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ABSTRACT
The emergence of cooperation in decentralised multiagent systems

is challenging; naive implementations of learning algorithms typi-

cally fail to converge or converge to equilibria without cooperation.

Opponent modelling techniques, combined with Reinforcement

Learning have been successful in promoting cooperation, but face

challenges when other agents are plentiful or anonymous. We envi-

sion environments in which agents face a sequence of interactions

with different and heterogeneous agents. Inspired by models of Evo-

lutionary Game Theory, we introduce RL agents that forgo explicit

modelling of others. Instead, they augment their reward signal by

considering how to best respond to others assumed to be rational

against their own strategy. This technique not only scales well in

environments with many agents, but can also outperform opponent

modelling techniques across a range of cooperation games. Agents

that use the algorithm we propose can successfully maintain and

establish cooperation when playing against an ensemble of diverse

agents. This finding is robust across different kinds of games, and

can also be shown not to disadvantage agents in purely competitive

interactions. While cooperation in pairwise settings is foundational,

interactions across large groups of diverse agents are likely to be

the norm in future applications where cooperation is an emergent

property of agent design, rather than a design goal at the system

level. The algorithm we propose here is a simple and scalable step

in this direction.
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1 INTRODUCTION
Cooperation is an essential feature of human social interactions and

a desirable feature in multi-agent systems. Cooperation happens

when agents pay a cost in order to help others. Not cooperating is

typically a dominant strategy, but other equilibria may also exist

where agents can mutually benefit from learning to work together.

To be successful, artificial intelligent agents need the ability to

cooperate with humans [44] and other machines in diverse environ-

ments [11, 12, 28]. These environments can encompass interactions

that range from fully cooperative – where the incentives of all par-

ties are aligned – to fully competitive zero-sum games. Most games

of cooperation sit between these two extremes. Convergence to

undesirable equilibria is common [2, 16, 45].

In games of cooperation, self-interested agents need to be com-

petitive by avoiding exploitation, but they also need to have the abil-

ity to reap the gains to be had by working together whenever these
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synergies are available. This tension between individual rewards

and group outcomes is the defining feature of cooperation [42].

Reinforcement Learning (RL) has achieved unparalleled success

in fully cooperative and fully competitive multi-agent environ-

ments. However, the application of RL to general-sum games played

by many autonomous agents is not trivial. In Multi-agent Rein-

forcement Learning (MARL), agents learn simultaneously, mak-

ing all other agents a part of the focal agent’s environment. Non-

stationarity makes it difficult for naïve reward maximizing agents

to converge to equilibria even with simple reward structures [38].

In this paper we study decentralized cooperation. We aim for

environments in which agents face a series of interactions with

diverse opponents. Examples include self-driving cars, which would

resolve a number of interactions as part of a route. Or sequential

transactions on a market floor. While opponent modelling may

be successful when an agent learns by playing against another,

sequences of interactions with several diverse agents may render

this approach infeasible. We thus focus on formulating an intrinsic

reward function that scales well in this kind of environment, foster-

ing cooperation when there is an opportunity to do so, while being

resilient to play against agents that do not cooperate or do not use

the same intrinsic reward function.

MARL has been successful in addressing cooperation through op-

ponent modelling [16, 29] and centralized rewards [33]. Opponent

modelling attempts to identify the opponent’s strategy and actively

respond to it, making it easier to achieve cooperation. Centralis-

ing rewards refers to agents attempting to improve the collective

outcome instead of pursuing their individual rewards. While cen-

tralisation is a simple approach to achieve cooperation, the success

of centralised architectures relies on the ability to alter the objective

functions of individual agents. This assumption is hard to match in

a realistic population setting where exchanging rewards may not

be possible and communication is limited.

Opponent modelling on the other hand can work in fully de-

centralised environments, but its computational cost may have a

strong impact in large environments where it is necessary to keep

track of all others. Moreover, in settings with a diverse ensemble of

agents, individuals may only ever get to interact with a handful of

others and agents are often anonymous. This, in principle, can also

affect the observability necessary to successfully model opponents.

In this paper we introduce best-response guided agents (BRG);

which consider an intrinsic reward that measures their ability to

make a reward maximizing opponent exploitable in the future. This

is computed on the basis of information that the agent already has

about his own policy and the game itself. This intrinsic reward

allows them to successfully navigate the reward structure in co-

operation problems, even when the environment features large

https://alaworkshop2023.github.io/


ensembles of diverse agents. Our agents learn to adopt reciprocat-

ing strategies that reward cooperation and penalize defection, in

turn guiding other agents towards desirable equilibria.

Agents can either use their knowledge of the game or use self-

play [9, 10] to calculate this intrinsic reward. The proposed method

does not require specific knowledge or inferences over the strategies

of others, which makes it scalable in population games. In addition,

preserving the self-centred nature of individual agents makes them

less prone to exploitation while maintaining cooperation.

We test our approach on a range of different cooperation games.

We start with a standard Iterated Prisoner’s Dilemma (IPD) [3]; a

game with infinitely many equilibria [22] where standard agent-

centric RL algorithms are known to fail to converge to cooperation

[16, 18]. We then test our approach on a stochastic game [25], and a

standard board gamewhere cooperation and defection are no longer

elementary actions, but properties of policies [32]. We also verify

that the approach is robust even if the strategic interactions do

not present cooperation opportunities, including fully competitive

games.

