
Discovery and Analysis of Rare High-Impact Failure Modes Using
Adversarial RL-Informed Sampling

Rory Lipkis
Intelligent Systems Division
NASA Ames Research Center

Moffett Field, CA
rory.lipkis@nasa.gov

Adrian Agogino
Intelligent Systems Division
NASA Ames Research Center

Moffett Field, CA
adrian.k.agogino@nasa.gov

ABSTRACT
Adaptive learning agents have tremendous potential to handle crit-
ical tasks currently performed by humans. Unfortunately, due to
their complexity, it can be difficult to verify that these learning
agents do not have critical failure modes. Standard verification and
validation methods often do not apply directly to learning agents
and Monte Carlo methods have difficulty covering even a small
fraction of the state space, especially in multiagent systems or over
long time horizons. To overcome this difficulty, we demonstrate an
adaptive stress-testing method based on reinforcement learning of
correlations that raise the probability of failure. This approach has
three key properties: (1) it is able to find rare failure modes with far
greater sample efficiency than Monte Carlo methods, (2) it can esti-
mate the true probability of a failure mode despite the inherent bias
in the learning method, and (3) it is capable of learning and resam-
pling compact representations of multimodal failure spaces. These
properties are important in practice as we need to find disparate
failure modes while accounting for their actual relevance. This is a
significant advantage over traditional adaptive stress testing meth-
ods that give abstract likelihoods of particular failure instances,
but cannot estimate the probability of a broader failure mode. We
test our algorithm on a simple problem from the aviation domain
where an autonomous aircraft lands in gusty wind conditions. The
results suggest that we can find failure modes with far fewer sam-
ples than the Monte Carlo approach and simultaneously estimate
the probability of failure.

KEYWORDS
Reinforcement learning, validation, statistical failure analysis

1 INTRODUCTION
Validation of complex stochastic systems is challenging. Methods
such as Monte Carlo sampling often fail, since for large complex
systems, a very small fraction of possible outcomes can be realis-
tically sampled. Indeed, even learning problems involving simple
sequences of actions can have enormous state spaces that com-
pound with each additional step. The problem becomes even worse
in the case of multiagent systems.

To address these issues, we propose to use a stochastic validation
process based on reinforcement learning. Validation of a system
under test (SUT) entails determining through testing and analysis
whether specified requirements are met. Traditionally, statistical

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 9-10, 2023, Online, https://ala2023.github.io/ . 2023.

validation (falsification) is performed by randomly sampling sys-
tem inputs and transitions, producing an estimate of the failure
likelihood. This Monte Carlo approach becomes computationally
infeasible when validating the performance of complex systems
over longer horizons. For example, in the case of collision avoid-
ance systems, a common target of verification efforts, system failure
might only result from the unlikely confluence of reckless operation
and bad luck over an extended period of time.

Detecting such complicated failure modes is a difficult task. Since
direct sampling explores regions in proportion to their likelihood
of occurrence, the majority of computational effort is expended
evaluating near-nominal system behavior. Any amount of model
error – neglecting a small interstep correlation, for instance – can
render a valid failure mode undiscoverable. In the event that a
failure event is detected, it may not recur sufficiently to characterize
the larger mode.

To mitigate this problem, it is common to manually bias the
search in a manner that takes advantage of domain knowledge to
expedite failure discovery. Though successful in eliciting higher
numbers of failures, this technique arguably jeopardizes the notion
of independence in verification and validation. If a prejudice towards
expected failure modes is built into the testing methodology, the
tester potentially forecloses on discovering unknown failure modes.
For safety-critical systems, these may represent the failures of most
concern.

Adversarial testing provides a compelling solution to this dilemma.
As AI systems becomemore widespread, much research has focused
on generating adversarial attacks against deep neural networks in
decision and perception subsystems. For instance, it has long been
observed that classifier accuracy can be vulnerable to small per-
turbations in the input, particularly when a model has not been
trained for robustness [3].

In recent years, many efforts have applied the idea of adversarial
testing to autonomous control systems in simulation. Intelligent
test case generation has been used to find static environment pa-
rameters that challenge self-driving vehicle algorithms [18, 20]. In
such cases, different combinations of weather conditions, sensor
faults, and pedestrians are explored until critical requirements are
violated. A more fine-grained testing strategy involves step-wise
perturbations. In particular, a controller that makes decisions based
on its surroundings can be pitted against an adversarial agent in
the same environment whose goal is to force violations [2, 19]. In
such experiments, the opponent’s disruptive ability must be limited
if the goal is to produce realistic failure cases, often achieved with
a handpicked heuristic.

https://ala2023.github.io/

In adaptive stress testing (AST), the adversarial agent is the
environment itself, which is taken to be a probabilistic model of
perturbations [12]. This induces a natural measure of likelihood that
is factored into the agent’s reward function to limit its adversarial
capacity. AST thus provides a framework for learning the likeliest
failures of an autonomous SUT with reinforcement learning. Infor-
mation about unsafe regions of the state space can be automatically
gathered and exploited, allowing failure modes to be discovered
more efficiently while maintaining a degree of objectivity. This
approach has proven useful for risk characterization and system
development, and has seen use in a variety of applications, includ-
ing aircraft collision avoidance [12, 13], autonomous driving [1, 7],
trajectory planning for small unmanned aircraft [11], autonomous
aircraft taxiing [5], and flight management [15].

