
Fair Deep Reinforcement Learning with
Generalized Gini Welfare Functions

Guanbao Yu

UM-SJTU Joint Institute, Shanghai

Jiao Tong University

Shanghai, China

gbyu66@sjtu.edu.cn

Umer Siddique

University of Texas

San Antonio, USA

umersiddique297@gmail.com

Paul Weng

UM-SJTU Joint Institute, Shanghai

Jiao Tong University

Shanghai, China

paul.weng@sjtu.edu.cn

ABSTRACT
Learning fair policies in reinforcement learning (RL) is important

when the RL agent’s actions may impact many users. In this paper,

we investigate a generalization of this problem where equity is still

desired, but some users may be entitled to preferential treatment.

We formalize this more sophisticated fair optimization problem in

deep RL, provide some theoretical discussion of its difficulties, and

explain how existing deep RL algorithms can be adapted to tackle

it. Our algorithmic innovations notably include a state-augmented

DQN-based method for learning stochastic policies, which also ap-

plies to the usual fair optimization setting without any preferential

treatment. We empirically validate our propositions and analyze

the experimental results on several application domains.

KEYWORDS
Deep reinforcement learning, Fair Optimization, Multi-objective

1 INTRODUCTION
In this paper, we consider adaptive learning agents based on deep

reinforcement learning (RL).When they are deployed in real applica-

tions (e.g., traffic lights, software-defined networking, data centers),

they may interact and impact many users. Hence, for these systems

to be accepted by end-users when they are in operation, fairness

needs to be taken into account in their design.

Fairness is rooted in the principle of “equal treatment of equals”,

which informally speaking means that individuals with similar

characteristics should be treated in a similar way. Previous work [10,

43] in learning fair policies in RL focuses on such notion with the

additional assumption that all individuals are equal, which may

not be suitable for all applications. For instance, it is customary

for service providers (in e.g., software-defined networking, data

centers) to provide different levels of QoS (quality of service) to

different user tiers. In such cases, although the principle of “equal

treatment of equals” is still a desired objective, higher-paying users

should arguably be entitled to higher priority or better services.

In our work, we relax the assumption of equal individuals and

consider the more general case where different users may have

different rights. Our goal is to investigate this more sophisticated

fairness problem in the context of deep RL, where efficient poli-

cies should be learned such that while some users may receive

preferential treatment, users with similar rights are fairly treated.

Contributions. We formalize this novel problem in deep RL as a

fair optimization problem (Section 4.2). We discuss the theoretical

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

aspects and difficulties of this problem (Section 4.3). Based on this

discussion, we propose several adaptations of deep RL algorithms

to solve this problem (Section 5). Notably, we design a novel state-

augmented DQN-based method for learning fair stochastic policies.

Finally, we experimentally validate our propositions (Section 6).

2 RELATEDWORK
Due to the realization of the tremendous impact that artificial in-

telligence (AI) and machine techniques can have on our lives, fair-

ness has recently become an important and active research direc-

tion [1, 7, 12, 16, 28, 41, 44, 49, 51, 52]. Although various definitions

of fairness have been considered in AI, e.g., proportionality [3, 47]

or envy-freeness [11] and its multiple variants (e.g., [4, 9]), the

majority of this literature in machine learning focuses on the im-

partiality aspect of fairness: “equal treatment of equals". Proposed

methods in this direction typically rely on a constraint-based or

penalty-based formulation in order to control bias at the individual

or group level. In contrast, our work is based on studies in dis-

tributive justice [5, 26, 38]. We aim at optimizing a social welfare

function that encodes impartiality, but also equity and efficiency

(see Section 3.4 for more details). This principled approach has also

been recently advocated in several recent papers [14, 18, 46, 50]

and applied in various machine learning tasks, such as sequential

decision-making, which we discuss below, but also ranking [15] for

instance.

