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ABSTRACT
Due to its high sample-complexity, Reinforcement Learning (RL)

has struggled to solve problems where sampling is prohibitively

expensive or dangerous. For many of those domains, the solution

consists of training RL using a simulator or surrogate model, which

defines lower-fidelity estimates of the real environment. However,

the learning algorithm is often unaware of the existence of the mul-

tiple fidelities, and the learning process is carried out in an ad-hoc

manner, either modeling it as a transfer learning problem or trying

to improve the simulator on the go. We propose to explicitly reason

over the multiple fidelities. We introduce Multi-Fidelity Markov

Decision Processes (MF-MDPs), where each fidelity has an associ-

ated cost, and propose two algorithms, RSEP and PGEP, to solve

MF-MDPs. In this paper, we focus on solving Symbolic Optimiza-

tion applications and provide an experimental evaluation in two

relevant domains, Symbolic Regression and Antibody Therapeutics

Optimization.We show in those challenging domains that our meth-

ods outperform baseline ways of coping with multiple fidelities and

lead the way towards a whole new family of RL algorithms to solve

MF-MDPs.

KEYWORDS
Multi-fidelity Learning, Symbolic Optimization, Reinforcement
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1 INTRODUCTION
Reinforcement Learning (RL) has been used to solve numerous ap-

plication problems with impressive performance. Super or expert-

human performance has been achieved in varied applications [4,

33, 40, 43], showing that RL is in the vanguard of new AI devel-

opments and will be applied in ever-broader range of domains in

the next years. RL has been used with remarkable success in sym-

bolic optimization
1
, where the state-of-the-art solution for symbolic

regression is RL-based.

However, one common feature of those applications is that an ac-

curate reward signal is freely available during the training process,

in which the domain can often be executed in a faster-than-real-

world pace. This means that, for those domains, the RL agent had

access to numerous high-quality training samples, which might not

be available at every domain.

1
A discrete optimization problem used to model varied applications ranging from

neural architecture search to healthcare applications. The RL-based Deep Symbolic

Regression [24] is often considered to be the state-of-the-art solution.
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This is especially challenging in domains in which exploration

can be potentially harmful or very expensive, such as robotics

[17], autonomous driving [16], or healthcare-related applications

[31]. The most popular way to cope with expensive sampling is

by building a simulator or some other kind of surrogate reward

for allowing exploring the task enough to solve it. However, this

often means learning from a lower fidelity, approximate, reward

that often (if not always) results in a different optimal policy than

the one from the original problem.

This mismatch in the reward functions has often been dealt

with as a Transfer Learning problem [9, 29, 30], where the learning

process is carried out using the cheap simulation and then the

resulting policy is either adapted [13] or transferred directly [8, 22]

to the desired domain. However, we argue that it is more effective

to explicitly reason over multiple reward functions in different

fidelities, allowing a more faithful modeling of the problem at hand

and more effective exploration in the highest (and therefore more

expensive to sample) fidelity.

However, most RLmethods, including the symbolic optimization-

specific algorithms, assume that only one reward is available. De-

spite being relatively common for Bayesian Optimization [23], most

multi-fidelity methods focus on modifying the simulator, which is

often not possible.

In this paper, we propose a new multi-fidelity framework to

learn in the presence of multiple reward functions of different

fidelities. We are mainly interested in Symbolic Optimization prob-

lems and hence primarily focus on the Symbolic Regression and

Antibody Therapeutics applications (to be introduced in the next

sections). Although our proposed algorithm is specific to RL-based

Symbolic Optimization, our problem modeling and most of the

ideas presented here are adaptable at least in the high level to any

RL domain.

2 BACKGROUND
In this section, we present the needed background on Reinforcement

Learning and Symbolic Optimization to understand our approach.

2.1 Reinforcement Learning
Reinforcement Learning (RL) solves sequential decision making

problems where the Markov condition holds (the optimal actions

can be chosen based only in the current state of the world). Those

problems are formally described as Markov Decision Processes:

⟨𝑆,𝐴,𝑇 , 𝑅⟩, where 𝑆 is the set of possible states, 𝐴 is the set of

applicable actions, 𝑇 : 𝑆 × 𝐴 → 𝑆 is the state transition function

that computes the probability of transitioning to a particular state
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when a given action is applied in the current state, and 𝑅 is the

reward function.

Because 𝑅 and 𝑇 are initially unknown, RL algorithms explore

actions so that they can estimate the sequence of actions that results

in the highest as possible sum of rewards. The RL agent aims at

finding the optimal policy 𝜋∗ : 𝑆 → 𝐴, which maps each possible

state to an applicable action in a way that it maximizes the sum

of discounted rewards over time: 𝜋∗ (𝑠0) = argmax𝑎0∈𝐴 𝑅(𝑠0, 𝑎0) +∑ℎ
𝑖=1 𝛾

𝑖𝑅(𝑠𝑖 , 𝜋∗ (𝑠𝑖 )),where𝛾 is a discount factor and 𝑠𝑖 = 𝑇 (𝑠𝑖−1, 𝑎𝑖−1).
The optimal policy is often searched through iteratively learn-

ing a Deep Neural Network-based Policy Gradient model that di-

rectly predicts the action given the state. Generally, the network

parametrized by 𝜃 ∈ R is updated by following a gradient estimator:

𝜃𝑖+1 ← 𝜃𝑖 +𝛼∇𝜃 𝐽 (𝜃𝑖 ), where 𝛼 is a learning rate and 𝐽 is a objective

function based on the expected reward return.

2.2 Deep Symbolic Optimization
In this paper, we are mainly interested in solving symbolic opti-

mization problems. This problem consists of finding the optimal

combination of discrete symbols relative to a quality score function.

Let L = {𝜏1, . . . , 𝜏𝑡 } be the library, i.e., a set of tokens 𝜏𝑖 which
define the space T of possible token sequences 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩ that
can be built for solving the problem at hand. The reward function

𝑅 : T→ R defines the fitness of each sequence. Any valid sequence

𝜏 can be “evaluated", i.e., have its reward value queried by 𝑅(𝜏). The
solution of a symbolic optimization problem is given by:

argmax

𝑛∈N,𝜏
[𝑅(𝜏) with 𝜏 = ⟨𝜏1, . . . , 𝜏𝑛⟩, 𝜏𝑖 ∈ L . (1)

That is, the problem is solved by finding the sequence that max-

imizes the reward function. The main challenge of this problem

is searching the set of possible sequences, which defines a huge

or infinite search space. The Deep Symbolic Optimization (DSO)

algorithm [24] is one of the state-of-the-art solutions for the sym-

bolic optimization problem. DSO is based on RL, where the token

sequence is formed by sequentially sampling each token (action)

conditioned on all tokens sampled so far (state). Although DSO

successfully solved a variety of domains [10, 19, 24, 25, 31, 39], it

currently cannot handle multifidelity rewards.

