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ABSTRACT
The complexity and scale of IT systems are increasing dramatically,
posing many challenges to real-world anomaly detection. Deep
learning anomaly detection has emerged, aiming at feature learn-
ing and anomaly scoring, which has gained tremendous success.
However, little work has been done on the thresholding problem
despite it being a critical factor for the effectiveness of anomaly de-
tection. In this paper, we model thresholding in anomaly detection
as a Markov Decision Process and propose an agent-based dynamic
thresholding (ADT) framework based on a deep Q-network. The
proposed method can be integrated into many systems that require
dynamic thresholding. An auto-encoder is utilized in this study
to obtain feature representations and produce anomaly scores for
complex input data. ADT can adjust thresholds adaptively by uti-
lizing the anomaly scores from the auto-encoder and significantly
improve anomaly detection performance. The properties of ADT
are studied through experiments on three real-world datasets and
compared with benchmarks, hence demonstrating its thresholding
capability, data-efficient learning, stability, and robustness. Our
study validates the effectiveness of reinforcement learning in opti-
mal thresholding control in anomaly detection.
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1 INTRODUCTION
Anomaly detection has attracted much attention for years. It refers
to the problem of finding patterns in data that deviate from the
expected normal behavior [5]. Anomalies are often "rare" and "dif-
ferent" and can provide critical information [16]. Anomaly detection
has been well studied in numerous research areas and application
domains including data mining, network intrusion detection, medi-
cal and public health, and energy management [6].

In general, a measurement of the input data (i.e. anomaly score)
will be compared with a domain-specific threshold to determine
the degree to which the data is considered abnormal. There is
a substantial amount of research that is dedicated to using deep
learning (DL)-based methods for feature learning and anomaly
scoring for complex input data, achieving competitive advantages
over conventional anomaly detection methods. However, little work
has been done on the thresholding problem despite it being a critical
factor for the effectiveness of anomaly detection. Given the fact
that varying the threshold values can greatly change detection
performance, the importance of thresholding should receive more
attention.
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In the literature, many existing anomaly detection approaches
use static or expert-defined thresholds [3, 15, 20]. However, with the
dramatic increase in the complexity and scale of IT systems and data,
the traditional thresholding approaches are not efficient enough
due to their poor scalability and robustness [3]. They have difficulty
adapting to non-stationary and evolving time series data [5]. Re-
cently, some novel dynamic thresholding methods were proposed
such as the statistical method that is based on extreme value the-
ory (EVT) [22]. Unfortunately, some of the methods cannot always
guarantee good results and the improvement over static threshold-
ing is limited, which has also been shown in our experiments. It is
desirable to develop more effective thresholding methods in this
area.

Reinforcement Learning (RL) is well known for its capability of
solving complex sequential decision-making in various domains,
e.g. computer games, robotics, transport, and traffic signal control.
RL models the sequential decision-making problem as a Markov
Decision Process (MDP), where an agent learns through trial and
error from the interaction with an environment. The goal for the
agent is to maximize the total rewards over time. An RL agent is
capable of providing advantageous control for dynamic complex
systems [13]. The application of RL in optimal thresholding control
is therefore a worthwhile study.

This paper presents an agent-based dynamic thresholding (ADT)
framework for optimal thresholding control in anomaly detection
and models the problem as a MDP. The popular deep reinforce-
ment learning (DRL) algorithm, i.e. Deep Q-network (DQN) is ap-
plied to deal with high-dimensional and continuous inputs. An
auto-encoder (AE) is utilized to obtain feature representations and
perform anomaly scoring for time series data. ADT can provide
appropriate dynamic thresholds by utilizing the anomaly scores
from AE, achieving adaptive anomaly detection. Specifically, the
threshold 𝛿 is adjusted between a passive mode (i.e. 𝛿 = 1) and an
active mode (i.e. 𝛿 = 0) in the detection process.

The proposed thresholding method can be combined with many
systems that require dynamic thresholding, ideally as long as they
are able to generate expressive abnormal-related measurements.
ADT is lightweight and data-efficient, since a small amount of data
is adequate for the training (e.g. < 1% of the benchmarked dataset).
The experimental results on three real-world datasets prove that
our thresholding method leads to significantly improved detection
performance compared with benchmarks, e.g. achieving the best
F1 scores in all cases ranging from 0.945 to 0.999.

The main contributions of this paper are as follows: first of all,
we model thresholding in anomaly detection as a MDP and pro-
pose an agent-based dynamic thresholding framework using DQN.
Secondly, we incorporate a deep generative model and our agent-
based thresholding controller to perform anomaly detection on
real-world datasets, demonstrating the high detection performance,
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data efficiency, stability, and robustness. Finally, we conduct a feasi-
bility study to further validate the thresholding performance of the
proposed method and demonstrate its superiority over benchmarks.

In the rest of this paper, we begin with a literature review of
related work and background knowledge in Section 2. We then
introduce the details of our methods in Section 3, and present the
experiments and results in Section 4 and Section 5. Finally, we
conclude the paper in Section 6.

