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ABSTRACT
Evolutionary Algorithms and Deep Reinforcement Learning have
both successfully solved control problems across a variety of do-
mains. Recently, algorithms have been proposed which combine
these two methods, aiming to leverage the strengths and mitigate
the weaknesses of both approaches.

A central component of algorithms that combine Evolution-
ary Algorithms with Deep Reinforcement Learning has been the
"Shared Replay Buffer". Deep Reinforcement Learning algorithms
require batches of data to update policy networks. Since Evolu-
tionary Algorithms encounter such data in excess, they can feed
the data produced from a variety of different behavioural policies
to the Deep Reinforcement Learning model. Deep Reinforcement
Learning in-turn seeks to bias the Evolutionary Algorithm to higher
areas of fitness by introducing high-performing individuals into
the population periodically. This paradigm has produced several
highly successful algorithms.

In this paper we introduce a new Evolutionary Reinforcement
Learning model built on this framework, combining a particular
family of Evolutionary algorithm called Evolutionary Strategies
with the off-policy Deep Reinforcement Learning algorithm TD3.
The framework utilises a multi-buffer system instead of using a
single shared replay buffer. The multi-buffer system allows for the
Evolutionary Strategy to search freely in the search space of policies,
without running the risk of overpopulating the replay buffer with
poorly performing trajectories which limit the number of desirable
policy behaviour examples thus negatively impacting the potential
of the Deep Reinforcement Learning within the shared framework.

The proposed algorithm is demonstrated to perform compet-
itively with current Evolutionary Reinforcement Learning algo-
rithms on MuJoCo control tasks, outperforming the well known
state-of-the-art CEM-RL on 3 of the 4 environments tested.
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1 INTRODUCTION
Reinforcement Learning (RL) achieved notable success over the last
few decades, from playing board games like chess [28] and GO!
[23] at near human-expert levels, playing video games where the
agent is fed pixel inputs of the game [15], to self driving cars [13].

Evolutionary Algorithms (EAs) have existed concurrently, with
deep roots in function optimisation problems. EAs seek to find
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the optimal set of parameters (often belonging to some function-
approximator) in order to minimise the a loss function. EAs have
been applied to a variety of real world problems such as: video
game level generation [7], determining an optimal architecture
for a function approximator [24] and also the control problem of
finding a behavioural policy that allows an agent to perform a task
sufficiently [20].

In general an EA maintains a population of one or more individ-
uals. In the case of finding an optimal control policy, an individual
or agent is usually represented by the weight vector of its pol-
icy Neural Network. This Neural Network maps states to actions,
and is used to determine the actions the agent performs in the
environment. EA make use of genetic operators such as mutation
and recombination to apply a selective pressure to the population
leading to the emergence of fitter agents. In practice, knowing the
fitness of the entire population at any point in time is a must. This
results in many evaluations of the policy networks causing "low
sample efficiency".

Conversely, Deep Reinforcement Learning (DRL) generally con-
sists of a single agent again represented as one (or in the case of
actor-critic algorithms - two) Neural Networks. The performance
of this agent is improved upon by performing Stochastic Gradient
Descent on the Neural Networks using batches [15] of (𝑠, 𝑎, 𝑟, 𝑠′)
data points, where 𝑎 is the action that was taken when the envi-
ronment was in state 𝑠 , resulting in the environment transitioning
to state 𝑠′ and receiving back a scalar reward 𝑟 . The updates per-
formed on the Neural Networks, either directly or indirectly, seek
to increase the total reward gathered by the policy described by
the networks. Since data points can be reused it leads to a higher
sample efficiency than EAs. However, in practice DRL algorithms
have been observed to be more fragile to hyper-parameter choice
as seen in [4] where the difference between setting a particular
hyper-parameter to 0.9999 instead of 0.99 can be the difference
between the agent solving the problem completely or not at all.