The rest of this paper is organized as follows. In Section 2 we

review the relevant literature on MARL, cooperation and popula-

tion games. Section 3 provides some basic preliminaries, including

notation. Our method is introduced in Section 4, and is empirically

tested across different environments in Sections 5 – 8.Section 9

concludes the paper and discusses extensions and limitations.

2 RELATEDWORK
Interest in Cooperative AI has lead to diverse areas of research

such as communication [13, 20, 31], social preferences [38], and

collective decision making [7, 8, 39]. Most of this research focuses

on scenarios where agents have fully aligned interests [17, 19, 50].

Solutions arising in these cases are hard to apply when central

control of individual agents is not feasible.

Our work is focused on games of cooperation where individuals

are competing, but have incentives to reap higher benefits when

working together. A sizeable part of the literature here is inspired

by models of Evolutionary Game Theory (EGT). In these models,

a large group of agents is assumed to learn from their rewards

they obtain when playing a game successively with others in the

population. EGT focuses on predicting stable outcomes from simple

learning processes [43].

As a cooperation testbed we use the Iterated Prisoner’s dilemma

game [3]. This game is useful because it has many equilibria, in-

cluding efficient equilibria that sustain cooperation as well as those

where defection is prevalent [21]. This game has also been previ-

ously used in other studies of MARL, e.g. [16].

The key to achieving cooperation in this setting is reciprocity.

Both, Eccles et al. [15] and Lerer and Peysakhovich [32] use this

property to design algorithms that achieve better outcomes in

general-sum games with RL. These algorithms use a combination

of purely cooperative and purely competitive strategies to enforce

reciprocity. In contrast, our BRG agents do not explicitly prescribe

reciprocity to achieve cooperation but naturally tend to achieve it

following the intrinsic reward.

Another class of algorithms which includes WoLF [5], JAL, AWE-

SOME [10] and Lanctot et al. [30] use best response and self-play

in general-sum games. WoLF proposes using varying learning rates

to achieve convergence and provide proof for a subset of iterative

matrix games. JAL attempts to understand the value of joint actions

and requires maintaining beliefs about others strategies. Claus and

Boutilier [9] show that JAL does not always converge to the op-

timal equilibrium in situations with many equilibria. AWESOME

uses a pre-calculated Nash equilibrium of the one-shot game to

guarantee convergence. Hu and Wellman [29] introduce the Nash-

Q algorithm where agents use Nash equilibria calculations with

opponent modelling to reach higher payoffs in general-sum games.

Nash-Q operates with the assumption that opponents attempt to

reach the calculated equilibrium and convergence varies with the

type of Nash equilibrium chosen. These algorithms focus on conver-

gence more than on achieving Pareto-optimal equilibria or shaping

opponents behaviour for better future rewards.

Numerous other approaches to solving MDPs in multi-agent

settings involve accounting for others’ beliefs based on cognitive

hierarchies such as level-k solution concept [14, 23, 26]. These meth-

ods lead to more cognitively advanced agents capable of teaching

and learning from other agents [27, 51]. While our agents do not

explicitly account for distinct hierarchical levels, the concept of us-

ing information from best responses to naïve learners shares some

similarities with these approaches. Our agents are not modelling

others explicitly, but assuming they are responding reasonably to

the strategy of our learning agent.

MARL has also achieved success in zero-sum games [36, 46, 49].

Although our work does not focus on purely competitive settings or

include opponent modelling, the proactive approach of BRG agents

to exploit opponents, in the long run, relates to existing research

on opponent modelling and lookahead type algorithms [6, 35]. We

use these as inspiration to identify an intrinsic reward based on

best response and lookahead calculations. Most of these methods

assume a limited number of agents in a controlled environment. It

is therefore difficult to apply them to environments with ensembles

of diverse agents.

We assume agents are randomly matched for playing a game in

each round, drawn in from a population. This matching procedure

is common in EGT [43], and resembles a situation where agents are

part of a large ecology and move through a series of interactions

encoded as a game, which could itself consist of multiple steps,

such as in the case of IPD. The reward is taken to be the average

reward over a series of matches. Importantly, in this scenario agents

are anonymous, self-interested and there is no central control or

institution mediating interactions. The links between MARL and

EGT are further discussed by Tuyls and Nowé [48].

3 BACKGROUND
The basis for the IPD is the Prisoner’s Dilemma (PD). Here, agents

can choose from two actions: Cooperate or Defect; mutual coopera-

tion is rewarded with a payoff 𝑅, and mutual defection is punished

with a payoff 𝑃 ; a defector exploiting a cooperator will get a temp-

tation payoff 𝑇 , while a cooperator being exploited gets the sucker

payoff 𝑆 . This can be summarized using the payoff matrix

(
𝑅 𝑆
𝑇 𝑃

)
,

with 𝑇 > 𝑅 > 𝑃 > 𝑆 . Defection is the only dominant strategy and

it is not Pareto efficient.



When the PD is repeated for an (uncertain) number of rounds,

cooperation can be an equilibrium. In the IPD, the probability of

having a next round is the continuation probability, 𝛿 . The IPD has

infinitely many Nash equilibria if 𝛿 is large enough [37].