2 BACKGROUND AND RELATEDWORK
This section introduces the background knowledge and related
work of unsupervised deep anomaly detection, dynamic threshold-
ing in anomaly detection, and reinforcement learning.

2.1 Unsupervised Deep Anomaly Detection
In the past, commonly-used anomaly detection methods included
classification-based methods such as SVM [2, 17, 25], clustering-
basedmethods such as K-means [14, 31], and density-basedmethods
such as KNN [7, 23]. However, such traditional methods generally
suffer from the curse of dimensionality of high-dimensional inputs,
and are limited in capturing complex temporal information in time
series [5, 9]. Unbalanced training data with very few available labels
is also an issue [15]. Recent studies have shown that unsupervised
deep anomaly detection (UDAD) helps to address these gaps.

There are various UDAD approaches based on variational auto-
encoder (VAE), recurrent neural networks (RNN), generative adver-
sarial networks (GAN), and other deep neural network architectures
or their variants. The VAE-LSTM [15] employs VAE to extract local
information of short windows and LSTM to estimate long-term
sequence correlations, which can detect anomalies over both short
and long periods. USAD [3] embeds two AEs within an adversar-
ial training framework to combine the advantages of both tech-
niques while mitigating the limitations of each. The LSTM-based
VAE-GAN [20] jointly trains the LSTM-based encoder, generator,
and discriminator to take advantage of the mapping ability and
the discrimination ability simultaneously. The deep auto-encoding
Gaussian mixture model (DAGMM) [32] utilizes AE to obtain low-
dimensional features and reconstruction errors, and feed them to a
Gaussian mixture modeling to perform density estimation.

The aforementioned UDAD methods focus on generic feature
extraction, representation learning of normality, and anomaly score
learning [21], which have gained tremendous success in this area.
However, some of the studies did not clearly explain their threshold-
ing approach [3], and some used static or expert-defined thresholds
[15, 20, 32]. In fact, the thresholding problem is critical in anomaly
detection as it highly affects the detection results. The underesti-
mation of thresholding can result in a bottleneck of an anomaly
detection method and therefore is worth further research.

2.2 Dynamic Thresholding in Anomaly
Detection

Dynamic thresholding adjusts thresholds in a timely manner to
adapt to complex and dynamic scenarios. It is a promising technique
that may help to achieve surpassed anomaly detection performance
over static or manually-defined thresholds.

In recent years, some dynamic thresholding approaches have
been proposed in the anomaly detection domain. [22] proposed a
statistical method based on EVT and introduced two algorithms
for thresholding in stationary and drifting contexts, respectively.
[12] presented an unsupervised and non-parametric thresholding
approach for spacecraft anomaly detection without statistical as-
sumptions about prediction errors. [28] proposed a thresholding
method by analyzing periodic time windows and using the moving
weighted average to calculate thresholds.

RL has been applied for dynamic thresholding in anomaly detec-
tion lately. [30] proposed a policy-based anomaly detector PTAD
which adopted the DRL algorithm, i.e. asynchronous advantage
actor-critic (A3C), and embedded it with LSTM components. Their
method enables the threshold to be adjusted for the trade-off be-
tween precision and recall. [27] modeled anomaly detection in the
transportation domain as a partial observable MDP and used con-
volutional neural network (CNN) and A3C to solve it, which can
generate dynamic classification thresholds.

RL has been successfully employed to provide adaptive optimal
control [8] in various domains. The related background knowledge
of RL is introduced in the next section.

2.3 Reinforcement Learning
RL is a machine learning paradigm where an agent learns an op-
timal policy by trial and error through interacting with an envi-
ronment. RL models the sequential decision-making problem as a
MDP, which defines the interactions between a learning agent and
an environment in the mathematical formalization [24].

MDP is described as a tuple of (𝑆,𝐴,𝑇 , 𝑅,𝛾) that includes a set
of states 𝑆 , a set of actions𝐴, a state transition function𝑇 , a reward
function 𝑅, and a discount factor 𝛾 . At each time step 𝑡 ∈ {1, 2, 3, ...},
the agent perceives an environment state 𝑠𝑡 and selects an action
𝑎𝑡 following a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ), i.e. a mapping from state 𝑠𝑡 to action
𝑎𝑡 . Correspondingly, the environment will respond to the agent’s
action and send to the agent a reward 𝑟𝑡 and a new state 𝑠𝑡+1. The
state 𝑠𝑡 should have the Markov property and convey substantial
information about the history that affects the future [24]. The value
of a state-action pair is denoted as 𝑞𝜋 (𝑠, 𝑎), which is the expectation
of the discounted sum of long-term rewards after following 𝜋 in
state 𝑠 and taking action 𝑎. It is denoted as:

𝑞𝜋 (𝑠, 𝑎) = E𝜋 [
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1)

The objective of the agent is to find the optimal policy 𝜋∗ with
the optimal state-action value.