Algorithms have been proposed which seek to unite these two
frameworks while preserving the desirable traits of both [22]. Most
notably and related to the work in this paper, is the algorithm titled
ERL [9], where a general framework is described. The framework
can be summarised as follows: A Genetic Algorithm containing
k agents and a single Reinforcement Learner are initialised. The
agents in the Genetic Algorithm are evaluated and by means of
tournament selection [14] the fitter agents are assigned a higher
probability of passing their genes through to the next generation.
The evaluation trajectories of the GA are stored in a replay buffer
which is shared with the trajectories created by the RL agent. As
such, the batches sampled from this replay buffer by the RL agent,
come from a range of different behavioural policies. The Reinforce-
ment Learner is periodically allowed to overwrite the weakest
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member of the GA, in hopes of biasing the GA towards regions
of search space with higher fitness. In turn, this allows the data
the GA generates and feeds to the Reinforcement Learner to be of
higher quality.

This paper proposes a new algorithm inspired by ERL but achiev-
ing higher results through two key differences.

• Firstly, GAs have been observed to cause catastrophic for-
getting when used in control problems [2]. As such we in-
vestigate another family of EAs - Evolutionary Strategies.
In particular, we apply the algorithm titled ES (sometimes
referred to as openES to avoid confusion with the family of
algorithms - ES). [19]
• Secondly, we propose that the use of multiple replay buffers
can increase the performance of this algorithm. This is founded
on the claim that EAs often generate new individuals by
randomly sampling from nearby policies. Since the fitness
landscapes of many control problems are often extremely
non-smooth [25] it is unwise to assume that every policy
near to a "good" policy will in itself be "good". This can lead
to a single replay buffer being unbalanced with respect to
good and bad trajectories. A simple solution would be to
compartmentalise the buffer into "good"/"bad" trajectories
and sampling batches according to some desired ratio. In this
paper a third buffer is also used where the Reinforcement
Learner can store its own exploratory sequences.

2 BACKGROUND AND RELATEDWORKS
Markov Decision Process: A Markov Decision Process (MDP)
is used to convert a sequential control task into a mathematical
formulation. MDPs are represented as the tuple (S,A,T ,R,𝛾 ). S is the
set of all states the environment can be in. In the case of playing
board games, S would be the set of every possible configuration
the pieces can be in. A is the set of all actions the agent may take
in a state. T is the transition dynamics of the environment. It is
a map S : (S,A, S) → (0, 1) giving the probability that taking an
action in a state will result in the environment changing to another
particular state. R is the reward function, which gives the reward 𝑟
received by the agent at each timestep after performing an action.
It is usually assumed that these rewards take scalar values. 𝛾 is a
hyper-parameter which takes values in the range [0, 1]. Its role is
to balance the agent’s interests towards acting to receive maximal
rewards over a long period of time (when 𝛾 = 1) or acting to
maximise immediate rewards (when 𝛾 = 0).

Dynamic Programming [27] is used to find the behavioural poli-
cies that maximise the agents cumulative rewards - often simply
called the optimal policy.

Reinforcement Learning: When the transition dynamics T
are unknown, dynamic programming cannot be used, instead RL
may be used to learn a policy. RL algorithms can be model-based
[27] in that they learn an approximation of the dynamics and find
an optimal policy based on this, or model-free where they learn an
optimal policy by acting through trial and error in the environment.
In this paper we focus on model-free algorithms.

Model-free RL can be divided further into on-policy and off-
policy. In on-policy RL, the agent must learn from batches of data
generated by action selections under its own policy 𝜋 . On the other

hand, off-policy RL is free to learn from batches of data collected
from a completely different behavioural policy than the one it is
currently following.

Off-policy RL allows for an agent to store trajectories it generates
in a Replay Buffer [15], which it can then sample batches from. The
use of a replay buffer helps to increase sample efficiency massively
while additionally helping protect the agent from forgetting prior
learned traits - referred to as catastrophic forgetting.

The most widely used RL algorithms today are off-policy includ-
ing DQN, TD3 [5] (an improvement on DDPG [12] reducing the
agent overestimating the value of actions) and SAC [6]. The com-
mon representations of agents in RL include value-based agents
which approximate the expected cumulative discounted rewards
associated to each state-pair and define the policy based on this,
actor-based agents who learn the policy without the need of value
estimates and finally actor-critic methods which approximate the
value and in turn use this information to aid the learning of the
policy.