DSO is based on the Risk-Seeking Policy Gradient:

𝐽 (𝜃 ) := E𝜃 [𝑅(𝜏) | 𝑅(𝜏) ≥ 𝑄𝜖 ] (2)

∇𝜃 𝐽 ≈
1

𝜖𝑁

𝑁∑︁
𝑖=1

[
𝑅(𝜏 (𝑖 ) ) − 𝑅̃𝜖 (𝜃 )

]
· 1

𝑅 (𝜏 (𝑖 ) )≥𝑅̃𝜖 (𝜃 )∇𝜃 log𝑝 (𝜏
(𝑖 ) |𝜃 ),

(3)

where𝑄𝜖 is the (1−𝜖)-quantile of the reward distribution under the
policy, 𝑅̃𝜖 (𝜃 ) is the empirical (1−𝜖)-quantile of the batch of rewards,
and 1𝑥 returns 1 if condition 𝑥 is true and 0 otherwise. Essentially,

this estimator optimizes for the discovery of the best token sequence
directly, instead of focusing on optimizing average returns. This

operator is appropriate for applications in which finding higher-

performing solutions faster is more important, which is the case

for our evaluation domains.

3 PROBLEM STATEMENT
We introduce the Multi-Fidelity Markov Decision Process (MF-

MDP) as

〈
𝑆,𝐴, 𝑻𝑀𝐹 , 𝑹𝑀𝐹

〉
. However, in the multi-fidelity case, we

have multiple state transition and reward functions:

𝑻𝑀𝐹 = ⟨𝑇 0,𝑇 1, . . . ,𝑇𝑛𝑓 ⟩
𝑹𝑀𝐹 = ⟨𝑅0, 𝑅1, . . . , 𝑅𝑛𝑓 ⟩

Each transition and reward function 𝑇 𝑖
and 𝑅𝑖 is associated to a

different source Ξ𝑖 = ⟨𝑇 𝑖 , 𝑅𝑖 ⟩, using which the agent can apply

actions and explore the environment. The fidelity 𝑓 = 0 (Ξ0
) is the

"real environment“, and therefore the agent objective is to maximize

the reward in this fidelity:

𝜋∗ := argmax

𝜋∈Π

(
𝑅0 (𝑠0, 𝜋 (𝑠0))+

ℎ∑︁
𝑖=1

𝛾𝑖𝑅0 (𝑇 0 (𝑠𝑖−1, 𝑎𝑖−1), 𝜋 (𝑇 0 (𝑠𝑖−1, 𝑎𝑖−1)))
)
. (4)

where we have assumed deterministic environment dynamics, as is

the case for symbolic optimization.

However, each sourceΞ𝑖 is associated to a sampling cost 𝑐 , where

∀𝑖 > 0 : 𝑐 (Ξ0) ≫ 𝑐 (Ξ𝑖 ), in a way that sampling directly from Ξ0

until the problem is solved is often impossible. However, all other

sources Ξ𝑖 approximate the real-world source Ξ0
, and can be used

to bootstrap learning and enable finding a good policy for Ξ0
with

a reduced number of samples
2
. In the general case, no specific

ordering in sampling cost or accuracy of predictions is assumed for

fidelities other than 𝑓 = 0
3
. 𝑆 and 𝐴 have the same definition as in

the regular MDP (therefore, all fidelities are assumed to have the

same state-action space).

Intuitively, MF-MDPs fit with a variety of domains of relevance,

for example, Robotics [18], where Ξ0
represents extracting trajec-

tories from a real robot, while the other fidelities could be extract-

ing trajectories from Robotics simulators, which are exponentially

cheaper and safer to extract, but are only an approximation of the

real task to be solved. Since we are here concerned with Symbolic

Optimization problems, for which the rewards are computed only

for whole token sequences, we are dealing with a special case where

the transition function is the same for all fidelities.

4 SOLVING MULTI-FIDELITY SYMBOLIC
OPTIMIZATION

Given the problem description in the last section, we propose a

framework called Multi-Fidelity Deep Symbolic Optimization (MF-

DSO). MF-DSO divides this learning problem in two stages:

(1) Multi-fidelity Sampling: At the start of the episode, the algo-
rithm must choose a fidelity to sample from, so that the proper

transition and reward functions are processed. In our case, since

all transition functions are the same, we generate a batch T of

2
In the remainder of this paper, we generally assume that the sampling cost for non-

zero fidelities is negligible and does not need to be considered. However, it would

also be possible to consider a joint optimization scenario where the agent aims at

maximizing the policy quality while minimizing the total sampling cost.

3
Assuming a strict ordering of the fidelities is a common assumption [7]. However, for

most domains, it is more realistic to only expect that 𝑓 = 0 is strictly a better estimate

of the reward, while the other fidelities might be reasonable estimates only in portions

of the state-action space.



trajectories (token sequences) and chose a fidelity or multiple

fidelities for each individual sample
4
.

(2) Multi-fidelity Learning: With a batch of sampled trajectories

at hand, a proper learning objective must be defined. Given

that the batch might contain a mixture of samples with rewards

calculated using different fidelities, this has to be taken into

account when updating the policy.

An algorithmic view of the whole training loop is depicted in

Algorithm 1. First, the current policy is used to generate a batch

of samples. Then, the 𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺 method is used to define which

fidelity to use for each of the samples. With the complete training

batch defined, 𝐿𝐸𝐴𝑅𝑁 performs the policy gradient update. This

process is repeated until a termination condition is achieved (for

example, a budget number of samples in 𝑓 = 0 or a total wall-clock

run time). During the course of training, we save the Hall of Fame
(HoF), defined as the set of best samples found so far.

Algorithm 1Multi-Fidelity Deep Symbolic Optimization

Require: Γ𝜃 : Policy network parameterized by 𝜃 ; Ξ: set of avail-
able fidelities; 𝑛𝑏 : Size of the batch; 𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺 : method for

defining which fidelity to use; 𝐿𝐸𝐴𝑅𝑁 : method for updating

the policy network.

1: HoF← ∅
2: initiate network parameters 𝜃

3: while termination condition not achieved do
4: T ← Γ𝜃 (𝑛𝑏 ) ⊲ Generate samples

5: {fid(𝜏)} ← 𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺 (T ,Ξ) ⊲ Fidelity for each sample

6: for ∀𝜏 ∈ T do
7: 𝑓 ← min(fid(𝜏 .𝑟 ), fid(𝜏)) ⊲ Define best fidelity

8: 𝜏 .𝑟 ← 𝑅 𝑓 (𝜏) ⊲ Define reward according to chosen fidelity

9: end for
10: 𝜃 ← 𝐿𝐸𝐴𝑅𝑁 (𝜃,T) ⊲ Update Policy Network

11: HoF← ℎ𝑜 𝑓 _𝑢𝑝𝑑𝑎𝑡𝑒 (HoF,T)
12: end while
13: return HoF

4.1 Multi-fidelity Sampling
The sampling algorithm is critical to a multi-fidelity problem, given

that 𝑐 (Ξ𝑖 ) is spent every time a sample is evaluated in fidelity 𝑖 .

As shown in last section, 𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺 receives as input a batch of

samples T and has to choose a fidelity to calculate 𝑅𝑖 for each sam-

ple. 𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺 can also evaluate a particular sample in multiple

fidelities, but only the highest fidelity evaluated so far, which we

denote using “object.property” notation by 𝜏 .𝑟 , will be used by the

training method.

Our proposed sampling method is called Elite-Pick sampling
and is based on an elitismmechanism. Similar to Cutler et al. [7], we

follow the intuition that it is advantageous to sample in the highest

fidelity only when we expect to have a high performance. Apart

from fitting well with the risk-seeking learning method (describe in

the next section), biasing the sampling towards high-performance

samples might help avoid exploring trajectories with harmful con-

sequences (for example, breaking a robot).