In this study, we apply a popular DRL algorithm, i.e. DQN [19]
to solve the MDP. DQN is based on temporal-difference Q-learning
aiming to approximate the state-action value function 𝑄 (𝑠, 𝑎;𝜃 )
with a neural network called the Q-network, where 𝜃 denotes the
network weights. It incorporates experience replay and a separate
target network (i.e. 𝑄̂ with weights 𝜃−) to mitigate correlations
between training samples and achieve stable training. DQN is able
to handle continuous inputs, which is suitable for our method since
the anomaly scores used as part of the ADT inputs are continuous
values.



According to [19], the Q-learning update in the training pro-
cess follows Equation 2 with a random minibatch of transitions
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) sampled from the replay memory 𝐷 :

𝑦 𝑗 =

{
𝑟 𝑗 , if terminal
𝑟 𝑗 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄̂ (𝑠 𝑗+1, 𝑎′;𝜃−), otherwise

(2)

where 𝑦 𝑗 is the target𝑄 value that is generated based on the target-
network 𝑄̂ . The gradient descent is performed on the loss between
the predicted 𝑄 (𝑠 𝑗 , 𝑎 𝑗 ;𝜃 ) and the target 𝑦 𝑗 to update the weights
of the Q-network.

3 METHOD
In this section, the problem we are addressing is first formalized
in Section 3.1. The unsupervised DL method for feature learning
and anomaly scoring is introduced in Section 3.2. The core of our
method, i.e. the agent-based dynamic thresholding framework is
presented in Section 3.3. Lastly, the method’s implementation is
described in Section 3.4.

3.1 Problem Formulation
A time series is a sequence of data points 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛 } where
𝑥𝑖 ∈ 𝑅𝑚 is an m-dimensional reading at the 𝑖th time stamp. The
data can be normalized between 0 and 1 and split into a sequence
of sliding windows with a length 𝜏 and a stride of 1. All the data
is converted to a sequence of windows on that basis, i.e. 𝑊 =

{𝑤1,𝑤2, ...,𝑤𝑛−𝜏+1} where 1 ≤ 𝜏 < 𝑛. We redefine the reading at
time step 𝑡 as the time window𝑤𝑡 = {𝑥𝑡−𝜏+1, 𝑥𝑡−𝜏+2, ..., 𝑥𝑡 } (𝜏 ≤ 𝑡 ).
The ground truth𝑦𝑡 ∈ {0, 1} is the label of𝑤𝑡 where𝑦𝑡 = 1 indicates
an abnormal window and 𝑦𝑡 = 0 indicates a normal window. In
anomaly detection with dynamic thresholding, the anomaly score
of a time window, i.e. A𝑠𝑐𝑟

𝑡 , is compared with a dynamic threshold
𝛿𝑡 to determine the abnormality of 𝑤𝑡 , where A𝑠𝑐𝑟

𝑡 is between 0
and 1. If the anomaly score exceeds the threshold, the window will
be considered abnormal. Therefore, the anomaly detection task is
to predict a binary label 𝑦𝑡 ∈ {0, 1} of𝑤𝑡 in the testing dataset.

The detection performance is evaluated by Precision (P), Recall
(R), and F1 score (F1):

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1 =

2 · 𝑃 · 𝑅
𝑃 + 𝑅

(3)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 denote the number of true positives, false
positives, and false negatives, respectively.

We use a point-adjust approach proposed by [29] to label𝑊 : A
window will be deemed as an anomaly whenever there are one or
more anomaly points in the sequence; Otherwise, the window will
be declared as normal. This is for the consideration that in real-
world applications, we are more concerned about the evaluation
metrics of contiguous abnormal segments rather than the point-
wise metrics [29]. However, the length of the window should not be
too long to ensure the detection performance is not overestimated.

The accuracy of anomaly scoring on unknown data and the suit-
ability of selected thresholds are two important factors that directly
determine the anomaly detection performance. In the following, an
unsupervised DL method for feature learning with anomaly scoring
and a DRL method for dynamic thresholding are introduced.

3.2 Unsupervised Feature Learning and
Anomaly Scoring

AE-based anomaly detection methods have been investigated in
many studies such as [4, 5, 9]. AE is a deep generative model that
contains an encoder 𝐸 and a decoder 𝐷 . The encoder takes an
input 𝑋 and outputs a compressed latent representation 𝑍 , and the
decoder reconstructs the data from 𝑍 to𝑋 ′. The difference between
𝑋 and 𝑋 ′ is called the reconstruction error, which serves as the
anomaly score A𝑠𝑐𝑟 . The target of training AE is to minimize the
reconstruction error and make𝑋 ′ as close as possible to the original
input 𝑋 . The reconstruction error or loss is defined as:

L𝐴𝐸 = | |𝑋 −𝐴𝐸 (𝑋 ) | |2 (4)

where 𝐴𝐸 (𝑋 ) = 𝐷 (𝑍 ), 𝑍 = 𝐸 (𝑋 ), L𝐴𝐸 is the reconstruction error,
and | |.| |2 denotes the 𝐿2 norm.