Evolutionary Strategies: Evolutionary Strategies are one of
three main sub-families of Evolutionary Algorithms, along with
Genetic Algorithms and Genetic Programming. While Evolutionary
Strategies are often applied to numerical optimisation problems,
here we discuss how they can be applied to solving control prob-
lems. An ES is instantiated by placing a parameterised probability
distribution over the search space - in this case the space of all
policy network parameters. While a range of probability distribu-
tions could be selected, previous studies have demonstrated that
using a multivariate isotropic Gaussian with mean parameter \ and
standard deviation 𝜎 allows for significant run-time speed-ups [19].
Under this configuration, the algorithm holds fixed the standard de-
viation of the distribution but performs approximate gradient ascent
on the mean parameter with respect to the policy’s fitness func-
tion 𝐽 (\ ) by evaluating the fitness of policies selected through the
distribution in a method that closely resembles finite-differencing.

However, Lehman et al. [11] clearly demonstrate that ES is sig-
nificantly different to finite-difference methods and other point-
gradient methods in general as it does not seek to place the mean at
the point of highest fitness, but rather centre the entire distribution
over a region such that sampling from it leads to solutions with
high fitness. This can lead to unexpected behaviours [11], where
the geometry of fitness landscapes can result in the mean param-
eter returned by ES having significantly lower performance than
points nearby it. ES doesn’t succumb to the problem of gradient
gaps. This is not true for RL. As ES is required to evaluate the poli-
cies that are sampled from the distribution over entire episodes
in order to generate gradient updates, a large amount of data is
generated. Other evolutionary approaches such as GAs can be more
data efficient in this sense, as it is possible to maintain a smaller
population of individuals to evaluate (pop-size=10) than ES which
can require hundreds of evaluations per gradient update. While
this can make GAs appear more appealing, it has been noted by
Bodnar et al. [2] that GAs can lead to undesirable traits such as
catastrophic forgetting of learned behaviours, while [20] claims
GAs fail when a reward signal is either sparse or deceptive as is
often the case in control problems. ES also have the property of
directly approximating gradients as opposed to the more heuristic
search technique observed in GAs.
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Figure 1: Evolutionary Strategies
The red curve represents a Gaussian probability density function (PDF)

with mean ` and standard deviation 𝜎 over a 1D parameter space. The blue
curve represents the fitness of the policy defined by the weights \ . In

control problems this fitness function is unknown but can be sampled. ES
applies approximate gradient ascent to the mean, effectively "sliding" the
distribution along the x-axis until it finds itself over a region of parameter
space where policy weights sampled according to 𝑃 (\ | `, 𝜎 ) will have

high fitness.

Evolutionary Reinforcement Learning: Evolutionary Rein-
forcement Learning is a fast emerging area combining RL and EA ap-
proaches. The reason for its appeal is due to the the two approaches
having almost directly opposing traits. RL often follows point gra-
dients which can lead to problems of convergence to local optima,
vanishing gradients and gradient gaps. Conversely, EAs such as
GAs are gradient free, while ES do not follow point-gradients re-
sulting in a different behaviour. Off-policy reinforcement learning
algorithms are more data efficient due to their ability to re-use
data from the Replay Buffer, however EAs often require the entire
population to be evaluated on each generation resulting in much
more data. As such, methods have been proposed which seeks to
combine the strengths of the two approaches.

Khadka and Tumer [9] propose a framework in which a GA
runs alongside an RL (DDPG) agent. The GA can feed the RL its
excess data by sending its trajectories to the RL agent’s replay buffer.
The RL agent can occasionally overwrite the weakest performing
member of the GA seeking to improve the overall average fitness of
the population. This leads to a cycle of the RL agent improving the
population resulting in better performance during training. These
results demonstrate an increase in performance of the compound
algorithm over the two halves when they act separately.

CEM-RL proposed by Pourchot and Sigaud [16] combines CEM
(a method similar to ES, but without directly approximating gradi-
ents) with TD3. CEM maintains a population mean and standard
deviation and samples policies for evaluation in a similar way to
ES. However only the top 50% are used in updating both of the
population parameters. In CEM-RL when the sampled policies have
been generated, half are evaluated directly while the other half

are updated following the TD3 actor update rule for𝑀 time steps,
before being evaluated. The algorithm then concludes similar to
CEM with the top 50% overall being selected and used to update
the distribution parameters.

