCTS with 𝑄0
prior as described in Section 2 and 3.1,

with maximum value backups. We do not make explicit use of the

skills 𝑎 ∼ 𝜋 𝑗 here, but only their state-action value𝑄𝜋 𝑗
through the



Algorithm 1 GPI-Tree Search

Input: Rollouts 𝑁 , root state 𝑠0

Function GPI-TS(𝑁 , 𝑠0):
𝑄 (𝑠0, 𝑎) ← 𝑄0 (𝑠0, 𝑎) , ∀𝑎
𝑁 (𝑠0, 𝑎) ← 1, ∀𝑎
𝑛𝑜𝑑𝑒 ← 𝑠0

for 𝑛 ∈ 1 · · ·𝑁 do
𝑛𝑜𝑑𝑒, 𝑎 ← Selection(𝑛𝑜𝑑𝑒)
𝐺 ← Expansion(𝑛𝑜𝑑𝑒 , 𝑎)
Backup(𝑛𝑜𝑑𝑒 ,𝐺 , 𝑎)

end for
return 𝑄 (𝑠0, · )

End Function

Function Selection(𝑛𝑜𝑑𝑒):
𝑎 ← 𝜋𝑡𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒 ) ⊲ Eq (1)

if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑎] is not None then
𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑎]
𝑎 ← Selection(𝑛𝑜𝑑𝑒)

end if
return 𝑛𝑜𝑑𝑒 , 𝑎

End Function

Function Expansion(𝑛𝑜𝑑𝑒 , 𝑎):
𝑠′, 𝑟 ← 𝑝 (𝑛𝑜𝑑𝑒, 𝑎)
𝑄 (𝑠′, 𝑎′ ) ← 𝑄0 (𝑠′, 𝑎′ ) , ∀𝑎′ ⊲ Section 3.1
𝑁 (𝑠′, 𝑎′ ) ← 1, ∀𝑎′
𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑎] ← 𝑠′

return max𝑎′ 𝑄 (𝑠′, 𝑎′ ) ⊲ Section 3.2
End Function

Function Backup(𝑛𝑜𝑑𝑒 ,𝐺 , 𝑎):
𝑁 (𝑛𝑜𝑑𝑒, 𝑎) + ← 1

𝑄 (𝑛𝑜𝑑𝑒, 𝑎) + ← (𝐺 − 𝑄 (𝑛𝑜𝑑𝑒, 𝑎) ) /𝑁 (𝑛𝑜𝑑𝑒, 𝑎)
𝐺 ← max𝑎𝑄 (𝑛𝑜𝑑𝑒, 𝑎) ⊲ Section 3.2
if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 is not None then

𝑛𝑜𝑑𝑒, 𝑎 = 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡

Backup(𝑛𝑜𝑑𝑒 ,𝐺 , 𝑎)
end if

End Function

prior𝑄0
. The algorithm is described in Algorithm 1. As discussed in

Section 3.3, this policy is guaranteed to improve over the GPI policy.

The main intuitive benefit of this algorithm over GPI is that the

search enables to recover high-value states according to 𝑄0
from

parts of the state-action space we had no good prior information

about. This is made clear in Figure 3a: we can see that the search

explores the space around the root node. Applying this search over

the entire state space
2
results in the algorithm finding how to join

the GPI policy from all nearby states.

4.3 GPI-Constrained Tree Search
While GPI-TS makes efficient use of the 𝑄0

prior assumed by the

GPI framework, we do not benefit from the skill set that also comes

with it. For example, in the gridworld environment we study, it is

clear that the right and down actions of our skill set are generally

to be preferred, as the goal is in the lower right corner.

In general, we can make the assumption that the skills assumed

by the GPI framework are of relevance to the task. We take advan-

tage of this to constrain the search to only the actions the skills

would take: A− =
{
𝑎 | ∃ 𝑗 : 𝜋 𝑗 (𝑎 | 𝑠) > 0

}
. We call this algorithm

GPI-Contrained Tree Search (GPI-CTS). It enables a deeper search

over the skills’ state occupancy distributions from the root node.

This is made clear in Figure 3b: following our skills, the search is

concentrated in the lower right direction, where it eventually finds

a state of high value according to the 𝑄0
prior and joins up with

the GPI policy. The resulting policy over the whole state space can

find the correct actions sooner than GPI-TS in the upper left corner

of the space. It is clear however that it is completely unable to reach

the goal from the lower and right parts of the space, due to the skill

2
No information is carried from one state to another – we simply called Algorithm

1 from each state to obtain output𝑄0
and report on the map max𝑎 𝑄

0
for all states,

and its highest-valued action.

set chosen. We note that since the action space was restricted, the

assumptions from Theorem 3.1 no longer apply and GPI-CTS is not

guaranteed to improve over the GPI policy. It can be relevant in

practice though, depending on the skill set chosen, for example if

we have prior knowledge on bad actions.