In this paper, we present a framework that combines the like-
lihood awareness of AST with explicit policy learning and impor-
tance resampling, providing several advantages: (1) rare and dis-
parate failure modes can be efficiently discovered, (2) failure mode
probabilities can be estimated with low bias, and (3) learned failure
modes can be resampled, generating random failure cases with
minimal additional computation. These benefits allow for a much
more comprehensive analysis of failure events in complex systems.

2 ADAPTIVE STRESS TESTING
In the AST formulation, the SUT interacts with a stochastic envi-
ronment within a simulation. The simulation is summarized by a
state 𝑠 ∈ S; failure corresponds to some subset F ⊂ S. The envi-
ronment consists of a set of external disturbances collected into the
random variable 𝑋 ∈ X, where 𝑋 ∼ 𝑝 (𝑥). It is helpful to specify
some sort of distance-to-failure metric 𝑑 (𝑠) to guide the learning.
Recent research has demonstrated success in the absence of such
a heuristic, although this requires a significantly more specialized
solution technique [8].

As an example, in the aircraft collision avoidance setting, the
state might contain the positions and velocities of several aircraft
while the environment describes externalities (from the perspective
of the SUT) such as pilot controls, wind gusts, or sensor noise. A
sensible distance metric would be the minimum pairwise distance
between aircraft.

Rather than sampling values from the environment as in tra-
ditional sample-based testing, AST explicitly optimizes over the
disturbances to find the most likely failure events in the SUT. For
an arbitrary 𝑇 -step trajectory, the joint likelihood is given by

𝑝 (𝑠0, . . . , 𝑠𝑇) = 𝑝 (𝑠0)
𝑇∏
𝑡=1

𝑝 (𝑠𝑡 | 𝑠0, . . . , 𝑠𝑡−1)

= 𝑝 (𝑠0)
𝑇∏
𝑡=1

𝑝 (𝑠𝑡 | 𝑠𝑡−1)

= 𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡 | 𝑠𝑡) , (1)

where simplifications are due to the Markov property and the as-
sumption that all randomness is captured in the specification of the
environment (i.e., the SUT is either deterministic or derandomiz-
able). Thus, the high-level goal of AST is to solve the optimization

problem

max
𝑥0,...,𝑥𝑇 −1

𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡 | 𝑠𝑡)

subject to 𝑠𝑇 ∈ F (2)

for a fixed initialization 𝑠0. By considering failure states to be ab-
sorbing, one may account for failures that occur at any 𝑡 ≤ 𝑇 . Note
that this problem amounts to the maximization of a relatively sim-
ple objective function subject to an arbitrarily complex constraint.
The likely non-convexity (and even disconnectedness) of the fea-
sible region suggests that classical optimization methods may be
insufficient.

In AST, the problem is formulated quite naturally as a Markov
decision process (MDP), enabling the use of reinforcement learning
techniques. Figure 1 illustrates the typical AST architecture. At each
time step, the agent observes the state of the simulation, selects an
action (an environment instance), and receives a reward

𝑟 (𝑠, 𝑥) =

𝑟 𝑓 if 𝑠 ∈ F
−𝑑min if 𝑠 ∉ F , 𝑡 = 𝑇

log 𝑝 (𝑥 | 𝑠) if 𝑠 ∉ F , 𝑡 < 𝑇 ,

(3)

where 𝑑min is the closest distance to failure achieved across the
entire sequence of states in the reinforcement learning episode.
This formulation encourages solutions to prioritize likelier failures,
and amounts to a softened version of the original problem, since
the constraint is replaced by a penalty.

In the original description of AST, the MDP is solved with the
Monte Carlo tree search (MCTS) algorithm, which builds a tree of
actions and recursively updates its value estimates as it explores dif-
ferent paths [6]. This algorithm has the advantage of anonymizing
states: if an explicit representation of the environment is inacces-
sible but the random number generator of the simulation can be
seeded, learning can still be performed over the space of seed se-
quences; the state 𝑠𝑡 is effectively the history of seeds used up to
step 𝑡 .

2.1 Limitations
AST has historically achieved excellent results, as is clear from
its use by system designers and researchers across governmental,
industrial, and academic domains. However, the original framework
has several important limitations, in part due to its output consisting
of a set of failure traces (sequences of environment values that lead
to SUT failure).

2.1.1 Modality. AST can find failures much more quickly than a
basic Monte Carlo search. However, these failures are typically very
similar and ultimately converge on the mode (or a local maximum)
of the conditional probability distribution

𝑝F (𝑥) = 𝑝 (𝑥0, . . . , 𝑥𝑇−1 | 𝑠𝑇 ∈ F) . (4)

The diversity of the output depends on the extent to which the
particular learning algorithm explores while seeking the global
optimum, as well as its capacity for storing suboptimal solutions;
it is not a deliberate feature of the search. This is a result of the
formulation of the MDP and is asymptotically independent of the

Simulation

SUT Environment Einteraction Reinforcement
Learner

Reward
Function

disturbance 𝑥

reward
𝑟

state 𝑠

transition probability 𝑝 ,
failure event 𝑓 , distance 𝑑

Figure 1: Adaptive stress testing architecture. A generic reinforcement learning agent chooses instances of a stochastic
environment to elicit the likeliest possible failure in the system under test. The top-scoring failure traces are returned.

specific solution method: with enough training, the top 𝑘 solutions
will all be minor variations of the optimum.