4
This might include the use of conditional selection of fidelities, whereby the choice

of certain fidelities depends on the sample values in other fidelities.

For this procedure, all samples are initially evaluated in the low-

est fidelity 𝑅low. Those estimates are used to calculate the empirical

(1−𝜌)-quantile𝑄𝜌 (T , 𝑅low), and only the samples in the top quan-

tile (i.e., those with 𝜏 .𝑟 > 𝑄𝜌 ) are evaluated in 𝑅0:

𝑆𝐴𝑀𝑃𝐿𝐼𝑁𝐺𝜌 =

{
0 if 𝜏 .𝑟 ≥ 𝑄𝜌

low otherwise

: 𝜏 ∈ T (5)

After sampling, 𝜏 .𝑟 is set equal to the value of the best fidelity

reward sampled so far for 𝜏 . When more than two fidelities are

available, one may interpret 𝑙𝑜𝑤 by randomly sampling from a

mixture of the non-zero fidelities for both the initial evaluation and

for the return value in the case where 𝜏 .𝑟 < 𝑄𝜌 .

4.2 Multi-fidelity Learning
After the sampling method is applied, the learning algorithm has

to use T for updating the policy network. Since T might contain a

mixture of samples in different fidelities, we propose two learning

algorithms that explictly account for that.

Weighted Policy Gradient: This is a Policy Gradient algorithm
where a different weight is used for each fidelity (where, naturally,

a higher weight is expected to set to 𝑓 𝑖𝑑 = 0).

𝐽𝑃𝐺 (𝜃 ) := E
𝛾𝑙 (𝑅0 (T0)) +

𝑓 =𝑛𝑓∑︁
𝑓 =1

1 − 𝛾
𝑛𝑓 − 1

𝑙 (𝑅 𝑓 (T𝑓 )
 (6)

where 𝑙 is a simple loss function (e.g., REINFORCE [35]), and 𝛾

is a weighting parameter. This learning algorithm with elite-pick

sampling is henceforth called PGEP. We also consider a variation

of the algorithm where all fidelities have the same weight PGEP_u.
Following PGEP, we introduce a more theoretically-backed algo-

rithm for this problem:

Multi-Fidelity Risk-Seeking: Inspired by the risk-seeking pol-

icy gradient algorithm described in Section 2, we propose a multi-

fidelity risk-seeking objective:

𝐽𝜖 (𝜃 ) := E𝜃
[
𝑅0 (𝜏) | 𝜏 .𝑟 ≥ 𝑄𝑚

𝜖

]
, (7)

where 𝑄𝑚
𝜖 is the top (1 − 𝜖)-quantile of 𝜏 .𝑟 for 𝜏 ∈ T . Here, and in

the following, we use superscript “m” to denote “mixture”, since𝑄𝑚
𝜖

is computed on a batch of samples whose 𝜏 .𝑟 may belong to different

fidelities. Intuitively, we want to find a distribution 𝜋𝜃 such that

the top 𝜖 fraction of samples (as evaluated using the best fidelity

sampled so far) have maximum performance when evaluated using

the highest fidelity reward 𝑅0. This is motivated by the fact that

fidelities 𝑓 ≠ 0 are much cheaper to evaluate during training, which

justifies their use in filtering for the top 𝜖 samples. Crucially, note

that (7) is well-defined at each iteration of the algorithm based on

the fidelity of 𝜏 .𝑟 for each 𝜏 ∈ T , while the fidelities may improve

after an iteration when a better fidelity is sampled. This process of

improving fidelity will be justified below by Proposition 2.

The gradient of (7) is computed as:

∇𝜃 𝐽𝜖 (𝜃 ) = E𝜃
[
∇𝜃 log𝜋𝜃 (𝜏) (𝑅0 (𝜏) − 𝑅0 (𝜏𝜖 )) | 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]
(8)

where 𝑅𝑚 (𝜏) := 𝜏 .𝑟 , 𝑄𝑚
𝜖 (𝜃 ) = inf𝜏∈Ω{𝑅𝑚 (𝜏) : 𝐹𝑚𝜃 (𝑟 ) ≥ 1 − 𝜖}

denotes the (1 − 𝜖)-quantile, and 𝜏𝜖 = arg inf{𝑅𝑚 (𝜏) : 𝐹𝑚
𝜃
(𝑟 ) ≥



1 − 𝜖} is the sample that attains the quantile. We show how we

derived the gradient in Appendix A. Hence, we can apply stochastic

gradient ascent along the direction Equation (8) to find a local

maximum of (7).

We call Risk-Seeking learning allied with Elite-Pick sample gen-

eration as RSEP henceforth. We also consider a variation of the

algorithmwhere, after sampling is applied, all the samples currently

sampled in 𝑓 𝑖𝑑 = 0 are used to recalculate 𝑄
𝑓 𝑖𝑑 (𝜏 .𝑟 )=0
𝜖2 , which can

further discard low-quality samples in 𝑓 = 0. This means that addi-

tional samples might be discarded from the learning update based

on their updated value of 𝜏 .𝑟 after the sampling process. We name

this variation as RSEP_0.

4.2.1 Theoretical Analysis of RSEP. Since RSEP uses a mixture of

high and low-fidelity samples to compute the quantile for filtering

(i.e. selecting 𝜏 : 𝜏 .𝑟 ≥ 𝑄𝑚
𝜖 ), whereas one would use only 𝑄0

𝜖 if this

was feasible, we would like to understand the probability of wrong

exclusion: the probability that a sample would have passed the high-

fidelity filter 𝑄0

𝜖 but was wrongly rejected by the low-fidelity filter

𝑄𝑚
𝜖 . Proposition 1 below, derived in Appendix A, shows that the

probability of wrong exclusion scales according to the cumulative

distribution of the noise as a function of the difference in quantiles.

Proposition 1. Let 𝑅0 and 𝑅1 be random variables related by noise
𝑁 : 𝑅1 := 𝑅0 + 𝑁 . Let 𝑄0

𝜖 and 𝑄1

𝜖 be the (1 − 𝜖)-quantiles of the
distributions of 𝑅0 and 𝑅1, respectively. Then we have that

𝑃 (𝑅0 ≥ 𝑄0

𝜖 , 𝑅
1 ≤ 𝑄1

𝜖 ) = 𝜖E
[
𝐹𝑁 (𝑄1

𝜖 − 𝑅0) | 𝑅0 ≥ 𝑄0

𝜖

]
(9)

where 𝐹𝑁 (𝑟 ) is the CDF of the noise distribution.

From this, we can make two intuitive observations: 1) the smaller

the 𝜖 used by the “true” high-fidelity risk-seeking objective, the

smaller the probability of error; 2) The smaller the low-fidelity

quantile 𝑄1

𝜖 , the more likely a sample is to pass the low-fidelity

filter, and hence the smaller the probability of error.