AES-RL [10] builds on CEM-RL by introducing a multiple worker
asynchronous update framework allowing for the algorithm to
benefit from temporal speed-ups and achieving state of the art
results in some environments.

CHDRL [30] uses a hierarchical architecture to combine a global
off-policy RL agent, with a local on-policy RL agent and a local
EA (CEM). This builds on the reasoning that combining EA with
RL is good due to their opposing properties, one step further by
also trying to make use of the good sample efficiency properties of
off-policy RL while also benefiting from the stability properties of
on-policy RL.

While ES is not exactly like a finite-difference algorithm as men-
tioned earlier, it still closely resembles one. Shi et al. [21] combine
the gradient updates of a RL agent (DDPG) with those of a Finite-
Difference algorithm (Augmented Random Search) to update the
parameters of one single shared policy network.

ESAC [26] combines an EA with Soft Actor Critic [6] - a RL
algorithm which maximises both the cumulative reward of the
agents but also the entropy of the action distributions. This leads
to better exploration of the agent and thus improved results.

The increasing interest in Evolutionary Reinforcement Learning
has also lead to the development of platforms to aid researchers
and developers implement these algorithms [1].

3 METHODS
In this section we present our algorithm using a similar framework
to ERL[9]. We explain the intuition behind the multibuffer system in
this application and provide pseudocode for our proposed algorithm,
ES-TD3Buffers.

3.1 Multi-Buffers
The framework first presented in ERL allowed for the genetic al-
gorithm to send the trajectories its population of policies generate
during their evaluation phase to a single buffer. The RL agent then
appends its own exploratory experience and samples a batch uni-
formly from the buffer to update its parameters.

While GAs (where the elite survives from generation to genera-
tion) ensures the max score of the population will not decrease over
the iterations (in deterministic environments), no such guarantee is
observed with ES. Due to ES following a Monte Carlo gradient ap-
proximation, it is easy for it to "fall" from peaks of high fitness if the
learning rate is set too high, while being extremely data inefficient
if the learning rate is set too small. Pairing this with its abnormal
search strategy which allows for the mean of the Gaussian distribu-
tion to centre itself in areas of low fitness provided the surrounding
areas have high fitness, runs the risk of the over-production of poor
performing trajectories. Carelessly appending all such trajectories
to a single buffer runs the risk of pushing all "good" trajectories out
of the buffer and leaving the RL agent with nothing but undesirable
behaviours to learn from. Intuitively, without having any examples
of desirable behaviour, the agent runs the risk of learning the best
of the undesirable behaviours.



Hence we propose a simple multibuffer approach. By compart-
mentalising the replay buffer into "Good","Bad" and "Exploratory"
partitions, ES can append all its trajectories without the risk of
negatively impacting the RL agent. In this paper a very simple
threshold is used to determine whether a trajectory is considered
"Good" or "Bad", namely we track the highest episodic fitness and
use 90% of this number as the threshold. Since the RL agent gen-
erates exploratory trajectories on a timestep basis rather than one
complete episode at a time, we propose that these data points are
stores in the separate compartment as it is unknown if they can be
considered "Good" or "Bad" until the episode terminates. During
the learning step the RL agent samples a ratio from each buffer.

Buffer augmentation is a technique implemented in previous RL
studies [13], where a car was trained to safely overtake, a separate
buffer was utilised to store any crashes. As crashing during online
training is extremely dangerous and costly, the use of a second
buffer minimised the risk of catastrophic forgetting as the policy
improved by reminding it periodically of actions that lead to crashes
- penalised by heavily negative rewards. In another recent study,
Sadat Esmaeeli and Malek [18] improved on ERL’s results by using
an Elite buffer that was generated from the GA’s trajectories, but
applied data engineering techniques to allow only the most diverse
subset of good trajectories be used in the update step.

Figure 2: ES-TD3Buffers Framework
ES begins by generating offspring by sampling from its

distribution. The resulting offspring are evaluated with their
trajectories sent to the corresponding compartment of the buffer.
TD3 adds data to the noisy buffer when acting in the environment
and samples a batch from all three buffers to perform its update.
Periodically ES and TD3 are compared, with the mean of ES being

replaced by TD3 if TD3 is outperforming it.

