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ABSTRACT

In this paper, we propose a new advantage estimation method for

multi-agent policy gradient in off-policy multi-agent reinforcement

learning, which effectively addresses multi-agent credit assignment

and guarantees policy invariance. Our method is based on reward

shaping with a counterfactual potential function and off-policy

𝑛-step advantage estimation with our shaped reward. Empirical

results on the StarCraft II and multi-agent MuJoCo environments

demonstrate that our proposed algorithm significantly outperforms

existing state-of-the art algorithms for these cooperative multi-

agent tasks.
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1 INTRODUCTION

Deep multi-agent reinforcement learning (MARL) is actively stud-

ied in recent years to solve many real-world problems that can

be modeled as multi-agent systems such as autonomous driving,

coordinated drone fleet flight, and traffic control [24, 31, 33]. In co-

operative multi-agent systems, each agent learns to maximize the

sum of globally-shared rewards based on samples obtained from

its interaction with the environment. The simplest approach to

MARL is independent learning in which each agent learns its policy

by treating other agents as a part of the environment [28]. In this

case, however, it is difficult to learn coordinated behavior and the

environment viewed by each agent becomes non-stationary. This

non-stationarity hinders stable learning. To circumvent this limita-

tion, many MARL algorithms have been proposed recently under

the framework of centralized training and decentralized execution

(CTDE) under the assumption that more resources are available

during the training period [14]. Under this framework, with the

availability of the global state or the collection of all observations

and actions from individual agents during the training period, the

non-stationarity can be mitigated and coordinated behavior can

be learned. There have been vigorous efforts on devising MARL

algorithms that use such global information efficiently for learning

coordinated behavior under CTDE based on value-based methods,
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e.g., VDN [26], QMIX [21], MASER [9] and based on policy gradient

methods, e.g., COMA [5], FACMAC [19].

Recently, in the line of policy optimization for MARL, multi-

agent PPO (MAPPO, Yu et al. [32]) is proposed by extending the

PPO algorithm [23] toMARL and it shows outstanding performance

compared with existing on-policy methods and other off-policy

value-based methods. MAPPO uses value estimation with the global

state to update the policies of all agents by using the advantage

estimated by Generalized Advantage Estimation (GAE, Schulman

et al. [22]). This provides MAPPO with a simple architecture but

also with a limitation. That is, with MAPPO it is not easy to know

how much each agent contributes to the global reward. In MARL, it

is advantageous to know each agent’s contribution to the globally

shared reward because we can apply further measures when we

know the performance of each agent, such as enhancing more

exploration for agents in some local optima with low contributions.

Multi-agent credit assignment aims to handle this problem by

distinguish each agent’s contribution for further enhancement, and

has become one of the important research directions in MARL. Re-

cently, several approaches have been proposed to address the credit

assignment problem with multi-agent policy gradient methods.

COMA [5] designs a counterfactual baseline based on difference

reward, which enables explicit credit assignment with marginaliz-

ing individual expected value. DAE [13] proposes a potential-based

difference reward to apply difference reward to the GAE structure.

However, these methods have the disadvantage of sample ineffi-

ciency since they are on-policy methods, which discard old sample

batches generated by previous policies. In order to increase the

sample efficiency by using old samples, we need to integrate multi-

agent credit assignment with off-policy learning by going beyond

multi-agent credit assignment with on-policy policy gradient.

In the case of single-agent RL, several studies showed that some

off-policy methods for policy gradient are effective. For example,

Retrace(𝜆) [16] and V-trace [4] showed that off-policy value es-

timation based on importance sampling can improve the sample

efficiency of policy gradient methods. DISC [7] and GePPO [20]

improved the performance of single-agent PPO with theoretical

analysis and proper application of off-policy value estimation. De-

spite these efforts, however, there is not much work on off-policy

schemes to multi-agent policy gradient and policy optimization.

https://ala2023.github.io/


In this paper, we present an off-policy optimization approach to

address both the sample efficiency and the credit assignment prob-

lem that arise in multi-agent policy gradient and policy optimiza-

tion. First, to handle the credit assignment explicitly, we consider

a potential-based reward shaping to guarantee policy invariance.

Policy invariance is a desired property because the optimal policy

does not change by reward shaping with this property. For such a

reward shaping in MARL, we propose a counterfactual potential-

based reward shaping that leverages marginalized action value

estimation to explicitly handle credit assignment. On top of this

credit assignment, we further introduce off-policy value estimation

for each agent’s update along with an adaptive KL-divergence loss

to stabilize the reuse of old samples for improved sample efficiency.

We demonstrate the effectiveness of our proposed method with

experimental results in various environments.