2.1.2 Generality. The inherent unimodality of the framework mo-
tivates a paradigm of running AST multiple times in parallel from
different initializations with the hope of landing in a different fail-
ure mode – in essence, conducting a Monte Carlo search of the
initialization space. Since MCTS builds failures sequentially from
an initial root, its output does not apply at any other starting point.
This results in a large amount of computational waste, since infor-
mation about the search space is not shared between processes. As
a result, similar solutions cannot be learned in a manner that takes
advantage of that similarity. Automated categorization techniques
have shown potential in structuring a set of failure traces based on
feature similarity [10]. While useful for facilitating human interpre-
tation of AST results, this is a purely extrinsic approach that does
not refer to the underlying model. Recent research has explored re-
fining low-fidelity AST results with a backwards retraining scheme
[9]. This approach represents a form of generalization, but its focus
is on perfecting existing failure traces.

2.1.3 Statistics. AST cannot generate valid failure probabilities.
For any given failure, the corresponding joint probability density
value is calculable, but this is not a meaningful quantity in either
absolute or relative terms – worse, such values can be easily misin-
terpreted as indicating exceptionally low risk for a system, espe-
cially when reported without context. Because a point evaluation
of the probability density function does not reflect the shape of
the surrounding mode and the failures do not have a strongly re-
lational representation, the desire to account for probability mass
from arbitrarily similar failures is unrealizable.

3 FAILURE TRACE RESAMPLING
Calculating failure statistics from conventional Monte Carlo sam-
pling is straightforward, as the failure probability is estimated by
the ratio of failures to the total number of samples. However, this ap-
proach cannot be used directly with AST, which generates failures
in a deliberately nonuniform process. This can be rectified by using
its output as the basis of an importance sampling scheme, which
involves drawing from an alternative distribution and reweighting
samples to correct for their missized contribution to the estimate.

This approach makes it possible to calculate the likelihood of an
entire failure mode along with a confidence interval.

Consider the AST trace 𝑥∗ = [𝑥∗1 , 𝑥∗2 , . . . 𝑥∗𝑇] ∈ X𝑇 , a high-
likelihood environment sequence resulting in SUT failure1. Since
the failure region may be arbitrary complex, it is defined implicitly
by an indicator function 1F (𝑠) ∈ {0, 1}. For a fixed initialization
and environment sequence 𝑥 , one can alternatively consider the
indicator function 𝑓 (𝑥) = 1F (𝑠 (𝑥)), where 𝑠 (𝑥) is the state after
the application of 𝑥 . Let 𝑋 = [𝑋1, 𝑋2, . . . 𝑋𝑇] be the random trace
corresponding to a𝑇 -step “rollout” of the environment. Then, 𝑓 (𝑋)
is a binary random variable indicating whether or not a failure
occurs during the trace. The overall failure prevalence is given by

𝜇 = 𝑃 (𝑓 (𝑋) = 1) = E[𝑓 (𝑋)] =
∫
X𝑇

𝑓 (𝑥)𝑝 (𝑥) 𝑑𝑥 , (5)

where 𝑝 (𝑥) = ∏𝑇
𝑖=1 𝑝 (𝑥𝑖) denotes the joint probability distribution

of the trace and 𝑑𝑥 = 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑇 . In theory, this integral could
be approximated via Monte Carlo integration, in which

E[𝑓 (𝑋)] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥 (𝑖)) , (6)

where sample traces 𝑥 (𝑖) are drawn from𝑋 . However, when failures
are sufficiently rare, i.e., 𝜇 ≪ 1/𝑛, the estimate may be highly
inaccurate or simply zero.

Instead, let 𝑋 ∗ ∼ 𝑞(𝑥) be a surrogate random variable that pri-
oritizes 𝑥∗ in some way and satisfies the coverage condition that
𝑞(𝑥) > 0 wherever 𝑝 (𝑥) > 0 and 𝑓 (𝑥) = 1. The probability of
failure can then be rewritten as

𝜇 =

∫
X𝑇

𝑓 (𝑥) 𝑝 (𝑥)
𝑞(𝑥) 𝑞(𝑥) 𝑑𝑥 = E

[
𝑓 (𝑋 ∗) 𝑝 (𝑋

∗)
𝑞(𝑋 ∗)

]
. (7)

This expectation is performed over a distribution for which failures
are by construction less rare; it is realized by the estimator

𝜇 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥 (𝑖)) 𝑝 (𝑥
(𝑖))

𝑞(𝑥 (𝑖)) , (8)

1The time index has been shifted to simplify the notation.

where sample traces 𝑥 (𝑖) are now drawn from 𝑋 ∗, i.e., rolled out
from a surrogate environment. This quantity represents the proba-
bility of the failure mode in which 𝑥∗ lies.

Surrogate construction
The success of the transformation depends heavily on the choice
of surrogate. A desirable surrogate distribution emphasizes known
failures without sacrificing the variance of the original distribution.
The theoretically optimal surrogate 𝑞∗ (𝑥) is exactly proportional
to 𝑓 (𝑥)𝑝 (𝑥); this distribution minimizes the resulting estimation
variance but is difficult to obtain in a usable form [17].

However, using Bayes’ theorem, we can expand the conditional
probability distribution maximized by AST as

𝑝F (𝑥) = 𝑃 (𝑋 = 𝑥 | 𝑓 (𝑋) = 1)

= 𝑃 (𝑓 (𝑋) = 1 | 𝑋 = 𝑥) 𝑃 (𝑋 = 𝑥)
𝑃 (𝑓 (𝑋) = 1)

= 𝑓 (𝑥)𝑝 (𝑥)/𝜇 . (9)

Consequently, AST output converges to the statistical mode of a
distribution that is equal to𝑞∗ (𝑥) up to a constant of proportionality.
We can therefore use this output as the basis of an approximation
of the optimal surrogate.