Algorithm 1 ES-TD3Buffers
Initialise: TD3 actor 𝜋
Initialise: TD3 critics 𝑄0, 𝑄1
Initialise: TD3 target critics 𝑄0, 𝑄1
Initialise: ES mean ` and std 𝜎
Initialise: MultiBuffer: 𝛽𝐺 ,𝛽𝐵 ,𝛽𝜖 with sampling ratio (𝑎 : 𝑏 : 𝑐)
Set 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = −∞
for∞ do

for M frames do ⊲ perform TD3 iterations
Reset env 𝑠 = 𝑠0
𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑 = 0
while Episode not terminated do

𝑎 ← 𝜋 (𝑠) + 𝜖 ⊲ Generate exploratory action
take action 𝑎 in env, add (𝑠, 𝑎, 𝑠′, 𝑟 ) to 𝛽𝜖
𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑 +=𝑟
if All buffers contain K datapoints then

Sample batch from 𝛽𝐺 ,𝛽𝐵 ,𝛽𝜖 , under ratio(𝑎 : 𝑏 : 𝑐)
Update 𝜋 and 𝑄0, 𝑄1 using TD3 update rule
Periodically soft-update 𝑄0, 𝑄1

end if
end while
if 𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑

end if
end for
𝑇𝐷3← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝜋) [0]
for g Generations do ⊲ perform ES iterations

for 𝑖 in n do ⊲ For each ES offspring
Sample noise 𝑁𝑖 ∼ N(0, 𝜎2)
Generate offspring 𝑋𝑖 = ` + 𝑁𝑖

𝐹𝑖 , 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑋𝑖 )
if 𝐹𝑖 > 0.9 ∗𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

Send 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 to 𝛽𝐺
if 𝐹𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝐹𝑖
end if

else
Send trajectory to 𝛽𝐵

end if
end for
` ← 1

𝑛

∑𝑛
𝑖=1 𝐹𝑖𝑁𝑖

𝐸𝑆 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (`) [0]
end for
if 𝑇𝐷3 > 𝐸𝑆 then

` ← 𝜋

end if
end for
Return: `

3.2 Overwrite Rule
In ERL, the use of a GA allowed for the RL policy to be periodically
substituted for the lowest performing individual in the population.
Since ES can be understood as maintaining a population of size
one, namely the policy described by `, any attempt to insert the
RL policy will result in a greater loss of information than the GA



Algorithm 2 Evaluate
Require: Env, policy 𝜋

Reset Env 𝑠 ← 𝑠0
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ← 0
𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = []
while Env not terminated do

𝑎 ← 𝜋 (𝑠)
Take action 𝑎 in env, and observe reward 𝑟 and next state 𝑠′
Append (𝑠, 𝑎, 𝑠′, 𝑟 ) to 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑟
𝑠 ← 𝑠′

end while
Return:𝐹𝑖𝑡𝑛𝑒𝑠𝑠,𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦

setting. In this paper we utilise a simple overwrite rule such that
if the RL policy is performing better than the ES mean, then the
ES mean should be replaced with the RL policy parameters. In
practice this was done by averaging the episodic scores of RL and
ES over a number of iterations as these algorithms can occasionally
significantly decrease in performance between updates. Utilising
averages will mitigate such effects in the comparison.

After implementation we found that ES often settled on local
optima, the use of the overwrite rule can be interpreted as providing
a means for ES’s distribution to be re-centred over the search space
of parameters if the RL agent finds an area with higher performance.
This then will allow ES to generate offspring in this "fitter" region
of space and hence avoiding the replay buffers being filled with the
same low fitness trajectories for the remaining run time.

3.3 ES-TD3Buffers
To implement our algorithm, a TD3 actor 𝜋 , dual critics𝑄0,𝑄1 and
corresponding target critics are initialised. Here we use Neural Net-
works as function approximators for each. Additionally an isotropic
multivariate Gaussian distribution with mean ` and standard de-
viation 𝜎 is centred over the origin of the space of all parameters
of the actor network. Furthermore, a "MultiBuffer" consisting of 3
empty buffers is initialised.