It would be also useful to understand under which conditions

optimizing for the RSEP objective corresponds to optimizing for

risk-seeking policy gradient. In the following, we show that the

RSEP algorithm eventually maximizes the same objective as the risk-

seeking policy gradient. First, we need the following assumption:

Assumption 1. One of the following holds:
• Case 1: As part of the sampling method, we include a non-zero
probability of sampling 𝑓 = 0 for each trajectory 𝜏 regardless of
its current 𝜏 .𝑟 .
• Case 2: For all 𝜏 ∈ T , we have 𝑅0 (𝜏) ≤ 𝑅 𝑓 (𝜏) for 𝑓 ≠ 0.

Case 2 corresponds to a typical scenario where lower-resolution

fidelities 𝑓 ≠ 0 are overly optimistic, which might preclude the

algorithm from ever sampling a trajectory in 𝑓 = 0 as shown in the

following.

Proposition 2. Let 𝐽risk be the Risk-Seeking Policy Gradient objec-
tive:

𝐽risk (𝜃 ) := E𝜃
[
𝑅0 (𝜏) | 𝑅0 (𝜏) ≥ 𝑄0

𝜖

]
(10)

and 𝐽RSEP be the RSEP objective (Equation 7). Given Assumption 1,
optimizing for the RSEP objective, in the limit of infinite exploration,
corresponds to optimizing for the risk-seeking objective.

Proof. We show that for both cases of Assumption 1, we have

𝜏 .𝑟 = 𝑅0 (𝜏) and 𝑄𝑚
𝜖 = 𝑄0

𝜖 in the limit.

For Case 1: Since all sequences have a non-zero probability

of being evaluated in 𝑅0 regardless of their reward values in the

lowest fidelities, in the limit of infinite exploration we have that

∀𝜏, 𝜏 .𝑟 = 𝑅0 (𝜏) and 𝑄𝑚
𝜖 = 𝑄0

𝜖 . This holds because, eventually, all

samples will be evaluated in 𝑓 = 0 regardless of their reward values

due to the random sampling component, permanently replacing 𝜏 .𝑟

with 𝑅0 values.

For Case 2: We show that RSEP will eventually only train on

samples 𝜏 that satisfy 𝑅0 (𝜏) ≥ 𝑄0

𝜖 . First, by Assumption 1, for any

fixed batch of samples, we have the inequality among the empirical

quantiles:

𝑄0

𝜖 ≤ 𝑄𝑚
𝜖 . (11)

Now we enumerate all cases that may arise during the evaluation

of (8).

(1) 𝑅0 (𝜏) < 𝑄0

𝜖 and 𝜏 .𝑟 ≥ 𝑄𝑚
𝜖 . This means it mistakenly passes the

multi-fidelity risk-seeking filter. However, due to passing the

filter, we will have 𝜏 .𝑟 = 𝑅0 (𝜏) subsequently. This means that

this sample will never pass the filter on subsequent evaluations

of the same batch because 𝑅0 (𝜏) < 𝑄0

𝜖 and (11).

(2) 𝑅0 (𝜏) ≥ 𝑄0

𝜖 and 𝜏 .𝑟 ≥ 𝑄𝑚
𝜖 . This case is correct since 𝜏 is sup-

posed to contribute to the gradient and it does so by passing the

filter. Also note that we will have 𝜏 .𝑟 = 𝑅0 (𝜏) after the gradient
computation.

(3) 𝑅0 (𝜏) < 𝑄0

𝜖 and 𝜏 .𝑟 < 𝑄𝑚
𝜖 . This case poses no issue since 𝜏 is

not supposed to contribute to the gradient and it does not do so

due to failing to pass the filter.

(4) 𝑅0 (𝜏) ≥ 𝑄0

𝜖 and 𝜏 .𝑟 < 𝑄𝑚
𝜖 . If this case persists across train-

ing, then 𝜏 will never be used in the gradient computations

even though it should. So we need to show that this case even-

tually stops arising. If 𝜏 .𝑟 = 𝑅0 (𝜏), then there is no issue be-

cause it contributes correctly to 𝑄𝑚
𝜖 . So we consider the case

𝜏 .𝑟 = 𝑅 𝑓 ≠0 (𝜏). This arises only if there exists 𝜏 ′ that is wrongly
accepted into the quantile: i.e., 𝑅0 (𝜏 ′) < 𝑄0

𝜖 and 𝜏
′ .𝑟 = 𝑅 𝑓 ≠0 (𝜏 ′)

and 𝑅 𝑓 ≠0 (𝜏 ′) ≥ 𝑄𝑚
𝜖 , which is case (1) above. However, we have

shown that scenario (1) eventually does not arise, which guar-

antees that this scenario eventually does not arise.

Therefore, only scenario that persist are scenarios (2) and (3), which

are correct. Performing a simple substitution in Equation 7:

lim

training

𝐽RSEP = E𝜃
[
𝑅0 (𝜏) | 𝑅0 (𝜏) ≥ 𝑄0

𝜖

]
= 𝐽

risk
(12)

Therefore, by learning using RSEP we are, in the limit, optimizing

for the risk-seeking policy gradient objective. □

However, we expect that high-quality sequences will be found

much quicker thanwhen using a single fidelity, whichwill be shown

in the empirical evaluation.

5 EMPIRICAL EVALUATION
In order to empirically evaluate MF-DSO, we consider two highly-

relevant domains, Symbolic Regression and Antibody Therapeutics
Optimization. While both domains are of practical importance and

motivated the developments reported in this paper, the former



provides a platform where Benchmarks are well-defined and ex-

periments can be performed quickly, while the latter represents a

challenging domain where freely sampling in the highest fidelity is

completely infeasible.

5.1 Symbolic Regression
In this section we introduce Symbolic Regression, a problem that is

particularly amenable to be solved through symbolic optimization.

Symbolic regression aims to identify mathematical expressions that

best fit a set of observations. This can be used, for example, to ex-

trapolate equations that explain physical phenomena, by searching

over the space of tractable (i.e. concise, closed-form) expressions.

Specifically, given a dataset (𝑿 ,𝒚), where each observation𝑿 𝒊 ∈
R𝑛 is related to a target value 𝑦𝑖 ∈ R, symbolic regression aims to

identify a function 𝑓 : R𝑛 → R that best fits the dataset, where

the functional form of 𝑓 is a short mathematical expression. The

resulting expression can be readily interpreted and/or provide use-

ful scientific insights simply by inspection. Naturally, a candidate

expression just have to be compared against the dataset to compute

an error metric.

Symbolic regression exhibits several unique features that make

it an ideal domain for benchmarking symbolic optimization: (i)

Well-established and challenging benchmarks are available [41]; (ii)

The success criteria is clearly defined; (iii) Well-established base-

line methods are available (most notably, the Eureqa algorithm

[27]); and (iv) Computing the quality of candidate expressions is

easy, allowing repeating experiments until statistical significance

is achieved. The space of mathematical expressions is discrete (in

model structure) and continuous (in model parameters), growing

exponentially with the length of the expression, rendering symbolic

regression a challenging machine learning problem—thought to be

NP-hard [21]. For evaluation purposes, we leverage the Nguyen

symbolic regression benchmark suite [38]. Nguyen is a set of 12

commonly used benchmark expressions developed and vetted by

the symbolic regression community [41]. Each benchmark is de-

fined by a ground truth expression and a set of allowed operators.