The AE-based anomaly detection method falls under the unsu-
pervised learning category [4] and solely normal data is used for
training. It enables the learning of feature representations of normal
instances and leads to relatively high reconstruction errors over
unseen anomalies. This makes it possible to distinguish normal and
abnormal instances by comparing the reconstruction error with
a threshold. Consequently, the trained AE is able to classify the
unknown data into normal or abnormal in the testing stage.

Fixed or static thresholds have been applied in many AE-based
anomaly detection studies. However, this does not always hold
in practice, as some anomalies are close to normal with relatively
low reconstruction errors. In this case, a fixed threshold that is
capable of separating anomalies with usually high reconstruction
errors from normal instances will become infeasible. Moreover, the
complexity and non-stationarity of data distribution can change
the definition of anomalies implicitly. A static threshold will expire
and fail to handle the context drift. Therefore, there is a need for
more adaptive thresholding techniques in this area.

3.3 Agent-based Dynamic Thresholding
We propose an advanced agent-based framework ADT for opti-
mal thresholding control. It aims to maximize anomaly detection
performance by issuing proper dynamic thresholds. We model the
problem as a MDP and solve it with DQN.

3.3.1 State. The proper definition of state space is essential in
MDP. The state space S should contain substantial information for
the agent to make decisions. In this study, the state at time step 𝑡
consists of six elements, i.e. 𝑠𝑡 = {𝜇𝑡 , 𝜎𝑡 , 𝜌𝑇𝑃𝑡 , 𝜌𝑇𝑁𝑡 , 𝜌𝐹𝑃𝑡 , 𝜌𝐹𝑁𝑡 }. 𝜇𝑡
and 𝜎𝑡 are the average and variance of the anomaly scores of the
encountered previous 𝑘 windows {𝑤𝑡−𝑘 ,𝑤𝑡−𝑘+1, ...,𝑤𝑡−1}:

𝜇𝑡 =

∑𝑡−1
𝑡−𝑘 A

𝑠𝑐𝑟
𝑖

𝑘
(5)

𝜎𝑡 =

{
0, if 𝑘 = 1∑𝑡−1

𝑡−𝑘 (A𝑠𝑐𝑟
𝑖

−𝜇𝑡 )2
𝑘−1 , otherwise

(6)

where 𝑡 > 𝑘 ≥ 1, 𝜌𝑇𝑃𝑡 , 𝜌𝑇𝑁𝑡 , 𝜌𝐹𝑃𝑡 , and 𝜌𝐹𝑁𝑡 are the percentages of
𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 windows out of the 𝑘 windows.

The objective of this state representation is to capture the dy-
namics of anomaly scores as well as the effects of previous actions
to get more useful context information. By observing the state and



interacting with the environment, the agent is able to learn an
optimal policy in the MDP to issue an appropriate threshold.

3.3.2 Action. Given a state 𝑠𝑡 from the environment, the agent
chooses an action 𝑎𝑡 ∈ {0, 1} which represents the threshold value
at time step 𝑡 . The threshold is compared with an anomaly score
to determine whether 𝑤𝑡 is abnormal. Within the scope of this
study, a binary threshold is adequate to achieve a well-performing
detection result and is efficient due to its simplicity.

We define the binary threshold as an active mode (𝛿 = 0) and a
passive mode (𝛿 = 1) given thatA𝑠𝑐𝑟

𝑡 is between 0–1. If a window is
abnormal, any threshold value that is lower than its anomaly score
leads to a correct determination. The threshold 𝛿 = 0 is therefore
appropriate in this scenario. In other words, it triggers an active
mode to be more concerned about anomalies. Conversely, if the
window is normal, any threshold value higher than its anomaly
score works. The threshold 𝛿 = 1 hence can guarantee the correct-
ness of the classification and it implies a passive mode to be less
concerned about anomalies.

3.3.3 Reward. The definition of the reward signal is another es-
sential part of MDP. A straightforward way is to define the reward
function by the findings of 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 :{

𝑟𝑇𝑃 = 𝑟𝑇𝑁 = 1
𝑟𝐹𝑃 = 𝑟𝐹𝑁 = −1

(7)

where the reward for a 𝑇𝑃 or 𝑇𝑁 is 1, and the reward for a 𝐹𝑁 or
𝐹𝑃 is -1. However, this reward function cannot adapt to different
environments and various user requirements. To improve it, we
propose a parameterized reward function to assign different impor-
tance to𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 . Two parameters 𝛼 and 𝛽 are added to
take into account both simplicity and experimental performance:

𝑟 = 𝛼 × (𝑛𝑇𝑃 − 𝑛𝐹𝑃 − 𝑛𝐹𝑁 ) + 𝛽 × 𝑛𝑇𝑁 (8)

where 𝑛𝑇𝑃 , 𝑛𝑇𝑁 , 𝑛𝐹𝑃 , and 𝑛𝐹𝑁 denote the numbers of 𝑇𝑃 , 𝑇𝑁 ,
𝐹𝑃 , and 𝐹𝑁 samples found in the observed 𝑘 time windows of
the environment state. The values of 𝑛𝑇𝑃 , 𝑛𝑇𝑁 , 𝑛𝐹𝑃 , and 𝑛𝐹𝑁 are
therefore all integers from 0 to 𝑘 . 𝛼 and 𝛽 are non-negative weights
that sum up to 1.