Periods of TD3 updates are applied to 𝜋 , 𝑄0 and 𝑄1 (with soft
updates applied to the target critics). This is followed by a fixed
number of generations of sequential updates to the search distri-
bution parameter `, as described in Salimans et al. [19]. The two
aforementioned processes are then iterated until a stopping crite-
ria has been met (here fixed number of iterations). During each
generation of ES, a population of actors are evaluated, which gen-
erates trajectories of data. These data points are sorted into the
correct replay buffer ("Good" or "Bad") by comparing the reward
gathered over the entire episode to the current "threshold". The
simple "threshold" used in this paper is 90% of the highest recorded
ES episode to date. TD3 on the other hand, generates "noisy" data
when selecting actions during training by adding Gaussian noise to
the TD3 policy. As such we place this data in the third replay buffer.
After TD3 performs a "noisy" action in the environment, a batch of
data is drawn from the three buffers following a predefined ratio
(see table 2). Gradient ascent is performed on the parameters of
TD3s actor and critics as first described in Fujimoto et al. [5].

After every iteration a comparison is made between the TD3 ac-
tor and the policy defined by `. If the TD3 actor 𝜋 is outperforming
`, we re-centre the ES search distribution over 𝜋 . Pseudocode for
this can be found in Algorithm 1.

4 EXPERIMENTAL STUDY
In this section we evaluate the performance of the ES-TD3Buffers
algorithm. In particular we aim to answer the following questions:

• How does ES-TD3Buffers perform in control tasks compared
to pre-existing Evolutionary Reinforcement Learning algo-
rithms?
• What limitations does the algorithm have?

4.1 Environments
We used the well known OpenAI gym package which offers a
variety of continuous state and action space environments through
the MuJoCo physics simulator.

The majority of environments consist of controlling a multi-
jointed robot with the goal of performing a task such as running as
fast as possible or staying upright for as long as possible. The action
space consists of the set of all force vectors that can be applied to
the joints.

In our experiments we used "HalfCheetah", "Swimmer", "Ant"
and "Walker2d" as they are commonly analysed environments in
this area. Figure 3 illustrates these problem domains.

4.2 Architecture
In our implementation we used feed-forward Neural Networks to
represent all actors and critics. The actors consisted of 2 hidden
layers and 256 neurons per hidden layer. The number of output
nodes was equal to the dimension of the action space for that
particular environment, similarly the number of input neurons
was equal to the dimension of the state space. The networks used
hyperbolic tangent activation functions between all layers.

The critic consisted of 2x256 hidden layers, while the input
layer’s number of neurons was set to the sum of the state space
dimensionality plus the action space dimensionality. The output
layer consisted of a single neuron. The learning rate for the TD3
actor and critic was set to 0.0003, while the ES used a learning rate
of 0.001. For more details see Table 2.

4.3 Results
We compare our algorithm to several well known and commonly
used RL and EC control algorithms in Table 1 .

TD3 is reported as it is used as a building block within our ES-
TD3Buffers algorithm. CEM is a common alternative to ES which
follows a very similar update rule where we only use the fittest K
offspring to update our search distribution as opposed to using all
offspring as in ES. Finally ERL and CEM-RL are reported as two of
the most influential examples of Evolutionary guided reinforcement
learning.

The ES-TD3Buffers is ran for a total of 20 iterations, where
each iteration consists of 50 updates to the ES distribution mean,`,
100’000 TD3 timesteps and a chance for ` to be overwritten with 𝜋 .

All baselines shown are those reported in Lee et al. [10].



Figure 3: MuJoCo Environments
From left to right: Ant, HalfCheetah, Walker and Swimmer. The goal in all environments is for the creature to learn to move at a high

velocity.

Table 1: Scores achieved on MuJoCo Environments. Baselines As Reported in Lee et al. [10]

Environment Statistics TD3 CEM ERL CEM-RL ES-TD3Buffers

Mean 9630 2940 8684 10725 10793
HalfCheetah Std. 202 353 130 397 778

Median 9606 3045 8675 11539 10862
Mean 4027 487 3716 4251 4532

Ant Std. 403 33 673 251 999
Median 4587 506 4240 4310 4367
Mean 63 351 350 75 213

Swimmer Std. 9 9 8 11 119
Median 47 361 360 62 174
Mean 3808 928 2188 4711 2217

Walker Std. 339 50 240 155 1454
Median 3882 934 2267 4637 1764

In the interest of fairness and clarity, we note that ES-TD3Buffers
uses significantly more data than other reported algorithms. This
is primarily due to the fact that ES requires significantly more data
than some other EAs including GAs and CEM as to approximate the
gradients in high dimensional spaces we often require the number
of offspring used to be in the range of hundreds to thousands.