2 RELATEDWORKS

Multi-agent policy gradient. Multi-agent policy gradient is a

natural approach under the CTDE framework because it can ex-

ploit global state to estimate the centralized critic. MADDPG [14]

uses individual critic for each agent with global information. Gupta

et al. [6] propose parameter sharing for actor-critic to reduce the

network size and improve learning efficiency. COMA [5] learns a

single centralized critic, and estimates individual advantage with

counterfactual baseline, which enables explicit credit assignment.

DOP [30] and FACMAC [19] propose off-policy policy gradient

methods based on multi-agent value decomposition. IPPO [2] and

MAPPO [32] show that PPO performs strongly in the SMAC envi-

ronment. HAPPO [11] analyzes MAPPO theoretically to guarantee

monotone improvement, and proposes a sequential update struc-

ture with individual actor networks. Kuba et al. [12] analyzes the

variance of multi-agent policy gradient, and proposes a baseline

that minimizes the variance.

Credit assignment and reward shaping. Credit assignment

methods can be classified into two main approaches: implicit and

explicit approaches. Sunehag et al. [26], Rashid et al. [21], Son et al.

[25] enable implicit credit assignment with value decomposition

networks. With using global state information, the mixing network

obtains the joint value network from individual values. On the other

hand, several works use reward shaping to assign credit explicitly.

LIIR [3] learns an individual parameterized intrinsic reward for

each agent with individual state-action pairs. Following the coun-

terfactual baseline of COMA, DAE [13] proposes the difference

advantage estimation with a potential-based reward shaping. There

exists some other works in addition to the two main approaches.

Iqbal and Sha [8] and Kim et al. [10] use an attention network to

enhance the collaboration among agents.

Off-policy value estimation. 𝑁 -step value estimation can pro-

vide more accurate value estimation for policy gradient methods.

TD(𝜆) [27] and GAE [22] have been used widely in on-policy meth-

ods. In single-agent RL, 𝑛-step off-policy value estimation has been

developed for the sample efficiency. Retrace(𝜆) [16] and V-trace [4]

propose low-variance value estimation by using truncated impor-

tance sampling trace. DISC [7] suggests using GAE-V (i.e., GAE

with V-trace) for off-policy advantage estimation. GePPO [20] ana-

lyzes the effectiveness of reusing off-policy samples with PPO and

GAE-V.

3 BACKGROUND

3.1 Decentralized POMDP

We consider a cooperative multi-agent system modeled as a de-

centralized partially observable MDP (Dec-POMDP) [18], where

multiple agents cooperate as a team and choose sequential actions

with partial observations. A Dec-POMDP can be defined by a tuple

< N ,S,U,P, 𝑟 ,Z,𝑂,𝛾 >, where N is the set of agents with car-

dinality 𝑁 , S is the set of states, U is the set of actions, P is the

transition probability, 𝑟 is the reward function,Z is the observation

space, 𝑂 is the observation function, and 𝛾 is the discount factor.

At each timestep 𝑡 , each agent 𝑖 ∈ N makes an observation 𝑜𝑖𝑡 ∈ Z
regarding the state 𝑠𝑡 ∈ S according to the observation function

𝑂 (𝑠𝑡 , 𝑖). Based on the observation 𝑜𝑖𝑡 , each agent 𝑖 chooses its ac-

tion 𝑢𝑖𝑡 ∈ U according to its own policy 𝜋𝑖
(
𝑎𝑖𝑡 |𝑜𝑖𝑡

)
. Then, based on

the collection of all actions from all agents a𝑡 = (𝑎1

𝑡 , · · · , 𝑎𝑁𝑡 ) and
the current state 𝑠𝑡 , the environment returns the global reward 𝑟𝑡
shared by all agents according to the reward function 𝑟 (𝑠𝑡 , a𝑡 ) and
makes a transition to a next state 𝑠𝑡+1 according to the transition

probability P.

We adopt the widely-used CTDE framework. Thus, global infor-

mation is used to train decentralized policies, whereas each agent

chooses its actionwith local observation during the execution phase.

We consider an actor-critic approach, where the action-value func-

tion and state-value function of the joint policy 𝝅 = (𝜋1, · · · , 𝜋𝑁 )
are defined as 𝑄𝝅 (𝑠, 𝒂) = E𝝅

[∑∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝒂𝒕 ) |𝑠0 = 𝑠, 𝒂0 = 𝒂
]
and

𝑉 𝝅 (𝑠, 𝒂) = E𝝅
[∑∞

𝑡=0
𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠

]
, respectively. The goal is

to find a joint policy that maximizes the discounted sum of global

rewards.