In mathematical optimization, such an approach is called fair op-

timization [33]. Many continuous and combinatorial optimization

problems in various application domains [2, 31, 32, 34, 42] have

been extended to optimize for fairness. In this direction, the closest

work [34] regards fair optimization in Markov decision processes.

However, the methods proposed in this direction typically assume

that the model is known and therefore, they do not require learning.

Fairness in RL starts to receive more attention. Different direc-

tions have been studied, e.g., fairness constraint to reduce discrim-

ination [49], fairness with respect to state visitation [17, 19], the

usual case of fairness with respect to agents [20], or the more gen-

eral case of fairness with respect to users [10, 23, 43, 53]. This last

direction can be understood as an extension of fair optimization to

(deep) RL. Our work follows this principled approach, but inves-

tigates a more general setting. While previous work assumes all

users to be equal, we relax this assumption.

State augmentation (used in our DQN variants) has been ex-

ploited in various previous work, e.g., in MDPs [21] or more re-

cently in safe RL [45], risk-sensitive RL [13], RL with delays [30],

and partially-observable path planning [29]. However, to the best

https://alaworkshop2023.github.io/

of our knowledge, this technique has not been applied in fair opti-

mization. Moreover, our technique to learn stochastic policies in

DQN is also novel.

3 BACKGROUND
We first recall the Markov decision process (MDP) model and RL,

then present the multi-objective extension of MDP. We also provide

an overview of several deep RL algorithms. Finally, we review the

social welfare functions (SWFs) that we used to encode fairness in

deep RL.

Notations. Both the matrices and vectors are written in bold. For

any vector 𝒖 ∈ R𝐷 , 𝒖↑ corresponds to the vector with the compo-

nents of vector 𝒖 sorted in an increasing order (i.e., 𝒖↑
1
≤ . . . ≤ 𝒖↑

𝐷
).

For any integer 𝐷 > 0, the 𝐷 − 1 simplex is denoted by Δ𝐷 = {𝒘 ∈
R𝐷 | ∑𝑖 𝒘𝑖 = 1 and 𝒘𝑖 ≥ 0, 𝑖 = 1, . . . , 𝐷}. We denote S𝐷 the sym-

metric group of degree 𝐷 (i.e., set of permutations over {1, . . . , 𝐷}).
For any permutation 𝜎 ∈ S𝐷 and vector 𝒖 ∈ R𝐷 , vector 𝒖𝜎 denotes

(𝒖𝜎 (1) , . . ., 𝒖𝜎 (𝐷)).

3.1 Markov Decision Process and RL
A Markov Decision Process (MDP) [37] model is characterized by

its set of states S, set of actions A, a transition model 𝑃 which

specifies the probability of reaching next state 𝑠′ by taking action 𝑎

in state 𝑠 , and a reward function 𝑅 indicating the immediate reward

of performing action 𝑎 in state 𝑠 . This model also includes the

discount factor 𝛾 ∈ [0, 1), and the probability distribution over the

initial states 𝑑0.

A policy 𝜋 in an MDP model provides guidance on which action

to take in any state 𝑠 . It can be deterministic if 𝜋 (𝑠) = 𝑎 or stochastic

if 𝜋 (𝑎 | 𝑠) = 𝑃𝑟 (𝑎 | 𝑠). Note that deterministic policies are special

cases of stochastic ones. For a policy 𝜋 , we denote 𝑃𝜋 (resp. 𝑟𝜋)

the transition (resp. reward) function induced by 𝜋 , i.e., 𝑃𝜋 (𝑠, 𝑠′) =
𝑃 (𝑠, 𝜋 (𝑠), 𝑠′) (resp. 𝑟𝜋 (𝑠) = 𝑟𝜋 (𝑠, 𝜋 (𝑠))). The usual goal in MDP is

to learn a policy 𝜋 that maximizes the expected discounted reward,

i.e., E
[∑∞

𝑡=1
𝛾𝑡−1𝑟𝑡

]
.