We claim the increase in samples should not falsify ES-TD3Buffers
claim as a competitive algorithm under the reasoning provided by
Salimans in his original paper [19]. Namely since ES does not re-
quire backpropagation to update the parameters of the distribution,
it can run in competitive time to other more data efficient gradient-
based algorithms. In the future works section, we discuss how
parallel computing could be leveraged to speed this up further.

For comparative purposes, we ran our algorithm such that the
TD3 half generates 2 million frames.

The results show ES-TD3Buffers performs comparably with the
state of the art - CEM-RL, across a variety of control tasks. Notably
ES-TD3Buffers is able to outperform CEM-RL on both HalfCheetah,
Ant and Swimmer, while performing comparatively to ERL on
Walker.

We note that while the average performance of our algorithm is
high, the standard deviation is also. We expect that this is caused

in part to the overwrite rule, which can take the small variance in
TD3 runs -especially at the early stages - and choose to make vastly
different overwrites to the ES actor, which will ultimately affect the
quality of data TD3 is trained on over the subsequent iterations. A
possible solution to this which we will investigate is to implement
a softer-update rule.

Furthermore, we note that we were unable to achieve the same
results with our version of TD3 on the Walker environment as
those reported in Lee et al. [10] and shown in Table 1. The Github
containing the TD3 source code, which we used, does state hyper-
parameters have been changed from the original implementation
and we expect that this could be the reasoning for why our ES-
TD3Buffers does not perform at least as well as the reported TD3
results on the Walker environment.

4.4 ES vs TD3 Learning Dynamics
In this section we examine how TD3 and ES work together in ES-
TD3Buffers to improve on the results they achieve individually
across the majority of MuJoCo environments. Figure 4 shows the
individual learning curves for both the ES and TD3 halves of our
algorithm, across the full 20 iterations on the HalfCheetah environ-
ment. An iteration consists of 50 generations of ES and 100’000 TD3



timesteps. The figure showcases the typical behaviour witnessed
across the other environments - Walker and Ant, however not
Swimmer for reasons we discuss later. Most notably Figure 4 allows
us to see how ES quickly converges to a local optimum by the end of
the 1st generation. In our experiments with ES we found it seldom
escaped these local optima for a wide choice of hyperparameters.
This is evident by the results of the closely related CEM in Table 1,
which performs poorly across HalfCheetah, Ant and Walker when
compared to the other algorithms. By allowing TD3 to overwrite
the mean ` of the Evolutionary Strategies search distribution with
its own actor 𝜋 , we see how ES gets lifted out of the local optima of
the early generations. Most interestingly is that while ES struggles
at the beginning of training on these environments, it usually can
be seen to exceed the converged TD3 performance over the last few
iterations (iterations 14 to 20 in Figure 4). In the case of Swimmer,
ES is capable of achieving much better results than TD3 when ran
individually, as seen again by the closely related CEM achieving
the best results on this environment in Table 1. Thus there are no
early overwrites performed by TD3 in that environment.

Figure 4: ES and TD3 HalfCheetah Learning Curves
ES and TD3 both run for 20 iterations of their own update rule,
and on completion of each iteration, a performance check is
carried out which can lead to ` being overwritten with 𝜋 . The
curves shown are smoothed with a moving window of size 10 to

provide a clearer visual aid

5 DISCUSSION
We have demonstrated that Evolutionary Strategies is a highly
effective evolutionary method for ERL algorithms. The results pre-
sented in this paper contribute to the existing literature in multiple
respects.
Firstly, as reported in the Results section, ES is significantly more
data inefficient than GAs. This is due to the fact that GAs can be
run effectively with population sizes of ≤ 10. On the contrary, us-
ing Neural Networks as function approximators in ES often causes
the dimensionality of the search space to be very large. As ES is
seeking to Monte Carlo approximate the gradient in a method simi-
lar to finite-differencing, the number of samples required in high
dimensional spaces should also be large.