3.2 Multi-Agent PPO

MAPPO (multi-agent proximal policy gradient) is a PPO-based

MARL method and is shown to outperform many existing MARL

methods. MAPPO has the following objective function:

𝐿(𝜃 ) = E𝝅

[
𝑁∑︁
𝑖=1

min(𝜌𝑖𝐴, clip(𝜌𝑖 , 1 − 𝜖, 1 + 𝜖)𝐴),
]

where 𝜌𝑖 =
𝜋𝑖 (𝑎𝑖 |𝑠 )
𝜋𝑖
𝑘
(𝑎𝑖 |𝑠 ) is the individual importance sampling ratio

for current policy 𝜋𝑘 , and 𝐴 is an advantage common to all agents,

estimated by generalized advantage estimation (GAE, Schulman

et al. [22]). GAE estimates the advantage 𝐴 as

𝐴
𝐺𝐴𝐸 (𝛾,𝜆)
𝑡 =

∞∑︁
𝑙=0

(𝛾𝜆)𝑙𝛿𝐺𝐴𝐸
𝑡+𝑙 ,

where 𝛿𝐺𝐴𝐸
𝑡+𝑙 = 𝑟𝑡+𝑙 + 𝛾𝑉 (𝑠𝑡+𝑙+1

) −𝑉 (𝑠𝑡+𝑙 ) is the TD-residual, 𝑉 (𝑠)
is the parameterized state-value function, and 𝜆 is the bias-variance

trade-off parameter.

3.3 Reward Shaping

In single-agent RL, policy invariance [17] is one of the major princi-

ples to guarantee that the policy can still reach an optimal one with



a shaped reward. One key approach to policy invariance is reward

shaping. In particular, Ng et al. [17] showed that potential-based

reward shaping does not change policy gradient and optimal policy.

That is, the policy maximizing

∑∞
𝑡=0

𝛾𝑡𝑟𝑡 also maximizes

∑∞
𝑡=0

𝛾𝑡𝑟𝑡
among all policies, where 𝑟𝑡 is the original reward and 𝑟𝑡 is the

potential-based shaped reward. Potential-based reward shaping

transforms the original reward 𝑟 to a shaped reward 𝑟 as follows:

𝑟 = 𝑟 (𝑠, 𝑎) + 𝐹, where

𝐹 (𝑠, 𝑎, 𝑠′) = 𝛾𝜙 (𝑠′) − 𝜙 (𝑠) (1)

and 𝜙 : S → R is a real value function called potential function.

This potential-based shaping is a necessary and sufficient condition

for policy invariance by reward shaping [17].

Schulman et al. [22] interpreted GAE in terms of reward shaping

and policy invariance principle. That is, the TD-residual 𝛿𝐺𝐴𝐸
𝑡+𝑙 of

GAE can be viewed as a potential-based shaped reward 𝑟𝑡+𝑙 , i.e.,

𝛿𝐺𝐴𝐸
𝑡+𝑙 = 𝑟𝑡+𝑙 + 𝛾𝑉 (𝑠𝑡+𝑙+1

) −𝑉 (𝑠𝑡+𝑙 ) =: 𝑟𝑡+𝑙 (2)

due to the form of (1). Note that the form of 𝛿𝐺𝐴𝐸
𝑡+𝑙 directly matches

the form in (1) with 𝜙 (𝑠) = 𝑉 (𝑠). Then, the 𝛾𝜆-discounted return

of the transformed MDP becomes

∞∑︁
𝑙=0

(𝛾𝜆)𝑙𝑟𝑡+𝑙 =
∞∑︁
𝑙=0

(𝛾𝜆)𝑙𝛿𝐺𝐴𝐸
𝑡+𝑙 = 𝐴

𝐺𝐴𝐸 (𝛾,𝜆)
𝑡 . (3)

Thus, maximizing the GAE advantage 𝐴
𝐺𝐴𝐸 (𝛾,𝜆)
𝑡 is equivalent to

maximizing the 𝛾𝜆-discounted sum of shaped rewards. Hence, pol-

icy invariance holds for GAE when 𝜆 = 1. Note that the case of

𝜆 = 1 corresponds to the 𝛾-discounted return exactly.

4 PROPOSED METHOD

In this section, we present our off-policy MARL algorithm named

Off-policy Counterfactual Policy Optimization (OCPO). OCPO is

an off-policy MARL algorithm that uses a Kullack-Leibler (KL)

divergence-penalized PPO objective with off-policy samples and ad-

dresses multi-agent credit assignment with marginalized advantage

estimation and potential-based counterfactual reward shaping.