A relatively larger 𝛼 is supposed to award more to 𝑇𝑃𝑠 , and
penalize more to 𝐹𝑃𝑠 and 𝐹𝑁𝑠 . Different values of 𝛼 and 𝛽 may
twist the policy to result in various performances. The effect of 𝛼
and 𝛽 on the detection performance is further investigated in our
experiments (see Section 5.2). This parameterized reward design
demonstrates its flexibility and effectiveness in our study. It also
opens the gate to modeling anomaly detection as a multi-objective
problem because in industries, there are many scenarios that the
detection system needs to balance between different objectives.

3.3.4 Training and Inference. In practice, DQN often suffers from
training efficiency. We use the following three approaches to miti-
gate this problem within ADT:

(1) Due to the fact that both normal and abnormal data are
generally contiguous segments, the action, i.e. the threshold
is not necessarily to be changed per time step. We make
the DQN agent change the action 𝑎 per 𝑙 time steps (𝑙 ≥ 1)
where the exploration and exploitation are balanced; and
within the 𝑙 time steps the agent maintains the action 𝑎

unchanged. Here is an example with 𝑙 = 10: if 𝑡 % 10 = 0, the
action 𝑎𝑡 is from the 𝜖-greedy strategy; otherwise, the action
is maintained as 𝑎𝑡 = 𝑎𝑡−1. 𝑙 = 1 is a special case where
the action is changed at every time step. This approach can
reduce the overhead of feed-forward procedures in neural
networks while holding the stability of the training process.

(2) A very small amount of data is used for the training of ADT
(e.g. less than 1% of the benchmarked dataset), which highly
reduces the training time.

(3) The 𝑄-network in the DQN is updated only at the end of
each training episode to increase the stability of the training
process and reduce the computational expense.

In the inference stage, the trained ADT is able to generate the
optimal threshold at each time step to detect anomalies on the
testing dataset, and importantly, 𝑙 should be 1 in this stage to ensure
the learned optimal policy is performed. The training and detection
processes are illustrated in Algorithm 1 and Figure 1.

Algorithm 1 ADT training algorithm
Initialize agent and environment
Initialize Q-network (𝑄) with random weights 𝜃
Initialize target-network (𝑄̂) with weights 𝜃− = 𝜃

Initialize experience replay memory 𝐷

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ {1, 2, 3, ..., 𝑀} do
for 𝑡 ∈ {1, 2, 3, ...,𝑇 } do

if 𝑡 % 𝑙 = 0 then
Following 𝜖-greedy strategy{
select a random action 𝑎𝑡 , with probability 𝜖
𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄 (𝑠𝑡 , 𝑎;𝜃 ), otherwise

else
𝑎𝑡 = 𝑎𝑡−1

end if
end for
Execute 𝑎𝑡 and get the next state 𝑠𝑡+1 and reward 𝑟𝑡
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷

if 𝑡 = 𝑇 then
Sample a random minibatch (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from 𝐷

𝑦 𝑗 =

{
𝑟 𝑗 , if terminal
𝑟 𝑗 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄̂ (𝑠 𝑗+1, 𝑎′;𝜃−), otherwise

Perform gradient descent on (𝑦 𝑗−𝑄 (𝑠 𝑗 , 𝑎 𝑗 ;𝜃 ))2 with respect
to the Q-network parameters

end if
Decay 𝜖
Every 𝐶 episodes, copy weights from 𝑄 to 𝑄̂

end for

3.4 Implementation
The workflow of our adaptive anomaly detection method consists
of four phases.

(1) Data pre-processing
The time series data is normalized into the range of 0–1 and
split into sliding windows of length 𝜏 with stride=1. Note
that no down-sampling is used in this phase to avoid the risk
of losing information.



Figure 1: AE-ADT adaptive anomaly detection framework

(2) AE training
The AE model is trained using only normal instances. The
well-trained AE can perform anomaly scoring for each time
window.

(3) ADT training
ADT is trained with both normal and abnormal instances.
The trained ADT can generate the optimal threshold for each
time window by utilizing the anomaly score calculated by
AE.

(4) Evaluation
The last phase is the utilization of the trained AE from phase
2 and the trained ADT from phase 3 to do online anom-
aly detection over the testing dataset. As a time window
arrives, if the anomaly score generated by AE is higher than
the threshold generated by ADT, the window is considered
abnormal.

4 EXPERIMENTAL SETUP
In this section, we introduce three public datasets, two thresholding
methods as benchmarks, and the parameter settings of our method.