Training and test data are generated based on the ground truth

expression and used to compute the error between a candidate

expression and the correct one. This is Ξ0
for us and therefore

𝑅0 (𝜏, 𝑋 ) = 1−
√︃

1

|𝑋 |
∑
𝑥∈𝑋 | (𝜏 .𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑥) − 𝑦 (𝑥) |2. Given the eval-

uation data (𝑿 ,𝒚), we consider other lower-fidelity rewards:

(1) Ξ1
: We add white noise to the evaluation data, in a way that the

rewards are calculated using (𝑿 ,𝒚 + 𝜖).
(2) Ξ2

: Instead of using the original data, we train a simple Gaussian

Process Regressor on the data𝑚(𝑿 ,𝒚). Therefore, 𝑅2 (𝜏, 𝑋 ) =
1

|𝑋 |
∑
𝑥∈𝑋 1 − |(𝜏 .𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑥) −𝑚(𝑥) |, which simulates a com-

mon situation where a surrogate model is trained in real-world

data to provide a faster and cheaper low-fidelity estimator (as

in most of real-world scenarios, the amount of data used is not

enough for the model to converge to a perfect prediction).

We show results for Nguyen 4-6, 9, 10, and 12 for all experiments

in the main text of the paper. Those benchmarks were chosen

because they represent the main trend of the results for both middle-

and high-difficulty ground truth equations.

Due to the speed with which we can run experiments in this do-

main, Symbolic Regression is used for a wider range of comparisons,

described in the following.

5.1.1 Baseline Multi-Fidelity Performance. This series of experi-
ments aim to answer the question “Is it useful to use multi-fidelity
samples?” ; and to assess the performance of simple multi-fidelity

strategies. The following baselines are considered:

• upper bound: Equivalent to only using Ξ0
. Given unlimited

samples, this baseline should be the top performer. However,

we are here interested in the scenario in which samples from

the highest fidelity are limited.

• lower bound: Only uses Ξ1
and Ξ2

. This baseline shows the

agent performance in the lower fidelities when the real world is

not available.

• sequential: This baseline mimics a transfer learning approach.

Learning is carried out without access to Ξ0
for a number of

iterations, then the agent switches to Ξ0
and only samples from

the high fidelity until the end of training.

• shuffled: This baseline randomly samples from different fideli-

ties according to a fixed probability. The highest fidelity is set

to around 9% of probability to be sampled from.

Figure 1 shows the best sample found per number of explored

samples in 𝑓 = 0. Although those graphs cannot be interpreted

alone
5
, they present a gross estimation of the learning speed of each

algorithm. Table 1 shows the average quality of the hall of fame after

training for this experiment, providing the extra information we

needed to assess the performance. As expected, lower bound shows

that sampling only from the lowest fidelity overfits and presents as

solutions low-performing samples in the fidelity that matters to us.

Although shuffled sometimes achieves high-performing samples

(shown e.g. on Nguyen-6), the mixture of fidelities on the training

batches confuses the agent, which results in low avg metric overall

in most of the benchmarks. Despite the poor performance from

those aforementioned baselines, sequential outlines the potential
of leveraging multiple fidelities. With the same budget of samples

from 𝑓 = 0, sequential achieves consistently a better performance

than upper bound (evidenced in both graph and table), showing that

it is beneficial to use lower fidelities to boostrap learning.

With our first experiment indicating that there is indeed an

advantage in using multiple fidelities, our next experiment will

show that MF-DSO outperforms the baselines.

5.2 Symbolic Regression Evaluation
We evaluate here the performance of all of the our proposed meth-

ods: RSEP, RSEP_0, PGEP, and PGEP_u; as well as the best performing

baseline method sequential. Table 2 shows the results for all bench-
marks. For both the max and avg metrics, RSEP outperformed all

other algorithms in, respectively, 4 and 2 of the benchmarks, which

clearly makes it the best performing algorithm in this experiment.

RSEP_0, a variant of the same algorithm, ranked best of all algo-

rithms in 1 and 2 of benchmarks for each of the metrics. Finally,

PGEP_u ranked best 1 and 2 times in the metrics.

5
A good sample found by the algorithm is not necessarily stored in the hall of fame. If

a sample is overestimated in another fidelity, the best sample so far might be discarded

depending on the algorithm used (this happens, e.g., with shuffled)



Figure 1: Average reward of best sample found so far during training (x-axis is the amount of samples from Ξ0) across 150
repetitions. Nguyen 4-6, 9, 10, 12 are depicted from left to right, top to bottom.

Table 1: The results represent the best (max) and the average (avg) quality of samples in the hall of fame by the end of the
training process. Averages across 150 repetitions.

Benchmark Lower bound Upper bound Shuffled Sequential
Max Avg Max Avg Max Avg Max Avg

Nguyen-4 0.884 0.703 0.890 0.788 0.923 0.786 0.925 0.846
Nguyen-5 0.530 0.257 0.705 0.511 0.728 0.505 0.754 0.563
Nguyen-6 0.800 0.578 0.918 0.820 0.966 0.839 0.969 0.859
Nguyen-9 0.396 0.300 0.832 0.702 0.875 0.720 0.889 0.761
Nguyen-10 0.498 0.355 0.851 0.726 0.872 0.712 0.883 0.744
Nguyen-12 0.526 0.366 0.706 0.561 0.758 0.505 0.777 0.621

Notably, the best baseline method (sequential) was not able to

outperform the multi-fidelity-specific algorithms in any of the met-

rics or benchmarks. The main conclusion of this experiment is that

the proposed algorithms provide significant gains in multi-fidelity

environments. As for choosing one of our proposed algorithms,

RSEP was consistently the best algorithm or at least one of the

top performers in all benchmarks, therefore this should be the

choice when the designer does not have means to perform abla-

tions and evaluations of different algorithms before the training

process. However, the other algorithms also have their value (most

notably RSEP_0 and PGEP_u) and sometimes outperform RSEP.

5.3 Antibody Therapeutics Optimization
Antibodies are the human immune system’s primary line of de-

fense against pathogens. As a response to an unwanted substance

(antigen - often a virus or bacteria) entering the body, antibodies

are produced and released in the bloodstream and lymph systems.

Antibodies are able to bind to specific antigens, effectively neutral-

izing the threat and fighting the disease. Instead of relying on the

individual’s immune system to generate new antibodies, modern

medicine is able to develop and manufacture antibodies [5], which

can be directly administered to the patient, improving survival

rates. Given a target antigen we want to develop antibodies for (e.g.,

SARS-CoV-2), we follow a fast response approach. We start with

an antigen that is within the same viral family of our target (e.g.,

SARS-CoV-1), for which we have an effective antibody (that does

not bind effectively to the new target). Given that both antigens

are related, we hypothesize that we need only to perform strategic

mutations in the antibody for it to bind to our target, rather than

developing an antibody from scratch.

Antibodies are proteins that sensitively and specifically recog-

nize target molecules by the shape and chemistry of their comple-

mentarity determining regions (CDRs) [42]. Hence, we perform

mutations on the antibody’s CDR. There are 20 common amino

acids, each with distinct sizes, shapes, chemistries, and other char-

acteristics, and sequences of amino acids are conventionally written

as sequences of alphabet letters. Therefore, the symbolic optimiza-

tion modeling of this domain consists of sampling amino acids

mutations (among the 20 choices) in the antibody CDR. Given

the high cost of performing wet lab experiments, we rely on a

computationally-assisted approach to train the AI. The reward for



Figure 2: Average reward of best sample found so far during training (x-axis is the amount of samples from Ξ0) across 150
repetitions. Nguyen 4-6, 9, 10, and 12 are depicted from left to right.