4.1 Motivation

MAPPO [32] achieves impressive performance by adapting PPO

to the multi-agent case. Just like single-agent PPO, MAPPO esti-

mates an 𝑛-step advantage using GAE. GAE can reduce the vari-

ance of estimation with the bias-variance control parameter 𝜆 and

achieve policy invariance since it has the form of a discounted

sum of potential-based shaped rewards. However, PPO has the dis-

advantage of sample inefficiency due to its on-policy nature. So,

PPO-inherited MAPPO has the same problem of sample inefficiency.

In the case of single-agent policy gradient methods, there exist

several works for reusing off-policy samples for improved sample

efficiency. In particular, the 𝑛-step estimation with importance

sampling is widely used for off-policy policy gradient methods. 𝑁 -

step estimation can help reducing the variance resulting from off-

policy samples from past policies. GAE-V, which is a combination of

GAE and V-trace, is an example of a successful off-policy extension

of GAE. However, these methods are not directly applicable to the

multi-agent case unfortunately because they target single-agent RL

problems and were not designed with consideration of multi-agent

credit assignment.

Several efforts have been made to solve the multi-agent credit

assignment problem based on the multi-agent policy gradient meth-

ods [5, 13]. Foerster et al. [5] proposed the COMA advantage which

can assign credits and guarantee policy invariance simultaneously.

However, the COMA advantage does not exploit sequential behav-

ior of agents because it assigns only 1-step credit assignment. To

overcome this limitation, Li et al. [13] proposed a difference ad-

vantage to achieve 𝑛-step multi-agent credit assignment. The DAE

advantage for agent 𝑖 is defined as [13]

𝐴
𝑖,𝐷𝐴𝐸
𝑡 =

∞∑︁
𝑙=0

(𝛾𝜆)𝑙𝛿𝑖,𝐷𝐴𝐸
𝑡+𝑙 , (4)

where 𝛿
𝑖,𝐷𝐴𝐸

𝑡+𝑙 = 𝑟𝑡+𝑙 − 𝛽𝑙+1E𝑎𝑖 [𝑟𝑡+𝑙 ] +𝛾𝑉𝑡+𝑙+1
−𝑉𝑡+𝑙 , and 𝑎𝑖 ∼ 𝜋𝑖 is

the action of agent 𝑖 . Here, 𝛿
𝑖,𝐷𝐴𝐸

𝑡+𝑙 can be viewed as the TD-residual

with shaped reward 𝑟
𝑖,𝐷𝐴𝐸

𝑡+𝑙 = 𝑟𝑡+𝑙 − 𝛽𝑙+1E𝑎𝑖 [𝑟𝑡+𝑙 ]. In this case, the

reward shaping function of DAE is given by 𝐹 = −𝛽𝑙+1E𝑎𝑖 [𝑟𝑡+𝑙 ].
Otherwise, 𝛿

𝑖,𝐷𝐴𝐸

𝑡+𝑙 can be viewed as a shaped reward itself like in

GAE. In the second case, 𝐹 = −𝛽𝑙+1E𝑎𝑖 [𝑟𝑡+𝑙 ] + 𝛾𝑉𝑡+𝑙+1
− 𝑉𝑡+𝑙 . In

either case, the shaped reward is not in the form (1) of potential-

based reward shaping, and hence policy invariance does not hold

for DAE. Note that (1) is a necessary and sufficient condition for

policy invariance by reward shaping.

The above facts motivate us to address the limitations of existing

multi-agent policy gradient methods. In the following subsections,

we introduce a new 𝑛-step advantage estimation method for multi-

agent policy gradient with credit assignment, which controls the

bias-variance trade-off, guarantees policy invariance with potential-

based reward shaping, and increases sample efficiency by reusing

off-policy samples. The properties of various methods are summa-

rized in Table 1.

Table 1: Advantage Estimators

Advantage N-step Policy- Off-Policy Credit

Estimation Invariance Sample Reuse Assignment

Ours Yes Yes Yes Yes

GAE Yes Yes No No

GAE-V Yes Yes Yes No

DAE Yes No No Yes

COMA No Yes No Yes

4.2 Counterfactual Potential-Based Advantage

As previously seen, the TD-residual 𝛿𝐺𝐴𝐸𝑡 of GAE can be viewed

as a potential-based shaped reward with the potential function

𝜙 (𝑠) = 𝑉 (𝑠). We can modify the potential function by choosing

any function that has no gradient with respect to (w.r.t.) individual

policy parameter 𝜃𝑖 of agent 𝑖 . In our case, we choose the counter-

factual baseline 𝜙𝑖 (𝑠, 𝒂−𝑖 ) = E𝑎𝑖∼𝜋𝑖 [𝑄 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )] as the individual
potential function. This allows us to shape the global reward into an

individual reward for each agent. Thus, our proposed counterfactual



potential-based shaped reward for agent 𝑖 is given by

𝑟 𝑖 (𝑠𝑡 , 𝒂𝑡 ) = 𝑟 (𝑠𝑡 , 𝒂𝑡 ) + 𝛾𝜙𝑖 (𝑠𝑡+1, 𝒂
−𝑖
𝑡+1

) − 𝜙𝑖 (𝑠𝑡 , 𝒂−𝑖𝑡 )
= 𝑟 (𝑠𝑡 , 𝒂𝑡 ) + 𝛾E𝑎𝑖

𝑡+1
∼𝜋𝑖 [𝑄 (𝑠𝑡+1, 𝑎

𝑖
𝑡+1

, 𝒂−𝑖𝑡+1
)]