Since 𝑝 (𝑥) may be arbitrarily complex or entirely blackboxed,
there are limited options for 𝑞(𝑥) to be constructed generally and
systematically. One reasonable method is to create a mixture model
between the original distribution and a shifted variant. If 𝑋 is con-
tinuous and unbounded, let 𝑋 ∗ = 𝑋 − E[𝑋] + 𝑥∗ be the random
variable with elementwise probability distribution

𝑞sh (𝑥𝑡) = 𝑝
(
𝑥𝑡 + E[𝑋𝑡] − 𝑥∗𝑡

)
. (10)

This is a version of the original distribution shifted to center around
the high-likelihood AST trace. It has the benefit of not requiring any
knowledge of the functional form of 𝑝 (𝑥), other than its expectation,
which may be omitted if necessary (or if known to be zero). To
sample 𝑋 ∗, one needs only to sample 𝑋 and add the appropriate
offset. If 𝑋 is bounded in some way, the shifting approach will not
work and a handpicked distribution such as a truncated normal
may be required to satisfy the coverage condition. Note that 𝑞sh (𝑥)
cannot approximate the shape of 𝑞∗ (𝑥), only match its mode.

The approach can be augmented by using a mixture model that
samples from either 𝑝 (𝑥) or 𝑞sh (𝑥) at each step of the rollout, re-
sulting in a distribution

𝑞(𝑥𝑡) = 𝜖𝑝 (𝑥𝑡) + (1 − 𝜖)𝑝
(
𝑥𝑡 + E[𝑋𝑡] − 𝑥∗𝑡

)
. (11)

This modification limits the estimation variance by bounding the
ratio in the integrand. The full scheme is described in Algorithm 1,
where E[𝑋] is assumed to be zero.

3.1 Error estimation
Naturally, estimation variance causes the estimate to differ from
the true failure probability. This effect can be greatly exacerbated
by the importance sampling scheme, which involves a potentially
divergent ratio of probability densities. Nonetheless, error can be
captured by probabilistic bounds.

Note that the estimator is theoretically unbiased, since its expec-
tation is equal to the true probability. If 𝜇 is the random variable

Algorithm 1 Importance resampling of a failure trace
Input: 𝑠0, 𝑥∗, 𝜖 , 𝑇 , 𝑁
Output: 𝜇
1: Σ← 0 ⊲ Accumulator
2: for 𝑖 = 1 to 𝑁 do
3: 𝑤 ← 1
4: 𝑠𝑡 ← 𝑠0 ⊲ Fixed initialization
5: for 𝑡 = 1 to 𝑇 do ⊲ Fixed horizon
6: 𝑥𝑡 ← Sample[𝑝 (𝑥)]
7: 𝛼 ← Sample[Unif(0, 1)]
8: if 𝜖 < 𝛼 then ⊲ Mixture model
9: 𝑥𝑡 ← 𝑥𝑡 + 𝑥∗𝑡
10: end if
11: 𝑤 ← 𝑤𝑝 (𝑥𝑡)/(𝜖𝑝 (𝑥𝑡) + (1 − 𝜖)𝑝 (𝑥𝑡 − 𝑥∗𝑡))
12: if not IsFailure(𝑠𝑡) then
13: 𝑠𝑡 ← Step(𝑠𝑡 , 𝑥𝑡)
14: end if
15: end for
16: if IsFailure(𝑠𝑡) then
17: Σ← Σ +𝑤
18: end if
19: end for
20: return Σ/𝑁 ⊲ Sample mean

corresponding to the estimated probability, then

E[𝜇] = E

[
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑋 (𝑖)) 𝑝 (𝑋
(𝑖))

𝑞(𝑋 (𝑖))

]
= E

[
𝑓 (𝑋 ∗) 𝑝 (𝑋

∗)
𝑞(𝑋 ∗)

]
= 𝜇 , (12)

using the linearity of expectations and the fact that 𝑋 (𝑖) ∼ 𝑋 ∗ for
all 𝑖 . A similar analysis yields the variance of the estimation

Var[𝜇] = Var
[
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑋 (𝑖)) 𝑝 (𝑋
(𝑖))

𝑞(𝑋 (𝑖))

]
=

1
𝑛
Var

[
𝑓 (𝑋 ∗) 𝑝 (𝑋

∗)
𝑞(𝑋 ∗)

]
, (13)

using the scaling and linearity properties of variance. This value
can itself be estimated as

𝜎2 =
1

𝑛(𝑛 − 1)
𝑛∑︁
𝑖=1

[
𝑓 (𝑥 (𝑖)) 𝑝 (𝑥

(𝑖))
𝑞(𝑥 (𝑖)) − 𝜇

]2
, (14)

where the𝑛−1 term is the standard bias correction. As the number of
samples drawn from 𝑋 ∗ increases, the distribution of the estimator
𝜇 slowly approaches a normal distribution centered on the true
failure probability 𝜇 with variance given by the above expression
[17]. This yields the standard concentration bound