Table 2: The results represent the best (max) and the average (avg) quality of samples in the hall of fame by the end of the
training process. Averages across 150 repetitions. Best results for each metric are highlighted in bold.

Benchmark Sequential PGEP PGEP_u RSEP RSEP_0
Max Avg Max Avg Max Avg Max Avg Max Avg

Nguyen-4 0.925 0.846 0.946 0.894 0.956 0.921 0.985 0.947 0.991 0.961
Nguyen-5 0.754 0.563 0.832 0.668 0.913 0.761 0.966 0.801 0.960 0.823
Nguyen-6 0.969 0.859 0.983 0.944 0.999 0.981 1.000 0.965 0.999 0.942

Nguyen-9 0.889 0.761 0.941 0.838 0.972 0.849 0.973 0.858 0.968 0.844

Nguyen-10 0.883 0.744 0.925 0.858 0.971 0.901 0.927 0.862 0.908 0.819

Nguyen-12 0.777 0.621 0.786 0.691 0.796 0.762 0.792 0.776 0.795 0.772

this domain represents the binding quality of a suggested antibody

to our target, where low and high fidelities are defined as follows:

• Ξ0
: The highest fidelity uses a Rosetta Flex [20] simulation to

define the binding score. Although this provides a good esti-

mation the reward, each Rosetta reward simulation takes ap-

proximately 6 hours to execute in an HPC computer. For each

mutation from the original antibody CDR, we use Rosetta to

compute the change in binding free energy between the antigen

and the antibody, and we define the final reward as the sum of

all single-point mutation differences.

• Ξ1
: Given the excessive time to run Rosetta simulators, we train

a surrogate model to use as a lower-fidelity estimation of the

binding score. We train a Gaussian process (GP) model with a

dataset of 122,000 pre-defined Rosetta simulations. Due to the

size of the dataset, we trained an approximate sparse Gaussian

Process [34] with scaled RBF kernel and hyperparameters se-

lected via marginal likelihood maximization. The trained GP

model is able to estimate rewards in a couple of seconds.

Given the long time needed to run experiments in this domain,

we leverage the ablations and results from the Symbolic Regression

experiments to down-select algorithms for the evaluation in this

domain. We evaluate: (i) Upper Bound: training only on Ξ0
; (ii)

Sequential: training on Ξ1
for a long time then switching to Ξ0

;

(iii) RSEP; and (iv) PGEP_u, the top-performing algorithms from

each category in the last section.

5.4 Antibody Optimization Evaluation
The results for the antibody optimization domain are shown in Ta-

ble 3 and Figure 3. The results from this domain confirm our initial

results from the symbolic regression domain. Sequential overper-
forms the upper bound baseline, showing that performing transfer

learning is better than learning directly in the highest fidelity. How-

ever, MF-MDP algorithms perform even better, with RSEP over-

performing all other algorithms in both the max and avg metrics.

Despite PGEP_u underperforming sequential in the max metric,

it still performs better in avg, showing that the result from the

multi-fidelity algorithm are more consistent. Those empirical re-

sults are very encouraging for RSEP, showing in a very complex

and relevant application that it is worthy to explicitly reason over

multiple fidelities in symbolic optimization tasks.



Table 3: Best and Average binding score for the antibodies in
the hall of fame at the end of the training process.

Alg Max Avg
Upper Bound 8.351 6.311

Sequential 8.634 7.021

RSEP 8.921 7.770
PGEP_u 8.491 7.201

Figure 3: Average of binding score for the best antibody ex-
plored in the highest fidelity so far (x-axis is the number of
samples from Ξ0) during training.

6 RELATEDWORKS
Although MF-MDPs have not been formally described before, multi-

fidelity rewards have already been explored before in the literature

[3, 23]. Even though the agent end goal is to optimize performance

in the fidelity 0, a group of works propose ways to iteratively fine-

tune lower-fidelity surrogate models to make them more realistic

and enable training directly in the lower, cheaper to sample from,

fidelity. A common way to handle the multiple fidelities is either

through modifying lower-fidelity transition [1, 6, 11, 12] or reward

[14] functions, by learning a correction factor that approximates

them to the highest fidelity function. We, on the other hand, focus

on explicitly using both lower and higher-fidelity estimates to learn,

instead of fine tuning the lower fidelity models.

The multi-fidelity problem has been explored in an ad hoc man-

ner as a Transfer Learning problem [29, 32], where the lower fidelity

is solved, and the solution is somehow reused to learn in the highest

fidelity [2]. This approach is mimicked by our sequential baseline
and, as shown in our experiments, is not as effective and explicitly

reasoning over the multiple fidelities during learning.

Some Neural Architecture Search works considered this appli-

cation as a multi-fidelity problem [37, 44], because each candidate

architecture can be evaluated for an arbitrarily number of training

iterations, resulting in an as higher fidelity reward as longer you

train the model. However, the key distinction from our method is

that, in their modeling, for evaluating a sample in a given fidelity,

the rewards for all lower fidelities must be computed, which is not

the case in our modeling and applications.

Perhaps most similar to our paper are the works from Khairy and

Balaprakash [15] and Cutler et al. [7]. In the former, they consider

that the state space of the low-fidelity environment is an abstracted

version of the high-fidelity one (and therefore smaller). We instead

assume that the state space is the same and the lower fidelity simply

uses a cheaper approximate way of calculating the reward. In the

latter, the authors assume that the agent can estimate its epistemic

uncertainty and only queries the high fidelity when the uncertainty

is low, so as to avoid exploring low-quality samples in the high

fidelity. While our method similarly try to bias the evaluations in

the highest fidelity towards high-performing samples, we do not

require uncertainty calculation, which might be difficult to do.

Outside of the RL community, several works constrain optimiza-

tion within a trust-region when using lower-fidelity estimates [26].

While those methods are not directly-usable in RL problems, it

might inspire TRPO-like [28] methods using our formulation.

7 CONCLUSION AND FURTHERWORK
Although many RL applications are naturally modeled as multi-

fidelity problems, the literature has predominantly copedwith those

environment in an ad-hoc manner. Those problems are either mod-

eled as Transfer Learning problems or as a simulation-optimization

problem where the low-fidelity environment is iteratively refined

but the learning algorithm is unaware of the multiple fidelities. We

propose to explicitly reason over the multiple fidelities and leverage

lower fidelity estimates to bias the sampling in the higher, more

expensive, fidelity. We contribute the description of Multi-Fidelity

MDPs (MF-MDPs), defining a new challenge to the community. We

also contribute two families of algorithms for MF-MDPs: RSEP and

PGEP. Moreover, we perform an empirical evaluation in the Sym-

bolic Regression and Antibody Optimization domains, showing that

MF-MDP-based algorithms outperform simple strategies in both

domains. The conclusion of our experimentation is that RSEP is the

best performing algorithm overall and should be the first choice,

but since PGEP was the best performer in some of the symbolic

regression benchmarks, it is worthy to also evaluate it in cases

where this is feasible. Further work includes explicitly reasoning

over the cost of sampling from each fidelity, instead of assuming

that samples are free from all lower fidelities as we do in this paper.