For example, a TFT (tit-for-tat) strategy – cooperate in the first

round and then follow the opponent’s last action – can form the ba-

sis of an equilibrium profile (TFT, TFT). A TFT’s threat of punishing
defection encourages the opponent to cooperate. A pair of ALLD
(always defect) strategies also constitutes an equilibrium of the re-

peated game. Some other widely discussed strategies include ALLC
(always cooperate) and DTFT (tit-for-tat starting with defection).

When playing IPD in a population, pairs of agents are matched

to play the game every round. In this paper, we use full matching

where each agent plays with all other agents once every round.

In population settings, the agents are usually kept anonymous

and they make strategically independent decisions that shape the

direction of the population in the long run.

Players’ strategies can use their memory of the 𝑁 past rounds

(memory-𝑁 ) to choose actions. Following Press and Dyson [40],

we restrict memory to one round. I.e., a player’s action depends

only on the actions played in the last round. This is discussed in

more detail in Sections 5 and 6.

When evaluating a best-response, we construct a single-agent

Markov Decision Process (MDP) from the repeated game. This MDP

𝐺 = ⟨S,A,T ,R, 𝛾⟩ where 𝑠 ∈ S is the state of the environment

defined using memory, 𝑎 ∈ A is the action taken by the focal agent,

R is the reward function giving the immediate rewards as given by

the payoff matrix, T is the state transition matrix, and 𝛾 ∈ (0, 1) is
the discount factor of future rewards. The probability of taking each

action in a given state is specified by the policy of an agent. The

state transition matrix uses the opponent policy’s action selection

probabilities, and therefore assumes a fixed opponent policy for the

duration of a game.

Our agents use Policy Gradient [47], and update their policy, 𝜋 ,

by performing gradient ascent on the expected discounted reward

with respect to the policy parameters, 𝜃 (𝑠, 𝑎). We use Softmax for

the policy parametrization, meaning,

𝜋𝜃 (𝑠, 𝑎) =
exp(𝜙 (𝑠, 𝑎) · 𝜃 )∑ |A |

𝑘=1
exp(𝜙 (𝑠, 𝑎𝑘 ) · 𝜃 )

, (1)

where 𝜙 (𝑠, 𝑎) is the feature vector related to a state, action pair.

To identify a best response against a fixed strategy we use 𝑄-

value iteration. The recursive Bellman equation [4] defines the

expected value of a state, 𝑉 (𝑠), and the expected value of taking

action 𝑎 in state 𝑠 and acting optimally from then onwards, 𝑄 (𝑠, 𝑎).
This quantity is calculated iteratively, starting from 𝑄0 (𝑠, 𝑎) = 0, as

𝑄𝑘+1 (𝑠, 𝑎) =
∑︁
𝑠′∈S
T (𝑠, 𝑎, 𝑠 ′)

[
R(𝑠, 𝑎, 𝑠 ′) + 𝛾 max

𝑎′∈A
𝑄𝑘 (𝑠 ′, 𝑎′)

]
∀𝑠, 𝑎

Once the state values converge, the maximum value action in a

given state 𝑠 is followed to identify the optimal action sequence.

4 METHOD
The naïve form of MARL considers opponents to be a part of the

agent’s environment and ignores the non-Markovian nature in

Algorithm 1 BRG agent 𝑖 , training on population game 𝐺

1: 𝜋𝑖 ← initial policy, ep← 0

2: while ep < limit do
3: exp← play_games(𝐺, 𝜋𝑖 , batch size) ⊲ exp = [ ⟨𝑠1, 𝑎1, 𝑟1 ⟩, ...]
4: IR[𝑠, 𝑎] ← 0, ∀𝑠, 𝑎
5: for 𝑠′ ∈ 𝑆, 𝑎′ ∈ 𝐴 do
6: 𝜋

𝑠′,𝑎′
𝑖
← fix_policy(𝜋𝑖 , 𝑠′, 𝑎′) ⊲ Equation (2)

7: 𝑄br, 𝜋𝑖 ← best_response(𝜋𝑠′,𝑎′
𝑖
)

8: 𝑄br
2

, ¯̄𝜋𝑖 ← best_response(𝜋𝑖 )
9: IR[𝑠′, 𝑎′] ← max𝑎

(
𝑄br

2 [𝑠′, 𝑎]
)

10: end for
11: exp

IR
← 𝜂𝑟 𝑗 + (1 − 𝜂)

IR[𝑠 𝑗 ,𝑎 𝑗 ]
𝑛

, ∀⟨𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ⟩ ∈ exp
12: 𝜋𝑖 ← policy_gradient(𝜋𝑖 , expIR)
13: ep← ep + 1

14: end while

multi-agent systems [24]. As a result, naïve learners lose the abil-

ity to proactively explore the combined action space, tending to

converge to undesirable equilibria in most multi-agent settings. If

agents can account for how their current policy affects their future

rewards they could possibly avoid this mishap.

BRG agents achieve this assuming a best responding naïve op-

ponent with perfect information. A measure of the impact of the

current policy on future rewards is then given by the reward of

the best counter-response to the best responding opponent. This

becomes the intrinsic reward of a BRG agent. Instead of only maxi-

mizing the current reward, BRG agents attempt to maximize the

current reward plus intrinsic reward. We discuss this in detail in

the following section.