𝑃 (|𝜇 − 𝜇 | ≥ 𝛿) ≈ 2
©«1 − Φ

©«
𝛿√︃
𝜎2

ª®®¬
ª®®¬ , (15)

equivalently expressed as the confidence interval

𝑃

(
|𝜇 − 𝜇 | ≥

√︃
𝜎2 Φ−1

(
1 − 𝜖

2

))
≈ 𝜖 . (16)

Since the importance sampling scheme may overly concentrate
within a mode of failure, the estimate tends to underestimate the
true probability. It may occasionally be useful to independently
upper-bound the overall failure probability with a standard Monte
Carlo computation, even if it fails to yield a single failure. Applying
a Chernoff bound to the sampling process yields

𝑃 (𝜇 − 𝜇mc ≥ 𝛿) ≤ 𝑒−𝑛𝛿
2/2 . (17)

Alternatively, an exact upper bound can be derived from Bayesian
principles. If the sampling yields 𝜇mc = 𝑛/𝑘 , then

𝑃 (𝜇 − 𝜇mc ≥ 𝛿) = 𝐼1−𝜇mc−𝛿
(
𝑛 − 𝑘 + 1

2 , 𝑘 + 1
2

)
, (18)

where 𝐼𝑥 (𝑎, 𝑏) is the regularized incomplete beta function. These
bounds can be factored into the calculation of a refined confidence
interval.

3.2 Multimodal failure trace resampling
Multiple failure traces generated by AST can be combined to form
a composite surrogate distribution. For a set of failure trajectories
{𝑥∗1 , 𝑥∗2 , . . . 𝑥∗𝑘 }, we can define

𝑞(𝑥) = 1
𝑘

𝑘∑︁
𝑖=1

𝑞𝑖 (𝑥) , (19)

where the 𝑞𝑖 (𝑥) are the corresponding surrogate distributions. An
issue arises when some failure traces are shorter than others. For
the interpretation to remain valid, shorter traces can be padded
randomly at sample time.

The distribution 𝑞(𝑥) should not be sampled directly, since this
would nullify the correlated nature of each failure mode. For ex-
ample, distributions centered about failure trajectories 𝑥∗+ = 1 and
𝑥∗− = −1 must be sampled separately to produce trajectories that
reach either failure mode; mixing them produces a zero-centered
distribution.

To rectify this issue, 𝑞(𝑥) must be sampled as a mixture model: a
distribution 𝑞𝑖 is selected uniformly at random, then sampled. The
full probability 𝑞(𝑥) is still used in the expectation estimate, as

𝜇 =
𝑘

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥 (𝑖)) 𝑝 (𝑥 (𝑖))∑𝑘
𝑗=1 𝑞 𝑗 (𝑥 (𝑖))

. (20)

4 FAILURE POLICIES
In the previous sections, it was assumed that all rollouts begin
from the same initial state. This restriction allows a tree-based
reinforcement learning algorithm such as MCTS to efficiently find
paths to failure. However, if the system is sufficiently transparent,
it is possible to formulate a much more powerful approach to the
AST problem. Instead of finding a set of paths to failure, we learn
an optimally adversarial policy 𝜋∗ that maps a state to the likeliest
environment value that induces a path to failure. Instead of an
initial state 𝑠0, we specify an initial distribution 𝑝0 (𝑠) with support
S0 ⊆ S, which is sampled at the start of each training episode.

To accommodate a more continuous setting, the AST reward
function is modified as

𝑟 (𝑠, 𝑥, 𝑠′) = log𝑝 (𝑥 | 𝑠) + Δ(𝑠, 𝑠′) + 𝑟 𝑓 · 1F (𝑠) , (21)
where 𝑟 𝑓 is a bonus for reaching failure and

Δ(𝑠, 𝑠′) ∝ 𝑑 (𝑠) − 𝑑 (𝑠′) (22)
is a reward shaping term to guide the learning agent more efficiently
towards failure. Since the term represents a conservative potential,
i.e., the gradient of a scalar function of the MDP state, its addition
to the reward function is policy-invariant [16]. A wide variety of
reinforcement learning algorithms can be used to solve this MDP.
Deep reinforcement learning offers an attractive option when state
and environment spaces are high-dimensional. Due to the ability of
neural networks to interpolate and generalize, this approach allows
failure paths to be approximated between samples.

Proposition 1. With sufficient training, the policy 𝜋∗ is weakly
guaranteed to capture all failure modes F𝑘 for which F𝑘 ∩ S0 is
non-empty.

Proof. Since the AST framework is only concerned with the
likeliest failures of a system, this bias is reflected in the failure
policy. As long as a failure region F𝑘 intersects with S0, there
must exist a region of initialization F𝑘 ⊆ S𝑘 ⊆ S0 from which
it is the likeliest failure. Since all such regions will be sampled as
𝑛 → ∞ and the optimal policy 𝜋∗ by construction produces the
most likely path to failure, then 𝜋∗ must represent all 𝐹𝑘 , provided
its underlying representation has sufficient expressive capacity2.
The universal approximation theorem establishes that any degree
of expressiveness can be achieved by a neural network of sufficient
width and depth; similar guarantees can be formulated for a table-
based policy. Furthermore, asymptotic convergence to the optimal
policy is provable for certain well-known algorithms [4, 21]. □

In practice, the policy representation and the training set are of
finite size, so optimality arguments are largely theoretical. However,
they underscore the fact that multiple independent failure modes
can be discovered and latently represented in a failure policy. This
opens the door to analyzing the learned policy, which can be used
for its generative properties: randomly sampling the initialization
space and rolling out 𝜋∗ efficiently produces a stream of unique
failure traces.