Another avenue is proposing algorithms that work for a broader

class of MF-MDPs, solving more RL applications of interest.
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A PROOFS
Proposition 1. Let 𝑅0 and 𝑅1 be random variables related by noise
𝑁 : 𝑅1 := 𝑅0 + 𝑁 . Let 𝑄0

𝜖 and 𝑄1

𝜖 be the (1 − 𝜖)-quantiles of the
distributions of 𝑅0 and 𝑅1, respectively. Then we have that

𝑃 (𝑅0 ≥ 𝑄0

𝜖 , 𝑅
1 ≤ 𝑄1

𝜖 ) = 𝜖E
[
𝐹𝑁 (𝑄1

𝜖 − 𝑅0) | 𝑅0 ≥ 𝑄0

𝜖

]
(9)

where 𝐹𝑁 (𝑟 ) is the CDF of the noise distribution.

Proof.

𝑃 (𝑅0 ≥ 𝑄0

𝜖 ∧ 𝑅1 ≤ 𝑄1

𝜖 ) (13)

= 𝑃 (𝑅0 ≥ 𝑄0

𝜖 ∧ 𝑅0 + 𝑁 ≤ 𝑄1

𝜖 ) (14)

=

∫
𝑟≥𝑄0

𝜖

𝑃 (𝑅0 = 𝑟, 𝑁 ≤ 𝑄1

𝜖 − 𝑟 )𝑑𝑟 (15)

=

∫
𝑟≥𝑄0

𝜖

𝑃 (𝑅0 = 𝑟 )𝑃 (𝑁 ≤ 𝑄1

𝜖 − 𝑟 )𝑑𝑟 (16)

=

∫
𝑟≥𝑄0

𝜖

𝑃 (𝑅0 = 𝑟 )𝐹𝑁 (𝑄1

𝜖 − 𝑟 )𝑑𝑟 (17)

= 𝜖

∫
𝑟≥𝑄0

𝜖

𝑃 (𝑅0 = 𝑟 )
𝑃 (𝑅0 ≥ 𝑄0

𝜖 )
𝐹𝑁 (𝑄1

𝜖 − 𝑟 )𝑑𝑟 (18)

= 𝜖

∫
𝑟

𝑃 (𝑅0 = 𝑟, 𝑅0 ≥ 𝑄0

𝜖 )
𝑃 (𝑅0 ≥ 𝑄0

𝜖 )
𝐹𝑁 (𝑄1

𝜖 − 𝑟 )𝑑𝑟 (19)

= 𝜖E
[
𝐹𝑁 (𝑄1

𝜖 − 𝑅0) | 𝑅0 ≥ 𝑄0

𝜖

]
(20)

□

Proposition 3. Let random variable 𝜏 have distribution 𝜋𝜃 , and let
𝑅0 and 𝑅𝑚 be two functions of 𝜏 with induced distributions 𝑝0 and 𝑝𝑚 .
Let 𝐹𝑚

𝜃
denote the CDF of 𝑝𝑚 . Let𝑄𝑚

𝜖 (𝜃 ) = inf𝜏∈Ω{𝑅𝑚 (𝜏) : 𝐹𝑚𝜃 (𝑟 ) ≥
1 − 𝜖} denote the (1 − 𝜖)-quantile of 𝑝𝑚 . The gradient of

𝐽𝜖 (𝜃 ) := E𝜃
[
𝑅0 (𝜏) | 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]

(21)

is given by

∇𝜃 𝐽𝜖 (𝜃 ) = E𝜃
[
∇𝜃 log𝜋𝜃 (𝜏) (𝑅0 (𝜏) − 𝑅0 (𝜏𝜖 )) | 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]

(22)

where 𝜏𝜖 = arg inf{𝑅𝑚 (𝜏) : 𝐹𝑚
𝜃
(𝑟 ) ≥ 1−𝜖} is the sample that attains

the quantile.

Proof. First, we provide an elementary proof for the case where

𝜏 is a scalar random variable, then we provide a proof for the multi-

dimensional case.

Single-dimensional case. Define the set of samples for which

the mixture reward exceeds the 1 − 𝜖 quantile:
𝐷𝜃 := {𝜏 ∈ Ω : 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )} (23)

We expand the definition of the objective:

𝐽𝜖 (𝜃 ) =
∫
Ω
𝑅0 (𝜏) 𝑓𝜃,𝑅𝑚 (𝜏 )≥𝑄𝑚

𝜖 (𝜃 ) (𝜏)𝑑𝜏 (24)

=

∫
Ω
𝑅0 (𝜏) 𝑓𝜃 (𝜏, 𝑅

𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 ))

𝑓𝜃 (𝑅𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 )

𝑑𝜏 (25)

=
1

𝜖

∫
Ω
𝑅0 (𝜏) 𝑓𝜃 (𝜏, 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 ))𝑑𝜏 (26)

=
1

𝜖

∫
𝜏∈𝐷𝜃

𝑅0 (𝜏)𝜋𝜃 (𝜏)𝑑𝜏 (27)

Assuming sufficient continuity of the reward, policy, and quantile

as a function of parameter 𝜃 , we can apply the Leibniz integral rule

to differentiate under the integral sign. Differentiating both sides of

𝜖 =

∫
𝜏∈𝐷𝜃

𝜋𝜃 (𝜏)𝑑𝜏 , (28)

we have

0 = ∇𝜃
∫
𝜏∈𝐷𝜃

𝜋𝜃 (𝜏)𝑑𝜏 (29)

= ∇𝜃
∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
𝑝𝑚
𝜃
(𝑟 )𝑑𝑟 (30)

= −𝑝𝑚
𝜃
(𝑅𝑚 (𝜏𝜖 ))∇𝜃𝑅𝑚 (𝜏𝜖 (𝜃 )) +

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
∇𝜃𝑝𝑚𝜃 (𝑟 )𝑑𝑟 (31)

Let 𝜏𝑟 denote the sample that satisfies 𝑅𝑚 (𝜏) = 𝑟 . Applying the

Leibniz integral rule to the objective, we have

∇𝜃 𝐽𝜖 (𝜃 ) = ∇𝜃
1

𝜖

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
𝑅0 (𝜏𝑟 )𝑝𝑚𝜃 (𝑟 )𝑑𝑟 (32)

= −1
𝜖
𝑅0 (𝜏𝜖 (𝜃 ))𝑝𝑚𝜃 (𝑅

𝑚 (𝜏𝜖 (𝜃 )))∇𝜃𝑅𝑚 (𝜏𝜖 (𝜃 )) (33)

+ 1

𝜖

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
𝑅0 (𝜏𝑟 )∇𝜃𝑝𝑚𝜃 (𝑟 )𝑑𝑟 (34)

Substituting eq. (31) into eq. (33), we get

∇𝜃 𝐽𝜖 (𝜃 ) = −
1

𝜖
𝑅0 (𝜏𝜖 (𝜃 ))

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
∇𝜃𝑝𝑚𝜃 (𝑟 )𝑑𝑟 (35)