− E𝑎𝑖𝑡∼𝜋𝑖 [𝑄 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝒂−𝑖𝑡 )] . (5)

The main difference of (5) from (2) is that (5) is individual for each

agent 𝑖 , whereas (2) used for MAPPO is common to all agents. (This

commonality disables credit assignment for MAPPO.) Due to the

form E𝑎𝑖∼𝜋𝑖 [𝑄 (𝑠, 𝑎𝑖 , 𝒂−𝑖 )], (5) captures the TD residual of agent

𝑖’s action for given actions of other agents, dealing with credit

assignment.

Beforewe apply the shaped reward to𝑛-step off-policy advantage

estimation, we show that the proposed reward shaping guarantees

policy invariance in the following proposition.

Proposition 4.1 (Policy Invariance). The proposed reward
shaping (5) guarantees policy invariance.

Proof. Available at [1].

□

4.3 Off-Policy Value Estimation

MAPPO and PPO compute the advantage and corresponding value

by using GAE(𝜆). Since they use only on-policy sample batch gen-

erated by current policy for update, off-policy correction is not

necessary for their GAE(𝜆). To use old sample batches generated

by old policies for update, however, we need off-policy correction

with an importance sampling scheme for learning and stabilizing

the variance. V-trace [4] presents an off-policy version of GAE(𝜆):

𝑉𝑡 = 𝑉𝑡 +
𝑇−1∑︁
𝑙=𝑡

(𝛾)𝑙−𝑡 ©«
𝑙∏
𝑗=𝑡

𝑐 𝑗
ª®¬𝛿𝑙 , (6)

where 𝑐𝑡 = min(𝜌𝑡 , 𝑐) is the truncated importance sampling weight

at time 𝑡 with some upper bound 𝑐 . From (6), Han and Sung [7]

showed that an off-policy estimation of𝑛-step advantage is available

as

𝐴𝑡 =

𝑇−1∑︁
𝑙=𝑡

(𝛾𝜆)𝑙−𝑡 ©«
𝑙∏

𝑗=𝑡+1

𝑐 𝑗
ª®¬𝛿𝑙 . (7)

Basically, combining this importance sampling scheme and our

counterfactual potential-based reward shaping, we obtain our off-

policy advantage estimator. However, we slightly modify the im-

portance sampling scheme to be suitable for multi-agent systems.

That is, for more aggressive correction for change in an individual

policy while being less affected by changes in other policies, we

propose a double-truncated importance sampling weight

𝑐
𝑖,𝐷𝑇
𝑡 = min

(
min(𝝆−𝑖

𝑡 , 1) · 𝜌𝑖𝑡 , 1

)
(8)

for the advantage estimate of each agent 𝑖 . Thus, our final counterfac-
tual potential-based advantage estimator enabling 𝑛-step off-policy

estimation for agent 𝑖 is given by

𝐴
𝑖,𝑂𝐶𝑃𝑂
𝑡 =

𝑇−1∑︁
𝑙=𝑡

(𝛾𝜆)𝑙−𝑡 ©«
𝑙∏
𝑗=𝑡

𝑐
𝑖,𝐷𝑇
𝑗

ª®¬𝛿𝑖,𝑂𝐶𝑃𝑂𝑙
, (9)

where

𝛿
𝑖,𝑂𝐶𝑃𝑂

𝑙
= 𝑟𝑙 + 𝛾E𝑖 [𝑄𝑙+1

] − E𝑖 [𝑄𝑙 ]
is the counterfactual potential-based TD residual with simplified

notation E𝑖 [𝑄𝑡 ] := E𝑎𝑖𝑡∼𝜋𝑖 [𝑄 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 )], and 𝑐𝑖,𝐷𝑇
𝑗

is the double-

truncated importance sampling weight in (8). Like GAE(𝜆), our

counterfactual potential-based advantage guarantees policy invari-

ance when 𝜆 = 1, and we can control the bias-variance trade-off of

the estimator by choosing 𝜆 ∈ (0, 1].