4.1 Intrinsic reward calculation
The intrinsic reward calculation for the state-action pair, (𝑠 ′, 𝑎′),
under policy, 𝜋 , aims to measure how beneficial taking action 𝑎′

in state 𝑠 ′ at this point, will be in future episodes (see Algorithm:1,

lines 4-11). To compute the intrinsic reward for (𝑠 ′, 𝑎′), we assume

the focal agent deterministically picks action 𝑎′ in state 𝑠 ′, while
following the current policy 𝜋𝑖 in all other states. Thus, fix_policy

on line 6 computes a modified policy 𝜋
𝑠′,𝑎′

𝑖
for which

𝜋
𝑠′,𝑎′

𝑖
(𝑠, 𝑎) =


1, if 𝑠 = 𝑠 ′, 𝑎 = 𝑎′,

0, if 𝑠 = 𝑠 ′, 𝑎 ≠ 𝑎′,

𝜋𝑖 (𝑠, 𝑎), otherwise.

(2)

As the next step to identifying future rewards, we assume the

opponent will be best responding and calculate the best response,

𝜋𝑖 , against 𝜋
𝑠′,𝑎′

𝑖
using value iteration, Algorithm:1, line 7.

𝑄br, 𝜋𝑖 ← best_response(𝜋𝑠
′,𝑎′

𝑖
) (3)

Here, 𝑄br
refers to the 𝑄-values; the expected reward of state-

action pairs at convergence in value iteration.

Assuming that the opponent will eventually learn to follow this

best-response policy 𝜋𝑖 , we preempt their best-response by com-

puting the focal agent’s best response to this future policy on line 8

of Algorithm 1,

𝑄br
2

, ¯̄𝜋𝑖 ← best_response(𝜋𝑖 ) (4)



The value of each action when best responding is given by 𝑄br
2

.

The optimal preemptive action to follow in state 𝑠 ′ according to this
best-response could be different from the intended action 𝑎′, i.e.,
𝑎′ ≠ arg max𝑎 (𝑄br

2 [𝑠 ′, 𝑎]). Therefore, our intrinsic reward of the

state-action pair (𝑠 ′, 𝑎′) is given by the value of the optimal action

to take according to 𝑄br
2

,

IR[𝑠 ′, 𝑎′] ← max

𝑎

(
𝑄br

2

[𝑠 ′, 𝑎]
)

(5)

It is important to note here that generally, IR[𝑠 ′, 𝑎 𝑗 ] ≠ IR[𝑠 ′, 𝑎𝑘 ]
for 𝑗 ≠ 𝑘 , because the input policy 𝜋

𝑠′,𝑎′

𝑖
depends on 𝑎′.

The 𝑄-values capture the expected reward of taking an action

in a given state for an entire episode and are not on the same scale

as environmental rewards 𝑟 . Therefore we scale the 𝑄-value by

dividing it by the expected number of steps per episode, 𝑛. For

repeated games with continuation probability, 𝛿 , 𝑛 is expected to be

1/(1− 𝛿). Putting it all together, we obtain the new utility function,

U = 𝜂𝑟 + (1 − 𝜂)
IR[𝑠 𝑗 , 𝑎 𝑗 ]

𝑛
, (6)

where𝜂 ∈ [0, 1] specifies the extent to which the agent should focus
current and future rewards. See Algorithm:1, line 11. To achieve best

performance 𝜂 needs to be sufficiently low at the start of learning

to allow for adequate exploration.

To compute the intrinsic reward for all state-action pairs, we

need to compute 2|S| |A| best response value iteration calls, which

are themselves polynomial in the size of the single-player MDP

folding the target policy into transition function T .

4.2 Intrinsic reward example
To demonstrate the effect of the intrinsic reward on the behaviour

of the agents, we consider four example scenarios of BRG agents

playing IPD against naïve learners, shown in Table 1. Because the

BRG agent observes both the regular episode return 𝑟 and the intrin-

sic reward IR, it potentially has a gradient towards improvement in

either metric. We observe that, depending on the current policies

in the scenario, even when one of the signals is maximized we can

often still update the policy to improve on the other dimension.

In situations where the environment reward is already maxi-

mized (Scenarios 1 and 2), the intrinsic reward allows the agent

to make their policy more cooperative or robust; for example, in

scenario 1, an ALLD BRG agent facing an ALLD opponent cannot

improve their current reward, but improving the intrinsic reward

leads to a DTFT-like strategy, which makes cooperation possible

in the future. Similarly, in scenario 2 an ALLC BRG agent facing

a TFT opponent will discover its own vulnerability to defection

through best-responding to ALLC with ALLD. It can make itself less

susceptible to future entrants by maximizing the intrinsic reward

to reach a TFT-like policy.
The intrinsic reward is alreadymaximized (scenarios 3 and 4), the

current reward may still be improved to make itself less exploitable

to opponents. For example in scenario 3, the BRG agent is playing

TFT, matched in payoff by ALLC, which in turn leads to ALLD. As
such, the intrinsic reward suggests the opponent should become

fully exploitable (resulting in reward 𝑇 ). However, the agent can

still improve its current reward, by avoiding exploitation in the

opening move at 𝑠0.