4.1 Datasets
Three real-world datasets were used in our experiments. The char-
acteristics of each dataset and the selection of training sets are
described in the following.

Yahoo A1Benchmark (Yahoo)1 is real data representing the met-
rics of various Yahoo services. It is one of the four benchmarks of a
labeled anomaly detection dataset released by Yahoo lab. It has 67
CSV files containing 94866 points in total with an anomaly rate of
1.76%. The data is univariate with𝑚 = 1.

Secure Water Treatment (SWaT)2 is an operational testbed for a
real-world water treatment system producing filtered water, which
is widely used in the field of cyber and physical system security [18].
It consists of 11-day continuous operations where 7 days are under
normal scenarios and 4 days are under attack scenarios [11]. SWaT
is collected from all the 51 sensors and actuators with 𝑚 = 51.
The dataset contains two CSV files: one with only normal data

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
2https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

containing 496800 points, and one with labeled attacks containing
449919 points with an anomaly rate of 11.98%.

Water Distribution (WADI) is a testbed conducted for the secure
water distribution system which is physically connected to the
SWaT testbed [1]. It consists of 16-day continuous operations where
14 days are under normal scenarios and 2 days are under attack
scenarios. WADI is collected from 123 sensors and actuators with
𝑚 = 123. Similarly to SWaT, WADI contains two CSV files: one with
only normal data containing 1048571 points, and one with labeled
attacks containing 172801 points with an anomaly rate of 5.99%.

After data pre-processing, AE is trained using only normal time
windows, whereas ADT is trained with both normal and abnormal
time windows. For ADT, about 0.35% of Yahoo, 0.11% of SWaT, and
0.58% of WADI were used as the training sets, separately, in our
study. The training set size for each dataset and the anomaly ratio in
the training set were experimentally determined based on anomaly
detection performance and data efficiency, however, they can be
flexibly adjusted. It is notable that the effect of different values of
the anomaly ratio in the training set is beyond the scope of this
paper, nevertheless, is worth studying in the future.

4.2 Benchmarks
We use two thresholding approaches as benchmarks to evaluate
the performance of ADT in anomaly detection.

4.2.1 Optimal Static Thresholding Method. Due to the simplicity
and relative effectiveness, the optimal static thresholding (i.e. Static)
method has been used as a default thresholding method in many
anomaly detection studies such as [3, 15, 29]. Typically, a value that
generates the best performance will be defined as the threshold.
For example, if the anomaly scores for the input data are in the
range of 𝑎 to 𝑏, the optimal threshold will then be selected between
𝑎 and 𝑏 with the best F1 score or other metrics. This can be simply
implemented through brute force search.
4.2.2 EVT-based Dynamic Thresholding Method. [22] proposed
a statistical thresholding method which can generate continuous
dynamic thresholds. It is based on EVT that aims to fit the distribu-
tion of extreme events to a generalized Pareto distribution without
a strong hypothesis on the original distribution. Their work relies
on the assumption that in any distribution abnormal instances oc-
cur with low probability while normal instances occur with high
probability. They proposed SPOT and DSPOT algorithms to work
in stationary and non-stationary scenarios. DSPOT3 was used in
our study.

4.3 Parameter Settings
For each dataset, the parameter settings of ADT are displayed in
Table 1, including the number of training episodes, the time window
size 𝜏 , the parameter 𝑘 used in the environment’s state represen-
tation, the parameter 𝑙 used in the agent’s action selection, and 𝛼
and 𝛽 for the reward function. These parameters are essential in
the reimplementation of our work and the parameter values are
experimentally determined. The effects of the important parameters
on the performance of ADT are introduced in Section 5.

3https://github.com/Amossys-team/SPOT

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://github.com/Amossys-team/SPOT


Table 1: ADT parameters for each dataset

Dataset Episode 𝜏 𝑘 𝑙 (𝛼, 𝛽)
Yahoo 20000 10 2 1 (0.9, 0.1)
SWaT 20000 12 2 10 (0.9, 0.1)
WADI 20000 10 2 10 (0.9, 0.1)

5 EXPERIMENTS AND RESULTS
We perform a variety of experiments and report the results in
this section. The properties of ADT are studied by assessing its
performance on three datasets and comparing it to benchmarks
(Section 5.1), and analyzing the effect of parameters (Section 5.2).
The thresholding performance of ADT is further validated in a
feasibility study (Section 5.3). Precision, recall, and F1 score were
used to evaluate anomaly detection performance by comparing the
detection result with the ground truth. All experiments were run
on a machine with an 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz CPU.

5.1 Overall Performance
We compare ADT with two benchmarked thresholding methods, i.e.
Static and DSPOT, on three real-world datasets. For each dataset, the
thresholding methods can generate the optimal thresholds based
on the anomaly scores produced by a well-trained AE. The overall
performance of the methods are detailed in Table 2.