4.4 Off-Policy Sample Reuse

To improve the sample efficiency, we reuse old data samples from

the replay buffer 𝑅. The used samples are the 𝑀 sample batches

𝐵𝑘 , 𝐵𝑘−1
, . . . , 𝐵𝑘−𝑀+1

, generated from the current policy 𝝅𝑘 and

old policies 𝝅𝑘−1
, . . . , 𝝅𝑘−𝑀+1

, where 𝝅𝑙 denotes the policy at the

𝑙-th iteration. Old sample reuse improves the learning efficiency

but can make the update unstable when the data distribution is too

shifted from the current policy distribution. To prevent this, we

consider the penalty loss term for policy update as

𝐿𝐾𝐿
𝑙

(𝜋𝑖 ) = E𝑜𝑖 ∈𝐵𝑙
[
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑜𝑖 ) ∥ 𝜋𝑖𝑙 (·|𝑜

𝑖 ))
]
. (10)

𝐿𝐾𝐿
𝑙

makes the sample reuse more stable by ensuring that the policy

update does not deviate excessively from the behavioral policy. We

assign a weight factor 𝛼𝐾𝐿 to 𝐿𝐾𝐿
𝑙

and update 𝛼𝐾𝐿 adaptively to

make 𝐿𝐾𝐿
𝑙

become to get closer to a target value 𝐿𝐾𝐿𝑡𝑎𝑟𝑔 in a similar

to that in [23]:

𝛼𝐾𝐿 =


𝛼𝐾𝐿 ×

√
2 if E𝑙 [𝐿𝐾𝐿𝑙 ] > 𝐿𝐾𝐿𝑡𝑎𝑟𝑔 × 1.5

𝛼𝐾𝐿/
√

2 if E𝑙 [𝐿𝐾𝐿𝑙 ] < 𝐿𝐾𝐿𝑡𝑎𝑟𝑔/1.5

𝛼𝐾𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(11)

The KL-penalty term helps prevent the batches stored in the buffer

from drifting too far away from the current policy. In addition

to this KL-penalty term, we apply a further step to prevent too

much drifting. That is, we use a batch inclusion parameter 𝜖𝑏 > 0,

which allows excluding the batches that have large difference from

the current policy distribution. For an old sample batch 𝐵𝑙 , if the

average importance sampling shift

𝑠𝑙 = E𝐵𝑙

[�����1 − 𝜋𝑖
𝑘

𝜋𝑖
𝑙

����� + 1

]
(12)

is larger than 𝜖𝑏 , we exclude the batch for the update step. Thus, in

our formulation, the inclusion parameter and the KL-divergence

loss prevent the data distribution from changing too quickly.

Now, our final objective for policy update with reusing old sam-

ple batches is given by

𝐿 (𝜃 ) = 1

𝑀𝑁

𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=𝑘−𝑀+1

(
𝜋𝑖
𝜃

𝜋𝑖
𝑗

∑︁
𝑡 ∈ 𝑗

�̂�
𝑖,𝑂𝐶𝑃𝑂
𝑡 − 𝐿𝐾𝐿𝑗 (𝜋𝑖

𝜃
)
)
. (13)

Note that in the objective function (13), the contribution of agent

𝑖 is captured by 𝐴
𝑖,𝑂𝐶𝑃𝑂
𝑡 which can be different across the index

𝑖 . To implement an individual policy 𝜋𝑖 , we use the method of pa-

rameter sharing with one-hot vector [15]. That is, we use a shared

policy network with input of observation and one-hot vector indi-

cating individual agent, and 𝜽 is the parameter of this shared policy

network.



To compute 𝛿
𝑖,𝑂𝐶𝑃𝑂
𝑡 necessary for computation of 𝐴

𝑖,𝑂𝐶𝑃𝑂
𝑡 , we

need to learn the 𝑄-function. For this, we parameterize the 𝑄-

function with parameter 𝜙 and use the following loss for update:

𝐿(𝜙) = 1

𝑀𝑁

𝑘∑︁
𝑙=𝑘−𝑀+1

𝑁∑︁
𝑖=1

(𝑄𝜙 − ˆ𝑄𝑖 )2, (14)

where the target value is given by [16]

ˆ𝑄𝑖 (𝑠𝑡 ) = 𝑄𝑖 (𝑠𝑡 ) +𝐴
𝑖,𝑂𝐶𝑃𝑂
𝑡 . (15)

We again use the method of parameter sharing with one-hot vec-

tor [15] for the implementation of the 𝑄-function. Algorithm 1

summarizes the proposed algorithm.