Table 1: Scenario analysis for BRG agents. Here 𝑛 is the ex-
pected duration of the game.

Scenario BRG agent Opponent Return 𝑟 IR

1 ALLD ALLD 𝑃 · 𝑛 𝑃 · 𝑛
Expected behaviour : BRG agents cannot maximize 𝑟 but IR can

be improved to reach a maximum at DTFT. Maximizing IR makes

cooperation possible for new entrants/in the future.

2 ALLC TFT 𝑅 · 𝑛 𝑃 · 𝑛
Expected behaviour : BRG agents cannot maximize 𝑟 but IR can

be improved to reach a maximum at TFT. Maximizing IR makes

BRG agent less exploitable for a new entrant/in the future.

3 TFT ALLD 𝑆 + 𝑃 · (𝑛 − 1) 𝑇 · 𝑛
Expected behaviour : BRG agents cannot maximize IR but 𝑟 can

be improved to reach a maximum at DTFT. Maximizing 𝑟 makes

the BRG agent less exploitable for the current opponent.

4 TFT DTFT (𝑇 + 𝑆) · 𝑛
2

𝑇 · 𝑛
Expected behaviour: BRG agent cannot maximize IR but can

attempt to improve 𝑟 by cooperating more at state CD. This sce-
nario also highlights the need of assuming a learning opponent.

5 ITERATED PRISONER’S DILEMMA
Here we describe and perform experiments to evaluate the impact

our Intrinsic Reward has on convergence, stability and robustness

of efficient equilibria in the IPD.We design a number of experiments

to evaluate the following hypotheses about our BRG agents; they

• consistently achieve cooperation, even against naïve agents;

• require less computational resources than an explicit opponent
modelling strategy to do so; and

• are robust to exploitation by new entrants.

Each of these hypotheses is tested in a separate experiment, which

we describe in the following three subsections. Across all our IPD

experiments we use the same game structure, having payoffs 𝑅 = 1,

𝑆 = −6, 𝑇 = 0 and 𝑃 = −5 and a continuation probability 𝛿 = 0.95.

Convergence of BRG agents. To evaluate if BRG agents consistently

achieve cooperation, we conduct experiments where agents pair off

against each other as BRG versus BRG, BRG versus naïve, and naïve

versus naïve. Each pair is played to convergence multiple times

from 100 different starting policies, to evaluate if convergence is

robustly achieved. We sample the starting policies to choose the

cooperate action with probabilities sampled uniformly, such that

∀𝑖, 𝑠 : 𝜋𝑖 (𝑠) ∼ U(0.1, 0.9). We define the achievement of coopera-

tion by the tendency of the pair to converge to an average payoff
close to 𝑅, the payoff of cooperation.

Figure 1(a) presents the average learning trajectories of the three

different pairs. As expected, we observe that a pair of BRG agents

always achieves the reward for full cooperation, 𝑅. Even when

playing against a naïve agent, the average reward achieved is close

to full cooperation. However, we observe that the standard deviation

is larger than the all BRG agents case.

To investigate why, we look at the difference in payoff obtained

by BRG and naïve agents, in Figure 1(b). We observe that BRG



0 100 200 300

Episode/100

S

P

R

T

Av
er

ag
e 

ep
is

od
e 

re
w

ar
d

(a) Prisoner's dilemma

NA vs NA
BRG 
 vs NA

BRG vs
 BRG

0 100 200 300

Episode/100

S

P

R

T

Av
er

ag
e 

ep
is

od
e 

re
w

ar
d

(b) BRG vs naïve leaner

BRG NA

0.00 0.25 0.50 0.75 1.00

P(Coopertation|state)BRG

0

.2

.4

.6

.8

1

P(
C

oo
pe

rta
tio

n|
st

at
e)

N
L

(c) BRG vs naïve leaner

s0
CC
CD
DC
DD

0.1 0.25 0.5

P

T

S

R

Av
er

ag
e 

re
w

ar
d

(d)  experiments

BRG vs NA
BRG vs BRG

Figure 1: Performance of different types of agents in the prisoner’s dilemma. (a) Trajectories of average total episode rewards
of both players. (b) Individual reward trajectories of BRGs and naïve learners when playing against each other (yellow in
a), compared with full cooperation (black dashed line). (c) Scatter plot of the policies at the end of runs from panel b. (d)
Distributions of final average reward of episodes, as function of 𝜂. (NA: naïve agent. BRG: Best-response guided agent. 𝑥 vs 𝑦:
setting where agent type 𝑥 plays type 𝑦 one-on-one). Shaded area is one standard deviation above and below the average.
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Figure 2: Performance of Naïve, BRG, and OM agents as
the (homogeneous) population increases from 2 to 5 agents,
showing average of (a) step reward, (b) time per update step.

agents manages to exploit their naïve opponents to gain a reward

that’s slightly higher than 𝑅. BRG agents consistently achieves this

stable payoff without a collapse to the low-payoff equilibrium DD.
This stands in contrast with the experiments with a pair of naïve

learners, which typically collapse toDD except under the occasional

fortunate starting conditions.