In practice we found ES required the creation of 60 offspring per
generation to achieve good performance. Since antithetic sampling
is implemented, this is equivalent to 120 offspring in the population.
This already results in 10𝑥 more data being used than in the GA case.
Methods such as E-ERL [29] have been proposed which reduces
the data usage of ERL by only allowing the GA component of the
algorithm to run when the RL component has converged to a local
optimum. Such a technique could also reduce the data usage when
ES is used in place of a GA as per our algorithm.

Secondly, the overwrite rule in this paper can result in a huge
loss of information in the ES distribution. In the case of a genetic
algorithm, only a single member of the population is overwritten,
but due to the population being represented by the mean parameter
in ES the population can be represented as having a cardinality
of 1. Alternative overwrite rules have been explored such as that
of Jung et al. [8], which avoids convergence to the same areas of
the search space by implementing a "soft update". A soft update in
ES-TD3Buffers could push the ES actor towards the RL in parameter
space, without setting it directly equal to the RL actor.

Thirdly, the original ES paper [19] demonstrated experimentally
how efficiently ES can run across parallel workers. The parallel
version of ES reduced training times of some MuJoco problems
from 18 hours down to 10 minutes. As such, the excess of required
data could be justified. Due to the way in which our algorithm
requires trajectories to be shared between the ES offspring and the
RL agent, our algorithm cannot be parallelised in the exact way in
which Salimans et al. [19] did.

Hogwild! [17] is a platform which gained popularity in RL [15]
by allowing a central reinforcement learner to share its parameters
amongst several parallel workers, and in return asynchronously re-
ceive gradient updates it should perform on the central parameters
from each worker. A platform similar to this could be used in the
case of ES-TD3Buffers to store the RL agent and ES distributional
parameters on the central worker while allowing ES to evaluate its
offspring in parallel, communicating back the trajectories with the
gradients.

Lastly, NSRA-ES [3] changed the definition of fitness in ES from
purely episodic score to a linear combination of episodic score and
novelty with respect to some archive of previously encountered
behaviours. The coefficients of this linear combination could adap-
tively change weight to further emphasise optimising episodic score
when improvements were being made, while increasing the empha-
sis on finding new behaviours when the episodic scores stopped
improving. NSRA-ES would be a perfect substitute for ES in ES-
TD3Buffers and further encourage the discovery of more diverse
behaviours being added to the replay buffer.

6 CONCLUSION
In this paperwe have presented a new algorithm called ES-TD3Buffers.
The ES-TD3Buffers algorithm demonstrates that Evolutionary Strate-
gies is highly effective when combined with RL algorithms for
Evolutionary Reinforcement Learning. A portion of the success of
ES-TD3Buffers is due to its unique multi-buffer architecture. Our
algorithm performs comparably to the current state-of-the-art Evo-
lutionary Reinforcement Learning algorithm (CEM-RL) when tested



Table 2: Hyperparameters

Hyperparameter Description Value

𝜎 ES Standard Deviation 0.005
` ES Mean Vector Randomly initialised near 0

𝛼𝐸𝑆 ES Learning Rate 0.001
𝑛 Number of ES Offspring 60

𝛼𝑇𝐷3 TD3 Learning Rate 0.0003
𝜖 Exploratory Noise Added To TD3 Sampled from N(0 0.1)
𝜏 TD3 soft update hyperparameter 0.005
K Min Number of TD3 Exploratory Timesteps Before Learning Starts 25000

(a,b,c) Sampling Ratio of Good, Bad and Noisy DataPoints (0.5,0.2,0.3)
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Threshold for trajectory being appended to "good" buffer 0.9x(highest recorded fitness)

M Number of TD3 Frames Between ES Iterations 100000
g Number of ES Generations Between TD3 Iterations 50

on MuJoCo enviornments. ES-TD3Buffers provides a improvement
of 184% on Swimmer, a 6.6% improvement on Ant and provides
competitive performance on HalfCheetah when compared directly
to CEM-RL. Our algorithm also shows that ES with TD3 works
better in this compounded framework than they do separately, as
our algorithm outperforms TD3 on 3 of the 4 environments tested,
with reasoning given in section 4.3 for the failure to improve on
Walker. This is in thanks due to the RL agent helping ES escape
poor local optima early in the training, which ultimately leads to
better training data for the RL agent.
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