Algorithm 1 OCPO

1: Initialize KL-penalty coefficient 𝛼𝐾𝐿 , shared policy parameter

𝜽 . shared value parameter 𝝓 for 𝑁 agents

2: Initialize replay buffer 𝑅 with capacity𝑀

3: for each iteration 𝑘 do

4: Collect a trajectory 𝐵𝑘 from the environment by the joint

policy 𝝅𝑘
5: Store 𝐵𝑘 in the replay buffer 𝑅

6: Initialize the update buffer𝑈

7: for each sample batch 𝐵𝑙 in 𝑅 do

8: if 𝑠𝑙 in (12) is less than 𝜖𝑏 then

9: Store 𝐵𝑙 in𝑈

10: end if

11: end for

12: Compute 𝐴
𝑖,𝑂𝐶𝑃𝑂
𝑡 and �̂�𝑖 with (9) and (15) by using the

samples stored in𝑈

13: for each gradient step do

14: Update 𝜽 with policy objective (13)

15: Update 𝝓 with value objective (14)

16: end for

17: Update 𝛼𝐾𝐿 with (11)

18: end for

5 EXPERIMENTS

We here provide empirical results and ablation studies.

5.1 Simulation Setup

We evaluated the proposed method on two widely-used benchmark

environments for MARL: Multi-Agent MuJoCo (MAMuJoCo) and

StarCraft Multi-Agent Challenge (SMAC).

Multi-Agent MuJoCo (MAMuJoCo). MAMuJoCo is a bench-

mark for cooperative multi-agent tasks with a single robot, where

the single robot is represented as a body graph partitioned into

disjoint subgraphs and each subgraph is one agent [19]. Each agent

can observe the controllable joints of the 𝑘-nearest agents. We

considered 𝑘 = 0, which is the most difficult partially observable

setting.

StarCraft II Multi-Agent Challenge (SMAC). SMAC is one

of the most popular environments to evaluate cooperative MARL

algorithms. The conventional reward setting of SMAC is dense, but

we consider the modified sparse SMAC environment proposed in

[9]. In the modified environment, a reward is given only when some

units die or win a battle and hence the problem is more difficult.

The reward setting for the dense and sparse reward cases is shown

in Table 2.

Table 2: Reward setting for SMAC

Dense Reward Sparse Reward

All enemies die (Win) +200 +200

One enemy dies +10 +10

One ally dies -5 -5

Enemy’s health -Enemy’s remaining health -

Ally’s health +Ally’s remaining health -

Other Components +/- with other components

5.2 Performance Comparison

MAMuJoCo. We compared OCPO on four MAMuJoCo tasks

6x1-Halfcheetah-v2, 2x3-Halfcheetah-v2, 2x3-Walker2d-v2,
and 10x2-manyagent-swimmer with three baselines: MAPPO [32],

MAPPO with COMA [5] advantage, and HAPPO [11].

Fig. 1 shows the learning curves of our method OCPO and the

baseline algorithms, and Table ?? shows the maximum average

episode reward for each algorithm after learning 5𝑀 time steps. It

is observed that the on-policy OCPO performs similarly to MAPPO

in some environments but performs better than the baselines in

6x1-Halfcheetah-v2, which requires a high degree of credit as-

signment. Here, by on-policy OCPO we mean that we train our

OCPO by using only the current sample batch without using pre-

vious sample batches, although OCPO can use previous sample

batches. It is also seen that the proposed off-policy OCPO consis-

tently outperforms all baselines on the considered environments.

Indeed, our off-policy advantage estimator and sample reuse yield

significant performance improvement.

Table ?? shows the max average episodic return of the consid-

ered algorithms in the MAMuJoCo tasks. It is seen that OCPO

also outperforms other baselines in terms of max average episodic

return.

SMAC. We compared OCPO on four sparse-reward SMAC tasks

with five major baselines: MAPPO [32], MAPPO with COMA ad-

vantage [5], QMIX [21], MASER [9], and ROMA [29].

Fig. 2 shows the performance of the proposed algorithm OCPO

and the baselines on the sparse SMAC environment. It is seen

that OCPO shows superior performance to existing state-of-the-art

MARL baselines. In the challenging tasks such as 3s5z-sparse and
2m_vs_1z-sparse, where it is difficult to obtain sparse rewards,

OCPO demonstrates significant performance improvement over the

baselines. Especially, our off-policy OCPO demonstrates superior

performance to other baselines in 3s5z-sparse, where all other
algorithms fail to learn. Note that even on-policy OCPO fails to

learn in 3s5z-sparse. Thus, it is indeed important to use old sample

batches to improve performance.



(a) 6x1-HalfCheetah-v2 (b) 2x3-HalfCheetah-v2 (c) 2x3-Walker2d-v2 (d) 10x2-manyagent-swimmer

Figure 1: Performance comparison on MAMuJoCo tasks (the legends in (a) are valid to (b),(c) and (d).)