According to Table 2, ADT greatly outperforms the benchmarks,
achieving the highest F1 scores on all datasets. The F1 on Yahoo
is about 0.95 and that on SWaT and WADI almost reaches 1.0. In
comparison, the Static and DSPOT methods obtain extremely poor
results on Yahoo andWADI, i.e. the second-best F1 on Yahoo is only
0.12 from DSPOT and the second-best F1 on WADI is 0.35 from
Static. The Static and DSPOT methods perform relatively better
on SWaT with F1 scores of around 0.77, however, still much worse
than ADT.

Compared with Static, DSPOT shows limited improvement in
the F1 on Yahoo and SWaT, whereas even worse performance on
WADI. This validates that DSPOT cannot always guarantee good
results and its advantage over the Static method is uncertain.

Apart from the performance comparison through the detection
over the whole dataset, we further test the robustness of the models
over 10 evenly-divided distinct subsets of the dataset and report
the mean and variance. According to [26], in some special cases,
if the numbers of 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are all 0, the precision, recall,
and F1 will be considered as 1; if the number of 𝑇𝑃 is 0 and one
of the numbers of 𝐹𝑃 and 𝐹𝑁 is not 0, the precision, recall, and F1
will be determined as 0. The two-tailed Wilcoxon test [10] with
a 𝑝 value of 0.05 was conducted over each dataset to determine
that the difference between our method and the benchmarks is
statistically significant. The experimental results are illustrated in
Table 3. It demonstrates that ADT once again achieves the best
performance with the highest means of evaluation metrics and the
lowest variances over all datasets. On the contrary, the Static and
DSPOT methods are not robust enough because their results on
SWaT decrease greatly compared with the corresponding results in
Table 2.

5.2 Effect of Parameters
The effects of the important parameters on the performance of ADT
are studied in this section. Experiments were done using the SWaT
dataset.

The first factor we study is how our model responds to different
values of 𝑙 used in the agent’s action selection. The DQN agent
changes its action 𝑎 per 𝑙 time steps (𝑙 ≥ 1) for higher training
efficiency. If 𝑡 % 𝑙 = 0, the action 𝑎𝑡 is from the decayed 𝜖-greedy
strategy; otherwise, the action is maintained as 𝑎𝑡 = 𝑎𝑡−1. Fig-
ure 2 summarises the obtained results using 5 different values
𝑙 ∈ {1, 10, 20, 50, 100} on precision, recall, F1 score, and the training
time. Figure 4 presents the results about the training stability. Ac-
cording to Figure 2, the inference performance of ADT is relatively
insensitive to 𝑙 because the evaluation metrics in different cases are
almost the same (e.g. F1 scores are all around 0.999). The model’s
training time is more related to 𝑙 , and in general a smaller 𝑙 causes
more training time. Figure 4 depicts the rewards obtained during
the training process, and the darker blue line in each sub-figure is
the moving average of every 30 episodes for smoothing. It shows
that a larger 𝑙 results in more instability of the training. Thus, the
selection of the value of 𝑙 should not only account for the detection
performance but also the trade-off between training efficiency and
stability.

The second factor we investigate is how our model responds to
different values of 𝑘 used in the environment’s state representation.
At time step 𝑡 , the state 𝑠𝑡 is a tuple of six (see Section 3.3.1) where
each element describes some critical feature of the previously en-
countered 𝑘 time windows. Figure 3 presents the obtained results
for 5 different values of 𝑘 ∈ {2, 10, 15, 20, 50}. We observe that with
the increase of 𝑘 , the recall always keeps high, while the precision
and F1 stay high at the beginning but then decrease until reaching
the minimum value, thus leading to poor performance at the end.
It implies that when 𝑘 exceeds a certain value, it causes a dramatic
increase in the number of 𝐹𝑃𝑠 which highly limits the detection
performance. Therefore, a suitable 𝑘 value should be relatively
small.

The last parameters we study are 𝛼 and 𝛽 which are used for the
weighted average of 𝑇𝑃 − 𝐹𝑁 − 𝐹𝑃 and 𝑇𝑁 in the reward function
(see Equation 8). Empirically, the selection of 𝛼 and 𝛽 is related
to several factors such as the dataset, the choice of 𝑙 , etc. For the
SWaT dataset, Table 4 reports the effect of 𝛼 , 𝛽 in F1 score with
different values of 𝑙 ∈ {10, 50, 100}. It indicates that when 𝑙 changes,
the obtained results for different values of 𝛼 and 𝛽 will change. For
example, 𝛼 = 1 and 𝛽 = 0 leads to a high F1 of 0.999 when l=10,
whereas low F1 of 0.455 when l=50 and l=100. We observe that
among all the options, 𝛼 = 0.9, 𝛽 = 0.1 and 𝛼 = 0.5, 𝛽 = 0.5 both
produce relatively good results regardless of the value of 𝑙 .

5.3 Feasibility Study
We perform anomaly detection with all thresholding methods on
a time series extracted from the SWaT dataset and compare the
thresholding performance in Figure 5. To obtain an accurate pre-
diction for a time window, the generated threshold value should be
lower than the anomaly score if the ground truth of the window is
abnormal, and vice versa.