4.4 GPI-Option Search
Skills as temporal abstractions. We start from the intuition that

skills are generally better at exploration than a random policy –

especially if learnt with USD.We therefore want to be able to
follow the skills for several steps during our search. While

GPI-CTS can make use of the skills through action priors, it is

still unable to foster the temporal-abstraction potential that skills

inherently possess. Indeed, skills can be used to break down tasks

and drastically cut the depth of the MDP. This is the general idea

of Hierarchical Reinforcement Learning [16]. One framework to

study and exploit such properties is through options [30], already

introduced in Section 2.

Searching over Options. We turn to options to benefit from such

temporal abstractions – in other words, we want to use options to

allow the searching agent to call the skills 𝜋 𝑗 over several steps.

We define options 𝑜 𝑗 ∈ O, 𝑜 𝑗 =
(
S, 𝜋 𝑗 , 𝛽 𝑗

)
: the initiation set is

the whole state space S, and follow policy 𝜋 𝑗 . We define the ter-

mination condition following recommendations from the options

framework:“we can compare the value of continuing our option to

the value of interrupting it and selecting a new option. If the latter

is more highly valued, then why not interrupt the option and allow

the switch?" [30]. This sounds ideal, but is rarely applied in practice,

as the value function of all options is generally unknown. However,

the GPI framework assumes these to be known (generally through

Successor Features), so we can simply apply this idea directly.
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Figure 4: Hyperparameter studies

More concretely, we add our skills as additional actions to the

original set, A+ = A⋃O. We then define stopping our skill 𝑜 𝑗
with 𝛽 𝑗 (𝑠) = 1∃𝑎∈A+ |𝑄0 (𝑠,𝑎)>𝑄0 (𝑠,𝑜 𝑗 ) with 1 being the indicator

function. We expand all visited states during skills and count them

as rollouts, for memory and complexity fairness with the other

algorithms. We initialize the option values with prior 𝑄0

(
𝑠, 𝑜 𝑗

)
=

max𝑎 𝑄
𝜋 𝑗 (𝑠, 𝑎). In order to prevent a single skill from using up all

the budget, we add a time-constraint: a skill can not last longer than

𝑐𝑠𝑤𝑖𝑡𝑐ℎ steps. The general inspiration for this algorithm, as well as

the name of the variable, come from Explore Options [2, 3]. Since a

skill takes primitive actions, we backup the values of the primitive

actions taken during the skill; at the node the skill was chosen, we

backup both the option and corresponding action’s values. This

algorithm is referred to as GPI-Option Search (GPI-OS). Note that

since we have only extended the action set, GPI-OS preserves the

theoretical improvement guarantees from Theorem 3.1.

Visualization. Figure 3c visualizes GPI-OS. We can see that the

search is extended and much deeper in the direction of the skills

(with 𝑐𝑠𝑤𝑖𝑡𝑐ℎ = 5 here) than previous GPI-TS algorithms. This

enables the algorithm to join the𝑄0
priors and even find the original

environment reward from a state where GPI-TS and GPI-CTS could

not. As a consequence, the resulting 𝑄GPIOS
map and policy covers

a much greater part of the state-space. On the other hand, the

deeper search of GPI-OS means it relies much more heavily on the

quality of the model to mitigate compounding errors. We note that

while the search can be quite deep in the general direction of the

skills, GPI-OS is still unable to recover the full optimal policy from

the lower right corner. While a higher number of rollouts would

eventually fix this issue, this is impractical. This further justifies the

search for better exploratory skills in Unsupervised Skill Discovery

[8].

argmax operator tie-breaking. The initialization of 𝑄0 with

max𝑎 𝑄
𝜋 𝑗 (𝑠, 𝑎) for skills and max𝑗 𝑄

𝜋 𝑗 (𝑠, 𝑎) for actions implies

that several initial 𝑄 values will be shared in our extended action

set, even in the case of function approximation. This leads to the

very interesting problem of tie-breaking in the argmax operator

during UCB: we can decide to favor skills, primitive actions, or none

in particular. We empirically find that prioritizing primitive actions

leads to a broader search, while prioritizing skills leads to a deeper

search. We choose the latter in our experiments, as it emphasises

the nature of the algorithm.

4.5 Comparison of algorithms and parameters
Policy correctness. We now provide a quantitative comparison

of the algorithms to add to the intuitive understanding provided

by Figure 3. In order to achieve this, we need a metric to evaluate

the methods. Due to discounting, a distance to the optimal value

function would favor algorithms that learn values close to the goal.