We can further look into the characteristics of the resulting

policies by looking at the distribution of their action probabilities

in each state. Figure:1(c) shows BRG agents mostly initiate with

defection, but tend to reciprocate cooperation. They control the

naive agent to stay cooperative by threatening with a grim trigger-

like period of defection (much higher chance of defection in CD or

DD states where the opponent chose D action). Despite this, they

manage to guide the opponents to full cooperation (under a wide

range of 𝜂 hyper-parameter settings, see Figure 1(d)), by punishing

bad deeds from others (when in 𝐶𝐷) and cooperating when in 𝐷𝐶 .

Some level of cooperation is shown in 𝐷𝐷 , arguably to support

recovery from accidental defection.

We see this convergence behavior consistently, independent of

the particular hyperparameter setting used, in Figure 1(d). For these

and following experiments, we therefore keep the hyperparameters

constant. The learning rate is set to 0.01, with a batch size of 1000

and 𝜂 of 0.5.

Computational complexity of BRG agents. To evaluate the computa-

tional benefit BRG agents bring to population games, we measure

the wall-clock time it takes to perform one batch learning update

for the entire population as the population size increases, across 100

runs per size. We compare with the baseline of a naïve-agent popu-

lation, and with a recent successful opponent modelling strategy,

Learning with Opponent Learning Awareness (LOLA) with DiCE:

The infinitely differentiable Monte Carlo estimator [16, 18].

Figure 2 shows how the performance of the algorithms changes

when the population size is increased from pairs of agents to popu-

lations containing 5 agents. In every case, the agents play IPD with

complete matching, meaning that every agent plays batch-size num-

ber of games against every other agent in pairs. The top panel (a)

shows that the convergence characteristics of the algorithms are

unaffected by the size of the population; as previously observed,

BRG and LOLA agent populations consistently achieve cooperation,

while naïve agents tend to the low payoff equilibrium.

However, looking at the wall-clock time each batch takes to pro-

cess (Figure 2b), we see that opponent modelling adds a significant

runtime overhead, when compared against BRG agents. Further-

more, this overhead increases with population size, as agents have

to train, model and update policies separately for each opponent.

In contrast, the overhead of increasing population size on naive or

BRG agents is essentially constant, resulting in linear increase in

the number of agents. Although we did not use multi-threading

in our implementation, BRG agents could potentially update their

policies in parallel resulting in minimal computational overhead

compared with the baseline of naïve agents.

While it is not possible to characterise the run time of all possible
OM techniques, in the standard case where an opponent model is

kept for every agent the following intuition applies. The learning

agent has to keep 𝑛 − 1 copies of opponent models, which in the
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case of neural networks each individually is updated with batch

size 𝑏/𝑛. BRG keeps a single network, which is updated once with

batch size b. Assuming an equal number of parameters in the nets,

OM has to update 𝑛 times the number of variables per gradient

step.

In these experiments we use the PyTorch version of LOLA-

DiCE [1], for consistency with our own implementation. LOLA

agents use their default parameters, except for an increased batch

size of 1000, which we found was beneficial for stable convergence

to cooperation. In our experiments we only show LOLA with a

single lookahead, which not only takes the least amount of time

but also showed the best payoffs compared to 2 and 3 lookaheads.

In summary, BRG agents are successful in consistently achieving

cooperation for different population sizes when compared with

naive and OM approaches, as seen in Figure 2a.

Exploitability and adaptability of BRG agents. Finally, we evaluate
the robustness of BRG agents against hostile ALLD (starting) policies,
both from a cold start and against an invasion of new entrants. We

perform four separate tests,

(a) both BRG and naïve agents starting from ALLD,
(b) new entrant naïve learners starting from ALLD,
(c) BRG agents facing fixed ALLD strategy from 𝑡 = 0, and

(d) new entrant fixed ALLD strategies introduced halfway.

In all cases, the ALLD strategies choose the defect action with prob-

ability 0.9 across all states, to allow for limited exploration of co-

operation actions at all times. For these experiments, we consider

populations of 𝑛 = 20 agents at the start, with 10 additional new

entrants introduced halfway for conditions (b) and (d). Here we

also conduct each trial 100 times for statistical significance.

The learning trajectories in each of these four cases are shown in

their respective panel in Figure 3. We observe that in all situations,

self-aware agents are able to defend themselves against the hostile

strategies. Starting from ALLD strategies, self-aware agents manage
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Figure 4: Stochastic iterated prisoner’s dilemma [25].
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Figure 5: Performance of different types of agents in the
stochastic prisoner’s dilemma. (a)Trajectories of average total
episode rewards of both players. (b) The separate reward
trajectories of BRGs and naïve learners when playing against
each other.

to bring the naïve agents to cooperation (3a), without themselves

becoming susceptible to exploitation against fixed policies (3c).

Additionally, we observe that BRG are robust to hostile new

entrants. Hostile naïve learners (3b) are quickly converted to full

cooperation, while against fixed ALLD new entrants, the BRG agents

learn to resist exploitation successfully (3d). We observe that in

this setting, the ALLD agents initially manage to exploit the BRG

agents some of the time, but as learning proceeds, the BRG agents

gradually move to a full TFT strategy. This enables them to continue

to cooperate amongst themselves, without losing any payoff against

the fixed agents. With one-third of new fixed ALLD entrants, BRG
agents still achieve a reasonable level of cooperation. They learn

to cooperate only with other BRG agents securing themselves an

average reward around (2/3)𝑅 + (1/3)𝑃 .