Table 2: Performance comparison on each dataset. The optimal static thresholding method (Static) and the EVT-based statistical
dynamic thresholding method (DSPOT) are compared with our agent-based dynamic thresholding approach (ADT). Precision,
Recall, and F1 score are reported.

Methods Yahoo SWaT WADI
𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1

Static 0.02543 0.20611 0.04528 0.98188 0.63257 0.76943 0.51784 0.25890 0.34521
DSPOT 0.09781 0.14796 0.11777 0.98347 0.63913 0.77476 0.06680 0.65170 0.12117
ADT 0.95206 0.95175 0.95191 0.99936 0.99873 0.99905 0.99870 0.99739 0.99804

Table 3: Average performance (±standard deviation) on 10 distinct subsets of each dataset. ↓ indicates a significant decrease in
the result compared with the corresponding result shown in Table 2.

Methods Yahoo SWaT WADI
𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1

Static 0.081(0.01) 0.250(0.02) 0.098(0.01) 0.574(0.16)↓ 0.191(0.07)↓ 0.252(0.09)↓ 0.428(0.20) 0.299(0.18) 0.305(0.16)
DSPOT 0.165(0.06) 0.132(0.01) 0.100(0.02) 0.543(0.16)↓ 0.198(0.08)↓ 0.257(0.10)↓ 0.142(0.07) 0.326(0.17) 0.131(0.05)
ADT 0.946(<0.01) 0.945(<0.01) 0.945(<0.01) 0.999(<0.01) 0.997(<0.01) 0.998(<0.01) 0.999(<0.01) 0.999(<0.01) 0.999(<0.01)

Figure 2: Effect of parameter l on Precision, Recall, F1 score,
and training time

Figure 3: Effect of parameter k on Precision, Recall, and F1
score

Figure 5 reveals that both the Static and DSPOT methods can
give proper thresholds in normal or most of the normal segments.

Table 4: Effect of 𝛼 and 𝛽 on F1 score with 𝑙 ∈ {10, 50, 100}

𝛼 𝛽 𝑙 = 10 𝑙 = 50 𝑙 = 100

1 0 0.99936 0.45512 0.45512
0.9 0.1 0.99905 0.99905 0.99907
0.5 0.5 0.99905 0.99905 0.99905
0.1 0.9 0.99905 0.95373 0.87527
0 1 0.88679 0.05085 0.05989

However, their generated thresholds in abnormal segments (espe-
cially the first abnormal segment) are likely to be improper, which
leads to many false negatives. This further validates that DSPOT
has difficulty providing the most suitable continuous thresholds in
some cases. In contrast, ADT can correctly transform the threshold
to the active mode (𝛿 = 0) in abnormal segments and the passive
mode (𝛿 = 1) in normal segments, showing the best thresholding
performance in anomaly detection. The classification accuracy with
ADT, i.e. the percentage of 𝑇𝑃𝑠 and 𝑇𝑁𝑠 out of all 𝑇𝑃𝑠 , 𝑇𝑁𝑠 , 𝐹𝑃𝑠 ,
and 𝐹𝑁𝑠 reaches 0.9994.

6 CONCLUSION AND FUTUREWORK
Setting appropriate thresholds in anomaly detection is critical
and challenging. Conventional thresholding methods, e.g. static or
manually-defined thresholds, are no longer useful on complex data.
This paper models thresholding in anomaly detection as a MDP and
presents an agent-based dynamic thresholding framework (ADT)
based on DQN. The proposed method can be integrated with many
systems that require dynamic thresholding. ADT can on that basis
utilize the abnormal-related measurements and provide adaptive
optimal thresholding control.

Our method can be used as an anomaly detector, but more prone
for dynamic thresholding. The key points are that it is very data-
efficient, and it transforms thresholding in anomaly detection to



Figure 4: Effect of parameter 𝑙 ∈ {1, 10, 20, 50, 100} on the training stability of ADT. The darker blue line in each sub-figure depicts
the moving average of every 30 episodes.

Figure 5: Thresholding performance on a time series from the SWaT dataset. The 𝑦-axis values represent the calculated anomaly
scores for the time series. According to the ground truth, we color the abnormal instances occurring at 11399 ≤ 𝑡 ≤ 12373 and
15369 ≤ 𝑡 ≤ 16100 in red and the normal instances in blue. The orange line represents the threshold values generated by the
thresholding method.

the passive mode and the active mode. Through a variety of ex-
periments on three real-world datasets and comparison with two
benchmarks, our agent-based method shows outstanding thresh-
olding capability, stability, and robustness, leading eventually to
significantly improved anomaly detection performance.

One limitation of our method is that the detection performance
may be compromised when the dataset is characterized by some
isolated point anomalies, which is worth studying in the future.
Furthermore, we intend to explore continuous thresholding and
multi-objective reward function within the ADT framework. From
the practical perspective, we would like to apply ADT in more
complex systems and scenarios.
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