+ 1

𝜖

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
𝑅0 (𝜏𝑟 )∇𝜃𝑝𝑚𝜃 (𝑟 )𝑑𝑟 (36)

=
1

𝜖

∫ 𝑏

𝑅𝑚 (𝜏𝜖 (𝜃 ) )
∇𝜃𝑝𝑚𝜃 (𝑟 )

(
𝑅0 (𝜏𝑟 ) − 𝑅0 (𝜏𝜖 (𝜃 ))

)
𝑑𝑟 (37)

=
1

𝜖

∫
𝜏∈𝐷𝜃

∇𝜃𝜋𝜃 (𝜏)
(
𝑅0 (𝜏𝑟 ) − 𝑅0 (𝜏𝜖 (𝜃 ))

)
𝑑𝜏 (38)

= E𝜋𝜃
[
∇𝜃 log𝜋𝜃 (𝜏) (𝑅0 (𝜏) − 𝑅0 (𝜏𝜖 (𝜃 ))) | 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]

(39)

The second-to-last step implicitly uses the change-of-variables for-

mula 𝑝𝑚
𝜃
(𝑟 ) = 𝜋𝜃 (𝑓 (𝑟 )) |det𝐷𝑓 (𝑟 ) | where 𝑓 : 𝑅 ↦→ Ω is the inverse

function that maps rewards to 𝜏 . But since the determinant of Jaco-

bian does not depend on 𝜃 , the result holds.

Multi-dimensional case. For the casewhere𝜏 is an𝑛-dimensional

random variable, we adapt the proof of Tamar et al. [36, Proposition

2], except for two differences: 1) the reward 𝑅0 being optimized

is different from the reward 𝑅𝑚 used in the conditional expecta-

tion; 2) we condition on the outcomes within the top 𝜖 quantile, i.e.

𝑅𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 ), rather than the outcomes below the 𝜖-Value-at-

Risk which would be 𝑅𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 ). We use the same assump-

tions Tamar et al. [36, Assumptions 4 and 5].

Define the set𝐷𝜃 := {𝜏 : 𝑅𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 )}. Let𝜔 := 𝜋𝜃 (𝜏)𝑅0 (𝜏)𝑑𝜏

and 𝜔̃ := 𝜋𝜃 (𝜏)𝑑𝜏 .
For every 𝜏 ∈ 𝜕𝐷𝑖

𝜃
, we have either (a) 𝑅0 (𝜏) = 𝑄𝑚

𝜖 (𝜃 ) or (b)
𝑅0 (𝜏) > 𝑄𝑚

𝜖 (𝜃 ). Let 𝜕𝐷
𝑖,𝑎

𝜃
and 𝜕𝐷

𝑖,𝑏

𝜃
be the subset of 𝜏 correspond-

ing to cases (a) and (b), respectively. By the same reasoning in



Tamar et al. [36], we have∫
𝜕𝐷

𝑖,𝑏

𝜃

v⌟𝜔 = 0 . (40)

By definition of 𝐷𝜃 , we have

𝜖 =

∫
𝐷𝜃

𝜔̃ . (41)

Taking the derivative, and using eq. (40), we have

0 =

𝐿𝜃∑︁
𝑖=1

(∫
𝜕𝐷

𝑖,𝑎

𝜃

v⌟𝜔̃ +
∫
𝐷𝑖
𝜃

𝜕𝜔̃

𝜕𝜃

)
. (42)

In the boundary case 𝜏 ∈ 𝜕𝐷
𝑖,𝑎

𝜃
, 𝜏 satisfies 𝑅𝑚 (𝜏) = 𝑄𝑚

𝜖 (𝜃 ), so
we can denote it by 𝜏𝜖 as defined above. By definition of 𝜔 and

linearity of the interior product, we have∫
𝜕𝐷

𝑖,𝑎

𝜃

v⌟𝜔 = 𝑅0 (𝜏𝜖 ) (𝜃 )
∫
𝜕𝐷

𝑖,𝑎

𝜃

v⌟𝜔̃ . (43)

Plugging eq. (42) into eq. (43), we get

𝐿𝜃∑︁
𝑖=1

∫
𝜕𝐷

𝑖,𝑎

𝜃

v⌟𝜔 = −𝑅0 (𝜏𝜖 )
𝐿𝜃∑︁
𝑖=1

∫
𝐷𝑖
𝜃

𝜕𝜔̃

𝜕𝜃
. (44)

Our objective eq. (21) can be written as

𝐽𝜖 (𝜃 ) = E𝜃
[
𝑅0 (𝜏) | 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]

(45)

=

∫
𝜏∈Ω

𝑅0 (𝜏)𝜋𝜏 |𝑅𝑚 (𝜏 )≥𝑄𝑚
𝜖 (𝜃 ) (𝜏)𝑑𝜏 (46)

=
1

𝜖

∫
𝜏∈Ω

𝑅0 (𝜏)𝜋𝜃 (𝜏, 𝑅𝑚 (𝜏) ≥ 𝑄𝑚
𝜖 (𝜃 ))𝑑𝜏 (47)

=
1

𝜖

∫
𝐷𝜃

𝜋𝜃 (𝜏)𝑅0 (𝜏)𝑑𝜏 (48)

=
1

𝜖

𝐿𝜃∑︁
𝑖=1

∫
𝐷𝑖
𝜃

𝜋𝜃 (𝜏)𝑅0 (𝜏)𝑑𝜏 . (49)

Its gradient is

∇𝜃 𝐽𝜖 (𝜃 ) =
1

𝜖

𝐿𝜃∑︁
𝑖=1

∇𝜃
∫
𝐷𝑖
𝜃

𝜋𝜃 (𝜏)𝑅0 (𝜏)𝑑𝜏 . (50)

By the Leibniz rule, we have

∇𝜃
∫
𝐷𝑖
𝜃

𝜋𝜃 (𝜏)𝑅0 (𝜏)𝑑𝜏 =

∫
𝜕𝐷𝑖

𝜃

v⌟𝜔 +
∫
𝐷𝑖
𝜃

𝜕𝜔

𝜕𝜃
(51)

=

∫
𝜕𝐷

𝑖,𝑎

𝜃

v⌟𝜔 +
∫
𝐷𝑖
𝜃

𝜕𝜔

𝜕𝜃
, (52)

where the last equality follows from eq. (40). Using eq. (44) and

eq. (51) in eq. (50), we get

∇𝜃 𝐽𝜖 (𝜃 ) =
1

𝜖

𝐿𝜃∑︁
𝑖=1

(∫
𝐷𝑖
𝜃

𝜕𝜔

𝜕𝜃
− 𝑅0 (𝜏𝜖 )

∫
𝐷𝑖
𝜃

𝜕𝜔̃

𝜕𝜃

)
(53)

=
1

𝜖

∫
𝐷𝜃

∇𝜃𝜋𝜃 (𝜏)
(
𝑅0 (𝜏) − 𝑅0 (𝜏𝜖 )

)
𝑑𝜏 (54)

= E𝜋𝜃

[
∇𝜃 log𝜋𝜃 (𝜏)

(
𝑅0 (𝜏) − 𝑅0 (𝜏𝜖 )

)
| 𝑅𝑚 (𝜏) ≥ 𝑄𝑚

𝜖 (𝜃 )
]

(55)

□
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