5 FAILURE POLICY RESAMPLING
The importance sampling scheme developed for traces can be ex-
tended naturally to failure policies. At each step, instead of consid-
ering perturbations around an optimal environment 𝑥∗𝑡 , we now
consider perturbations around 𝜋∗ (𝑠𝑡), the output of the optimal
policy. To formalize this difference, we consider a surrogate random
policy Π∗. This may be accomplished in same manner as before,
through shifting or manual selection. In the case of a shifted sur-
rogate, the policy evaluation Π∗ (𝑠) represents a distribution over
environments that behaves according to the mixture model

𝑞𝑠 (𝑥𝑡) = 𝜖𝑝 (𝑥𝑡) + (1 − 𝜖)𝑝
(
𝑥𝑡 + E[𝑋𝑡] − 𝜋∗ (𝑠)

)
. (23)

2It should be noted that even an optimal policy cannot necessarily capture all possible
failures. Each initialization is associated with a single failure region: if from point 𝑠0
the system admits failures F1 and F2 , the policy will capture only the likelier outcome.

Then, for a given initial state 𝑠0 and horizon𝑇 , the resulting rollout
is represented by the length-𝑇 random vector 𝑋 ∗𝑠0 with components

𝑋 ∗𝑠0,𝑡 = Π∗ (𝑠𝑡) , (24)

and the corresponding joint probability is

𝑞(𝑥∗𝑠0) =
𝑇∏
𝑡=1

𝑞(𝑥∗𝑠0,𝑡) . (25)

The expected probability of failure from an initial state is thus

𝜇 (𝑠0) = E𝑥

[
𝑓 (𝑋 ∗𝑠0)

𝑝 (𝑋 ∗𝑠0)
𝑞(𝑋 ∗𝑠0)

]
. (26)

Finally, the overall failure probability can be written as

𝜇 = E [𝜇 (𝑆0)] = E𝑠0,𝑥

[
𝑓 (𝑋 ∗𝑆0)

𝑝 (𝑋 ∗
𝑆0
)

𝑞(𝑋 ∗
𝑆0
)

]
, (27)

where the subscripts indicate a joint expectation over initialization
and environment spaces, respectively. The expectation is realized
with the estimate

𝜇 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓
(
𝑥
(𝑖)
𝑠0

) 𝑝 (
𝑥
(𝑖)
𝑠0

)
𝑞
(
𝑥
(𝑖)
𝑠0

) , (28)

where each initial state 𝑠0 is drawn from 𝑆0 and the subsequent
rollout 𝑥𝑠0 is drawn from 𝑋 ∗𝑠0 , applying the random policy step by
step. The principle of deferred decisions ensures that this sequential
sampling is equivalent to randomly sampling the entire trace at
once [14]. As in the previous section, it is important not to terminate
rollouts if an error occurs prematurely; the rollout should be padded
to the horizon with actions sampled from 𝑋 ∗𝑠0 . The full algorithm is
described in Algorithm 2, again assuming zero-mean environment
variables.

The variance analysis is unchanged in the policy setting, so the
confidence interval remains valid; however, the potential for high
sample variance grows significantly. For an general Monte Carlo
computation, the standard deviation of the estimate is equal to
𝜎/√𝑛, where 𝜎 is the true standard deviation of the quantity of
interest. Since we are now considering a product sample space, 𝜎
is greatly increased and it is important to increase the sample size
𝑛 accordingly. The estimate could also be performed with a double
loop, making explicit the need to cover both spaces sufficiently.
Luckily, as with most Monte Carlo schemes, the computation lends
itself naturally to multiprocessing optimizations.

Algorithm 2 Importance resampling of a failure policy
Input: 𝑆0, 𝜋∗, 𝜖 , 𝑇 , 𝑁
Output: 𝜇
1: Σ← 0 ⊲ Accumulator
2: for 𝑖 = 1 to 𝑁 do
3: 𝑤 ← 1
4: 𝑠𝑡 ← Sample[𝑆0] ⊲ Random initialization
5: for 𝑡 = 1 to 𝑇 do ⊲ Fixed horizon
6: 𝑥𝑡 ← Sample[𝑝 (𝑥)]
7: 𝑥∗𝑡 ← 𝜋∗ (𝑠𝑡) ⊲ Policy query
8: 𝛼 ← Sample[Unif(0, 1)]
9: if 𝜖 < 𝛼 then ⊲ Mixture model
10: 𝑥𝑡 ← 𝑥𝑡 + 𝑥∗𝑡
11: end if
12: 𝑤 ← 𝑤𝑝 (𝑥𝑡)/(𝜖𝑝 (𝑥𝑡) + (1 − 𝜖)𝑝 (𝑥𝑡 − 𝑥∗𝑡))
13: if not IsFailure(𝑠𝑡) then
14: 𝑠𝑡 ← Step(𝑠𝑡 , 𝑥𝑡)
15: end if
16: end for
17: if IsFailure(𝑠𝑡) then
18: Σ← Σ +𝑤
19: end if
20: end for
21: return Σ/𝑁 ⊲ Sample mean