6 STOCHASTIC PRISONER’S DILEMMA
We now inspect how BRG agents perform in a stochastic game. The

Stochastic Iterated Prisoner Dilemma [25, SIPD] models a situation

where synergistic cooperation results in increased overall social

welfare. Agents start off playing a low-payoff IPD with cooperation

benefit 𝑏1 and cooperation cost 𝑐 , and get the opportunity to play a

game with higher benefits 𝑏2 > 𝑏1 only if both agents cooperate.

This structure is illustrated in Figure 4. A single defection will move

the agents back to the state with a less rewarding game.

A SIPD agent with memory restricted to the last round observes

6 states; 𝑠0 − 1 for 𝑡 = 0 and 𝐶𝐶 − 1, 𝐶𝐶 − 2, 𝐶𝐷 − 1, 𝐷𝐶 − 1 and

𝐷𝐷 − 1 based on the combined actions of the players in the last

round and the game to be played next. 𝑠0 − 1 refers to the initial

state where previous actions are unknown and agents start with

playing game1 with lower rewards. Thus, the memory-one strategy

of an SIPD agent can be represented as 𝜋 = (𝜋 (C|s0-1), 𝜋 (C|CC-1),
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Figure 6: Coin game: socially optimal behaviour entails
agents coordinating on the colour to avoid losing points,
but picking up any coin is individually dominant.
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(b) Percentage of own colour coins collected.

𝜋 (C|CC-2), 𝜋 (C|CD-1), 𝜋 (C|DC-1), 𝜋 (C|DD-1)) where 𝜋 (C|s0-1) is

the probability of cooperation at state s0-1.

We setup additional experiments using SIPD to evaluate,

• the robustness of BRG agents in a stochastic games and,

• the performance improvement compare to naïve learners.

Across all experiments, we use the following payoffs: 𝑅1 = 𝑏1 −
𝑐 = 3, 𝑅2 = 𝑏2 − 𝑐 = 4, 𝑇1 = 𝑏1 = 4, 𝑇2 = 𝑏2 = 5, 𝑆 = −𝑐 =

−1 and 𝑃 = 0 with 20 round for an episode, shifting agents to

the better game with probability 0.95 upon mutual cooperation.

Successful convergence to cooperation should result in a payoff

close to 0.95𝑅2+0.05𝑅1 (≈ 𝑅2) as agents start each episode with the
low pay-off game. The experiments here follow the same structure

as those discussed before.

Figure 5(a) illustrates the reward trajectories of all three agent

mixtures. BRG pairs achieve full cooperationwith very low variance.

BRG agents playing against naïve learners show a similar path.

As opposed to non-stochastic IPD, the experiments result in

significantly lower variance as BRG agents no longer benefit from

attempts to exploit naïve learners through occasional defection.

Any such attempts are more likely to shift the game to the low

pay-off reward structure. Figure 5(b) further verify this with high

levels of cooperation.

For our experiments, we used a learning rate of 0.01 and a batch

size of 1000. 𝜂 is set to 0.25 when playing against BRG agents and

0.1 when playing against naïve learners – in a similar pattern to the

deterministic game the choice of 𝜂 does not have dramatic effects.

In summary, BRG agents perform well in the stochastic version

of the game: they establish and maintain cooperation.

7 COOPERATION IN COMPLEX POLICIES
In this section, we use the coin game to assess the behaviour of BRG

agents in environments where cooperation is not an elementary

action, but rather the property of a complext learnt policy [32]. This

is more likely to resemble cooperation in the real world.

Two agents (red and blue) are placed on a grid where (red and

blue) coins appear uniformly randomly. Agents receive a reward of

1 for picking up any coin, but lose 2 points if the opponent picks

a coin of the focal agent’s colour. A socially optimal behaviour

entails agents coordinating on the colour to avoid losing points,

but picking up any coin is always dominant. This results in naïve

learners greedily picking up coins making the average reward zero.

A standard situation in this game is depicted in Figure 6. In both

cases, a socially optimal result entails the agent closest to the coin

waiting for a coin of their colour.

The game is challenging, because unlike in normal-form games,

cooperation or defection is not a primitive action, but entails a

possibly complex policy involving navigation and combinations

of actions. It is the behaviour that results from policies that we

can qualify as cooperative or not. Due to this property, this game

has been used extensively in literature to gauge performance of

algorithms in complex cooperative settings [16, 32, 34].

Lerer and Peysakhovich [32] introduce the coin game to test

amTFT, an algorithm that allows agents to shift between cooper-

ative and safe policies. amTFT agents learn form pixels in a 5𝑥5

grid and develop policies with cooperative properties seen in TFT.
Foerster et al. [16] use a simpler 3𝑥3 grid to assess LOLA agents with
and without opponent policy information. They gain little success

with modelled opponents but achieve better results when perfect

opponent information is provided. Raileanu et al. [41] use a more

complex fully collaborative version, with coins of 3 different colours

in a 8𝑥8 grid to test another opponent modelling algorithm, SOM

(Self-other model). More recent work of Lu et al. [34] evaluate the

performance of Model Free Opponent Shaping (MFOS) in a 3𝑥3 grid

similar to [16] and report a significant performance improvement.