(a) 2m_vs_1z-sparse (b) 8m-sparse (c) 2s3z-sparse (d) 3s5z-sparse

Figure 2: Performance comparison on the considered sparse SMAC tasks (the legends in (d) are valid for (a), (b) and (c).)

Comparison with DAE. As mentioned, DAE is also a method

for 𝑛-step advantage estimation with credit assignment for MARL,

sharing the common goal with OCPO. We compared OCPO with

DAE based on MAPPO as the backbone algorithm. Fig. 3a shows

the performance of OCPO and DAE when both algorithms use

only on-policy batch samples. In this on-policy case, OCPO yields

noticeable performance gain over DAE even in the case that both

algorithms use on-policy samples only. Fig. 3b shows the perfor-

mance of OCPO and DAE when both algorithms use both on-policy

and off-policy batch samples. Recall that DAE is proposed for on-

policy learning. Hence, the performance of DAE degrades with

off-policy samples, as seen by comparing Figs. 3a and 3b. On the

other hand, OCPO targeting off-policy learning yields significant

performance improvement with off-policy samples. Note that the

performance gap between these two algorithms is large.

5.3 Ablation Study

To assess the impact of each component of OCPO, we performed

an ablation study on off-policy correction (9) and KL-divergence

loss (10). To see the effectiveness and compatibility of OCPO with

reusing old samples, we also investigated the performance of OCPO

w.r.t. the replay buffer size. Finally, we compared our proposed

advantage estimator with existing GAE-V, to see the compatibility

of our advantage with OCPO.

Off-Policy Correction. Off-policy correction with importance

sampling ratio is a commonly-used technique for off-policy policy

gradient methods. Since we proposed a new correction method of

double-truncated importance sampling, we tested how this new

correction affects the performance. Fig. 4a shows that our proposed

correction method improves performance over single-truncated

correction and our method without correction. Here, ’our method

without correction’ means that we eliminated the off-policy cor-

rection term

∏𝑙
𝑗=𝑡 𝑐

𝑖,𝐷𝑇
𝑗

in (9). ’Single-truncated correction’ means

that the off-policy correction term

∏𝑙
𝑗=𝑡 𝑐

𝑖,𝐷𝑇
𝑗

in (9) is replaced

by

∏𝑙
𝑗=𝑡 𝑐 𝑗 with 𝑐 𝑗 in (7). Indeed, the double-truncated correction

method newly proposed for MARL outperforms the conventional

single-truncated correction method.

KL Divergence Loss. The KL-divergence loss is also used in

PPO, but we extend this to reuse off-policy samples. Policy update

and PPO surrogate are obtained from the current policy, whereas

the KL-divergence loss is obtained from an old policy stored in the

replay buffer. We performed an experiment by varying the target

value for the KL divergence loss. Fig. 4b shows that this loss is

effective for preventing policy updates from moving away from

past samples and causing distribution shifts.

Replay Buffer Size. We performed an experiment by varying

the length of the old sample batches for sample reuse to see the

impact of old sample batches on the performance. In Figure 4c, it

is seen that increasing the buffer size significantly improves the

performance. The performance gain is almost monotonic w.r.t. the

reuse batch length up to 8. Note that this corresponds to 8 times

increase in sample efficiency compared with on-policy learning.



(a) On-policy learning (b) Off-policy learning

Figure 3: Performance comparison with DAE

(a) Off-policy correction (b) KL-divergence loss (c) Sample reuse buffer size (d) Advantage Estimator

Figure 4: Ablation study: Impact of each component of OCPO

Advantage Estimation. Now we address how the proposed

advantage estimator, potential-based counterfactual advantage, is

superior to the existing single-agent n-step off-policy advantage

estimator.We display the results of OCPO andOCPOwithGAE-V, to

show how our advantage estimator is relevant to deal with MARL

problems. Fig. 4d shows that our advantage estimator performs

better than GAE-V with off-policy learning. Here, ’OCPO + GAE-V’

means that we use OCPO algorithm by replacing only the advantage

estimator with GAE-V.

6 CONCLUSION

We have proposed a new multi-agent policy gradient algorithm,

OCPO, that achieves both credit assignment and off-policy sample

reuse. OCPO uses a new advantage estimator, which can assign a

credit to each agent and control the trade-off between variance and

bias. We have proven that the estimator guarantees policy invari-

ance and extends to using off-policy sample batches. Our empirical

results demonstrate that OCPO significantly improves performance

on both continuous and discrete tasks with high sample efficiency.

OCPO advantage estimation is compatible with other state-of-the-

art MARL algorithms requiring advantage estimation, yielding a

potential for even better algorithms.
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