6 EXPERIMENTAL RESULTS
To demonstrate the fundamental abilities of the extended frame-
work, we consider a simple toy problem in which a small aircraft
autonomously lands on a runway in gusty conditions. Episodes
are initialized with the aircraft approaching the runway and de-
viating slightly from the center-line: 𝑥1 = 0 and 𝑥2 ∼ N(0, 𝜎2𝑖).
Episodes terminate when the aircraft reaches the start of the run-
way (𝑥1 > 𝑎). The environment consists of stochastic cross-track
transitions Δ𝑥2 ∼ N(0, 𝜎2𝑡), and failure occurs if the aircraft lands
too far from the center-line, a region defined as

F = {𝑥1, 𝑥2 ∈ R | 𝑥1 > 𝑎, |𝑥2 | > 𝑏} . (29)

The system is visualized in Figure 2, where failure zones are shown
in hatched red and non-failure terminating zones in green. Though
the behavior of the SUT is completely trivial (it takes no actions
to stabilize the trajectory), the toy problem is useful as it exhibits
two distinct modes of failure with closed-form likelihoods. This
allows the basic correctness of the framework to be tested against
an analytical result: for the system shown in Figure 2, the overall
probability of failure is

𝜇 = 2
©«1 − Φ

©«
𝑏√︃

𝜎2
𝑖
+ ⌈𝑎/𝑣⌉𝜎2𝑡

ª®®¬
ª®®¬ ≈ 4.023 × 10−13 . (30)

The low probability rules out a direct Monte Carlo approach, since
each failure would on average require simulating over 1012 episodes;
a meaningful estimate of the probability would require at least
another order of magnitude.

Figure 2: 100 random trajectories of the example system, with
zero recorded failures. Parameters are 𝑎 = 10, 𝑏 = 1, 𝜎𝑖 = 0.1,
𝜎𝑡 = 0.03, and 𝑣 = 1; the effective horizon is 10. Although the
effect of the stochastic environment is visible, a sustained
disturbance would be required to elicit failure.

We solve the MDP with the soft actor-critic algorithm3, yielding
the policy shown in Figure 3. The policy and value networks both
contain two hidden layers of size 100. Training was performed for
2.5×104 episodes with a learning rate of 10−4. The failure policywas
then passed into the analysis stage, which resampled 107 additional
episodes with an 𝜖 = 0.05 mixture model. The estimated failure
probability is approximately 3.253 × 10−13, 19% less than the true
probability, with an estimate standard deviation of 1.378 × 10−13.

It should be noted that this standard deviation is quite high, given
the scale of the estimate. The ±3𝜎 neighborhood encompasses all
values from 0 to 7.386 × 10−13, implying that there is a nearly
50% chance that the failure probability is arbitrarily low. This is a
consequence of the fundamentally reciprocal nature of probability,
which is not accounted for by this form of estimation but is crucial
to how probabilities are used and understood. This issue is described
further in the next section; the most immediate solution would be
simply to increase the sample size.

7 DISCUSSION AND FUTUREWORK
We have derived and implemented two significant enhancements
to adaptive stress testing of complex systems: (1) the ability to learn
failure policies that generate the likeliest sequence of environments
leading to system failure from arbitrary initializations and (2) the
use of these policies in importance sampling to generate statistics
that show how likely these failure modes are to occur naturally.
These improvements make AST a more powerful tool for failure
generation and analysis.

At a high level, these benefits are due to the fact that the model
is dissociated during the learning phase (i.e., used descriptively
but not generatively) and reassociated in a separate analysis phase.
As a result of this separation, there are very few constraints on
the solving method: the analysis can proceed from any solution

3Experiments with the simpler Q-learning algorithm yielded a nearly identical solution;
these results are omitted for brevity.

Figure 3: 100 random evaluations of a failure policy learned
with SAC. Actions are instances of the environment thatmax-
imize likelihood while eliciting failure: these trajectories are
approximately representative of the likeliest failures. Note
that the policy encodes the location of both failure modes in
its “instructions” for selecting adversarial environments. In
the importance sampling scheme, this latent representation
is extracted and used to calculate failure statistics.

that produces a valid policy. The flexibility also extends to the
analysis, which can in theory admit any model. The importance
sampling scheme can just as easily be used to retroactively analyze
hypothetical changes to the SUT and environment models, but this
use case is not explored in depth here.

It should be noted, however, that the approach described in this
paper has a number of weaknesses. Although it has the potential to
assess failure mode probability far more efficiently than by random
sampling, the accuracy of the estimate is dependent on the suc-
cess of the learning phase. Partially learned solutions consistently
yield underestimates, which may only lower-bound the true failure
probability. As such, the learning process must be monitored for
convergence regardless of the subsequent sampling.

Additionally, importance sampling is, as a rule, extremely sen-
sitive to the choice of surrogate distribution; a poor selection can
yield unacceptably high variance. For failure modes spanning a
higher number of time steps, the optimal surrogate 𝑞∗ (𝑥) is harder
to systematically approximate with the shifting method. As a re-
sult, the quality of the estimation tends to suffer in long-horizon
analyses.

The range of the output can also pose challenges: though the
construction of the estimate ensures its non-negativity, it is not
strictly guaranteed to be a valid probability in the range [0, 1]. Since
estimated probabilities are typically very low, the variance estimate
may not accuracy represent the uncertainty due to the inherent
skew of the distribution; this effect can be seen in the previous
example.

These various issues can compound to produce a situation where
the upper confidence limit is inaccurate because of underestimation
caused by poor learning or surrogate selection, while the lower

confidence limit is not particularly useful because the spread en-
compasses too many orders of magnitude between the estimate
mean and zero. In such cases, the lower limit can be improved
with more sampling while the upper limit can be taken from the
alternative bounds described earlier.