We simulate the coin game restricting the memory of agents

to each player’s last action. A state of the game is represented by

a vector (𝑑𝑓 , 𝑑𝑜 , 𝑙, ℎ𝑓 , ℎ𝑜 ), where 𝑑𝑓 is the distance from the focal

agent to the coin, 𝑑𝑜 is the distance from the opponent to the coin,

𝑙 is the coin colour, ℎ𝑓 is the focal agent’s cooperation history, and

ℎ𝑜 is the opponent’s cooperation history. To interpret each other’s

move, agents use the following heuristic: moving towards a coin of

the opponent’s colour is perceived as defection and moving away

from a coin of different colour is perceived as cooperation. Distance

to the coin is defined as the minimum number of steps required to

reach the coin, and cooperation history can be −1,1 or 0 , depending

on whether the agent has defected, cooperated or unknown (at the

beginning). This simplified version facilitates the intrinsic reward

calculation for the BRG agents. We use a 3𝑥3 grid where a new coin

is always generated 2 steps away from both agents at all times. We

expect the game to scale easily provided appropriate training.

For experiments we used policy gradient with learning rate 0.001,

batch size 20 and 100-step episodes. To ensure continuous explo-

ration we clip policies to 𝜋 (𝑠, 𝑎) ∈ (0.05, 0.95). Similar to IPD and

SIPD we use value iteration for intrinsic reward calculation, but

gradually anneal 𝜂 from 0→ 0.5. Setting 𝜂 = 0 boosts exploration
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Figure 8: Performance trajectories over average episode re-
turns as both players learn, in: (a) a collaborative game, and
(b) matching pennies zero-sum game (NA: naïve agent, BRG:
best-response guided agent).

to states with higher future rewards, slowly correcting back to

𝜂 = 0.5 to encourage exploitation.

Results are presented for episodes with 100 steps. We performed

experiments for scenarios, naïve against naïve, and BRG against

BRG, and repeated 20 times till convergence to generate Figure 7(a).

As expected, naïve learners converge to the greedy strategy where

each agent attempts to pick all coins receiving an average reward of

zero. BRG agents achieve a significant level of cooperation reaching

an average reward of 10 where the reward for full cooperation is

25. As a better measure of cooperation we use the ratio, collected

coins of own colour/total coins picked, Figure 7(b) , similar to [16].

Although a direct comparison of results is not meaningful with

prior work we can qualitatively compare the results for the mixed-

motive coin game. BRG agents achieve a collected coins of own

colour/total coins picked ratio of around 0.65 and an average re-

ward/reward for cooperation ratio of 0.4 which, as for our knowl-

edge, is considerably higher to values in literature .

8 GAMES OTHER THAN COOPERATION
The method proposed does not hamper performance in games other

than cooperation. In this section we evaluate the performance of

self-aware agents in fully cooperative and competitive settings.

For the cooperative setting, we used a symmetric game where

agents receive a reward of 5 for mutual cooperation, 1 for mutual

defection and 2 otherwise 8(a). For a competitive environment, we

used matching pennies 8(b). In both cases we can see SA agents

achieving the same equilibrium as naïve learners. This shows that

this algorithm can perform even in situations where many different

kinds of interactions arise.

9 CONCLUSIONS AND FUTUREWORK
Autonomous agents learning to maximise collective rewards will

need to be robust to both the temptation to cheat others, and the

risk of other agents attempting to exploit them. While such con-

cerns can be addressed by modelling opponents explicitly when

the population size is small and agents are individually identifiable,

this strategy becomes intractable when the population is large and

interactions are sparse. This situation is important. Consider the

case of a self-driving car interacting with others. The agent will face

a series of interactions, some of which have a cooperative structure,

and some of which are more coordination or pure competition. At

the same time, each interaction entails a new opponent. This kind of

setup can also arise for example in energy markets, where depend-

ing on changes in the environment the structure of incentives can

switch from cooperation-like, to fully competitive. All of this across

large groups of agents, making opponent modelling impractical.

We present an effective approach to circumvent this problem, by

augmenting an agent’s internal reward signal with a best-response

guided component derived from the best response to the agent’s

current policy, i.e., forgoing all information from opponents. We

demonstrate that this reward signal allows our agents to consis-

tently establish cooperation with naïve learning agents in an it-

erated prisoner’s dilemma and a stochastic game with prisoner’s

dilemma-like reward structure. The resulting policies are robust

to new entrants and shown to be significantly more scalable than

opponent modelling approaches as the population grows. These

results hold for a simple IPD game, but also for a Stochastic game

featuring different states.

In addition, the algorithm performs equally well as naïve learning

agents in fully competitive and cooperative environments. In games

with higher state spaces like the coin-game, BRG agents achieve

a significant level of cooperation compared to naïve learners that

converge to the greedy approach.

Future work should focus on applying our reward structure

to games and environments with more complex states. Examples

include more explicit scenarios, including for example self-driving

cars, where every intersection is akin to its own game but actions

play out temporally, and smart energy solutions like voluntary load

shedding to avoid blackouts and curtailment of solar panels under

voltage constraints. Such settings will also motivate methods other

than optimal best-response to calculate the intrinsic reward, instead

learning the signal in a separate self-play reinforcement loop.
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