Instead, we recall that the point of GPI is to improve on a set of poli-

cies, and use as metric the“policy correctness", i.e., the proportion

of agreement between the obtained policy and the optimal policy,

as a percentage of optimal actions over the state space. The main

variable for our algorithms is the number of rollouts 𝑁 : in Figure 3,

we used 𝑁 = 30. In Figure 4a we compare the algorithm’s policy

correctness as a function of rollouts. We observe that not only does

GPI-OS perform better overall, it’s also stronger as 𝑁 grows. This

is aligned with our intuition, since a higher amount of rollouts

allow for a deeper search over skills. GPI-TS performs better than

GPI-CTS here, mainly due to the shape of the environment and

policy set. Indeed, there is a high amount of states below and on

the right of the 𝑄0
prior, out of the reach of GPI-CTS.

GPI-OS hyperparameters. Another hyperparameter that was in-

troduced is the skill time-limit 𝑐𝑠𝑤𝑖𝑡𝑐ℎ in GPI-OS. This was added

to prevent a single skill from claiming all the rollout budget, pre-

venting a wide search. In Figure 4b we perform a study of the policy

correctness of GPI-OS with varying rollouts 𝑁 and 𝑐𝑠𝑤𝑖𝑡𝑐ℎ . We

can see that the algorithm is sensitive to the rollouts, but fairly

insensitive to 𝑐𝑠𝑤𝑖𝑡𝑐ℎ . Its value matters most for high-valued 𝑁 ,

where it starts being beneficial to have higher 𝑐𝑠𝑤𝑖𝑡𝑐ℎ ; otherwise

the budget is used up too quickly.



Algorithm Improvement guarantees Skill set usage Model sensitivity

GPI-TS Yes None Mild
GPI-CTS No Action constraints Mild
GPI-OS Yes Options High

Figure 5: Overview of pros (bold) and cons of the introduced GPI-TS algorithms

Overview of pros and cons of algorithms. We have designed three

algorithms of the GPI-Tree Search family, and compared their quali-

tative and quantitative performances. We now summarize our find-

ings in Table 5. GPI-TS and GPI-OS both search over all primitive

actions, therefore benefitting from the improvement guarantees

from Theorem 3.1. GPI-TS ignores the skills assumed in the GPI

framework, while GPI-CTS and GPI-OS both make use of them,

through action constraints and options respectively.

In this work, we have assumed a known model 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎).
We did not dive into the consequences of a model approximation.

In general, modeling errors compound and make deeper searches

more prone to errors – in our case, GPI-OS would therefore be more

sensitive to the model than the other algorithms. We provide this

intuition in Table 5 but leave the study of such modeling errors

to future work. Without modeling errors in mind, we recommend

usage of GPI-OS, as we have seen that the deep, directed search

can greatly help performance and scales better with the rollout

budget. GPI-CTS is to be preferred over GPI-TS only if there is prior

information that the skills can provide valuable action constraints.

5 RELATEDWORK
GPI and Successor Features. SFs and the GPI were introduced in

Section 2. Due to its close ties with Unsupervized Skill Discovery,

SFs and the GPI have made several appearances for skill learning

and temporal abstractions [14, 21]. While connections have been

shown between SFs and model-based RL [20], model-based appli-

cations of the GPI have, as far as we are aware, not been explored

before, let alone forward planning.

MCTS and Skill search. MCTS was introduced by [6], and gained

in popularity with the AlphaZero series [24, 25]. As far as we are

aware, the usage of 𝑄-value priors to guide the search was only

explored in [13]. None of these works have direct relations with

the GPI, SFs, or Hierarchical RL in general.

The idea to search over skills or options was raised with the

option framework itself [30] and recently explored to learn reward-

respecting policies [29], however, the model was used for more

generic“planning", in the sense of building a value function directly

through the model. In comparison, GPI-TS algorithms (as decision-

time planning algorithms) focus on the current state and generate a

stronger policy at inference time without learning an explicit value

function.

An MCTS search over options was designed in Ilhan and Etaner-

Uyar [17], however, this work only searched over skills, and not

primitive actions, which loses the guarantees of Theorem 3.1. In

addition, the search is not guided by any𝑄-value priors such as the

one assumed by the GPI framework.

6 CONCLUSION
We have proposed to use model-based RL, and in particular decision-

time planning, to foster the benefits of the GPI within forward

searches. We have provided max norm improvement guarantees on

the GPI using such searches, for any depth and under approximation.

We have introduced a family of algorithms to achieve this in the GPI

framework using MCTS. These algorithms make use of the𝑄-value

prior and skills assumed by the framework to efficiently guide the

search. We have designed three algorithms within the family, and

studied their properties both qualitatively and quantitatively. The

strongest algorithm we introduce, GPI-Option Search, can search

over both primitive actions and skills, using the 𝑄-value priors of

the GPI framework to trigger and stop skills. Since the experimental

setup of this work is limited to tabular cases in order to provide

intuition, future work could demonstrate the performance of GPI-

Tree Search algorithms in function approximation scenarios for

both the agent and model. It could also extend the proofs to tighten

the k-step GPI optimality bounds, and provide some indications to

the type of skills most adapted to being used in such searches.
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