Many of these issues may be resolved by forming the estimate
directly in log-probability space and sampling the optimal surrogate
exactly via Monte Carlo Markov chain (MCMC) methods. This is
the subject of ongoing research.

8 CONCLUSION
Adaptive stress testing can be an useful component in the vali-
dation of complex stochastic systems. We have addressed several
limitations of the standard adaptive stress testing formulation. By
generalizing AST results and learning failure policies, we gain the
ability to query the likeliest path to failure from any initial state.
This enables procedural generation of failures without additional
training, which may be useful for diagnostics or runtime assurance
tools.

We also show how the learned failure policy can form the basis of
an importance sampling scheme to calculate the probabilities of en-
tire failure modes along with probabilistic bounds. We demonstrate
that for rare failures, AST with resampling vastly outperforms the
standard Monte Carlo method and offers a degree of validative
independence that an expert-guided search might lack.

ACKNOWLEDGMENTS
This work is supported by the Systems-Wide Safety (SWS) Project
under the NASAAeronautics ResearchMission Directorate (ARMD)
Airspace Operations and Safety Program (AOSP).

REFERENCES
[1] Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J Kochenderfer.

2019. Adaptive stress testing with reward augmentation for autonomous vehicle
validation. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,
Auckland, 163–168.

[2] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart
Russell. 2019. Adversarial policies: attacking deep reinforcement learning. arXiv
preprint arXiv:1905.10615 (2019).

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[4] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a sto-
chastic actor. In International Conference on Machine Learning. PMLR, Stockholm,
1861–1870.

[5] Kyle D. Julian, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Validation of
Image-Based Neural Network Controllers Through Adaptive Stress Testing. In
IEEE International Conference on Intelligent Transportation Systems (ITSC). IEEE,
Rhodes, 1–7.

[6] Mykel J. Kochenderfer. 2015. Decision Making Under Uncertainty: Theory and
Application. MIT Press, Cambridge.

[7] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J. Kochenderfer. 2018. Adaptive
Stress Testing for Autonomous Vehicles. In IEEE Intelligent Vehicles Symposium
(IV). IEEE, Changshu, 1–7.

[8] Mark Koren and Mykel J Kochenderfer. 2020. Adaptive stress testing without
domain heuristics using go-explore. In 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE, Rhodes, 1–6.

[9] Mark Koren, Ahmed Nassar, and Mykel J Kochenderfer. 2021. Finding failures in
high-fidelity simulation using adaptive stress testing and the backward algorithm.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, Prague, 5944–5949.

[10] Ritchie Lee, Mykel J. Kochenderfer, Ole J. Mengshoel, and Joshua Silbermann.
2018. Interpretable Categorization of Heterogeneous Time Series Data. In Inter-
national Conference on Data Mining (SDM). SIAM, San Diego, 216–224.

[11] Ritchie Lee, Ole J. Mengshoel, Adrian K. Agogino, Dimitra Giannakopoulou, and
Mykel J. Kochenderfer. 2019. Adaptive Stress Testing of Trajectory Planning
Systems. In AIAA SciTech, Intelligent Systems Conference (IS). AIAA, San Diego,
1454.

[12] Ritchie Lee, Ole J. Mengshoel, Anshu Saksena, Ryan Gardner, Daniel Genin,
Joshua Silbermann, Michael Owen, and Mykel J. Kochenderfer. 2020. Adap-
tive Stress Testing: Finding Likely Failure Events with Reinforcement Learning.
Journal of Artificial Intelligence Research 69 (2020), 1165–1201.

[13] Rory Lipkis, Ritchie Lee, Joshua Silbermann, and Tyler Young. 2022. Adaptive
Stress Testing of Collision Avoidance Systems for Small UASs with Deep Rein-
forcement Learning. In AIAA SciTech 2022 Forum. AIAA, San Diego, 1854.

[14] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge
University Press, Cambridge.

[15] Robert J. Moss, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Adaptive Stress
Testing of Trajectory Predictions in Flight Management Systems. In IEEE/AIAA
Digital Avionics Systems Conference (DASC). IEEE, San Antonio, 1–10.

[16] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
Vol. 99. ICML, Bled, 278–287.

[17] Art B. Owen. 2013. Monte Carlo theory, methods and examples. Preprint, online.
[18] Shreyas Ramakrishna, Baiting Luo, Christopher B Kuhn, Gabor Karsai, and Ab-

hishek Dubey. 2022. ANTI-CARLA: An Adversarial Testing Framework for
Autonomous Vehicles in CARLA. In 25th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, Macau, 2620–2627.

[19] Aizaz Sharif and Dusica Marijan. 2021. Adversarial Deep Reinforcement Learning
for Trustworthy Autonomous Driving Policies. arXiv preprint arXiv:2112.11937
(2021).

[20] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.
2018. Simulation-based adversarial test generation for autonomous vehicles with
machine learning components. In 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, Changshu, 1555–1562.

[21] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
8, 3 (1992), 279–292.

	Abstract
	1 Introduction
	2 Adaptive stress testing
	2.1 Limitations

	3 Failure trace resampling
	3.1 Error estimation
	3.2 Multimodal failure trace resampling

	4 Failure policies
	5 Failure policy resampling
	6 Experimental results
	7 Discussion and future work
	8 Conclusion
	Acknowledgments
	References