Formally, the (state) value function 𝑣𝜋 : S → R of a policy 𝜋

from an initial state 𝑠 is defined by:

𝑣𝜋 (𝑠) = E𝑃,𝜋

[∞∑︁
𝑡=1

𝛾𝑡−1𝑟𝑡 | 𝑠
]
, (1)

where E𝑃,𝜋 is the expectation taken with respect to transition func-

tion 𝑃 and policy 𝜋 , and 𝑟𝑡 is the random variable that represents

the reward obtained at time step 𝑡 . The value function 𝑣𝜋 provides

the expected discounted reward one can get by following the corre-

sponding policy 𝜋 from state 𝑠 . Similarly, the action-value function
𝑄𝜋 : S × A → R is given by:

𝑄𝜋 (𝑠, 𝑎) = E𝑃,𝜋

[∞∑︁
𝑡=1

𝛾𝑡−1𝑟𝑡 | 𝑠, 𝑎
]
. (2)

Formally, both the MDP and RL attempt to address the following

optimization problem: argmax𝜋

∑
𝑠∈S 𝑑0 (𝑠)𝑣𝜋 (𝑠), where 𝑑0 is the

initial state distribution and 𝑣𝜋 is the value function approximated

by following the current policy 𝜋 . A solution to this problem is an

optimal policy, which is denoted by 𝜋∗.

3.2 Multiobjective Markov Decision Process
We formulate the novel fair optimization problem as a multiob-

jective MDP (MOMDP), where each objective corresponds to the

individual utility of a user in our setting. Therefore, the rewards in

MOMDPs are vectors instead of scalars. The reward function of a

MOMDP can be formalized as 𝒓 (𝑠, 𝑎) ∈ R𝐷 where 𝐷 is the number

of objectives (users).

All the previous definitions in MDP can be naturally extended

to MOMDP. For example, the value function in (1) now becomes:

𝒗𝜋 (𝑠) = E𝑃,𝜋

[∞∑︁
𝑡=1

𝛾𝑡−1𝒓𝑡 | 𝑠
]
, (3)

where 𝒓𝑡 ∈ R𝐷 is the vector reward obtained at time step 𝑡 and all

the operations (addition, product) are component-wise.

3.3 Deep RL
Deep RL is the study of RL using neural networks as function

approximators. They are needed to tackle large-scale RL problems,

where the state and/or action spaces become large or continuous.

With parametric function approximation such as neural networks,

a function 𝑓 is approximated by
ˆ𝑓𝜽 where 𝜽 denotes the parameters

of the parametric function, which can be learned during training.

In RL, both value functions or policies can be approximated.

Deep Q-Network (DQN) [25] is an example of deep RL algorithm

where the optimal 𝑄 function is approximated by a neural network

with parameter 𝜽 . This Q-network takes a state 𝑠 as input and out-

puts an estimated �̂�𝜽 (𝑠, 𝑎) for all actions. It is trained to minimize

the following L2 loss for a sampled transition (𝑠, 𝑎, 𝑟, 𝑠′):

(𝑟 + 𝛾�̂�𝜽 ′ (𝑠′, 𝑎∗) − �̂�𝜽 (𝑠, 𝑎))2

where 𝑎∗ = argmax𝑎′∈A
(
𝑟 + 𝛾�̂�𝜽 ′ (𝑠′, 𝑎′)

)
and 𝜽 ′ represents the

parameters of the target Q-network which promotes more stable

training. The transitions (𝑠, 𝑎, 𝑟, 𝑠′) are sampled from a replay buffer

storing experiences generated from online interactions with the

environment. The term 𝑟 + 𝛾�̂�𝜽 ′ (𝑠′, 𝑎∗) is called target Q-value.
Policy gradient methods constitute another approach for solving

RL problems. In contrast to value-based methods like DQN, policy

gradient methods explicitly optimize the desired objective function

in a parameterized policy space, with the goal of finding a policy

𝜋𝜽 (𝑎 | 𝑠) (𝜽 being the policy parameters) that maximizes the ex-

pected sum of reward. In policy gradient methods, the objective

function 𝐽 (𝜽) can be formally defined as:

𝐽 (𝜽) =
∑︁
𝑠∈𝑆

𝑑𝜋𝜽 (𝑠)𝑉𝜋𝜽 (𝑠) =
∑︁
𝑠∈𝑆

𝑑𝜋𝜽 (𝑠)
∑︁
𝑎∈𝐴

𝜋𝜽 (𝑎 | 𝑠)𝑄𝜋𝜽 (𝑠, 𝑎), (4)

where 𝑑𝜋𝜽 (𝑠) is the stationary state distribution under policy 𝜋𝜽 .

Parameter 𝜽 can be learned using gradient ascent by following

the update direction given by the Policy Gradient Theorem [48]:

∇𝜽 𝐽 (𝜽) = E𝑠∼𝒅𝜋 ,𝑎∼𝜋𝜽 (· |𝑠) [𝑄𝜋𝜽 (𝑠, 𝑎)∇𝜽 log 𝜋𝜽 (𝑎 |𝑠)] . (5)

where the Q-value function𝑄𝜋𝜽 (𝑠, 𝑎) can be estimated usingMonte-

Carlo or temporal difference methods.

3.4 Fairness
In this paper, an optimal fair solution is required to satisfy three

properties [43]: efficiency, equity, and impartiality. The efficiency

property states that a solution should be Pareto-optimal. This is

a natural property because selecting a Pareto-dominated solution

would be irrational. The equity property is based on the Pigou-
Dalton principle [27], which states that transferring utility from

a better-off user to a worse-off user results in a fairer solution.

This principle establishes the foundation of fairness by distributing

equal wealth among different users, which is a critical component

in our definition of fairness. The impartiality property corresponds

to the “equal treatment of equals” principle. This principle served as
the foundation for previous works that assume all users are equal.

However, in our work, we relax this assumption and consider a

more general case in which some users may be given preference

over others.

We rely on social welfare functions (SWFs) to formalize these

three properties as an objective function. An SWF evaluates how

good a solution is for all users by aggregating all users’ utilities. In

this paper, we only discuss those SWFs that satisfy our notion of

fairness and refer to them as fair SWFs. One notable group of fair

SWFs in the literature is the generalized Gini social welfare function
(GGF), which is defined as follows:

𝐺𝐺𝐹𝒘 (𝒖) =
𝐷∑︁
𝑖=1

𝒘𝑖𝒖
↑
𝑖
, (6)

where 𝒖 ∈ R𝐷 and𝒘 ∈ Δ𝐷 is a fixed positive weight vector whose

components are strictly decreasing (i.e., 𝒘1 > . . . > 𝒘𝐷 > 0).

Intuitively, by assigning larger weights on smaller utility values,

GGF will yield larger scores when the utility distribution becomes

more balanced while keeping the total utility constant.

GGF satisfies all three of the above-mentioned properties. Since

GGF is a strictly increasing function with positive weights, it im-

plies that it is monotonic in terms of Pareto-dominance and thus

meets the efficiency property. GGF also satisfies the equity prop-

erty because it is a strictly Schur-concave function, which implies

that it is monotonic with respect to Pigou-Dalton transfers. Finally,

because the components of GGF are symmetric (i.e., independent of

the order of their arguments), it satisfies the impartiality property.

Despite the fact that GGF is a simple yet effective SWF for en-

coding fairness, it has some limitations. For instance, the symmetry

of GGF entails that it only applies to cases where all users are equal.

However, in many real-world applications, some objectives/users

may be preferred. For instance, as discussed in the introduction,

the service providers controlled by autonomous systems have to

take different user tiers into account. For such systems, a fair SWF

that can encode preferences over objectives is required, which we

will explain in the following section.

4 FAIR OPTIMIZATION WITH PREFERENTIAL
TREATMENT

In this section, we first extend GGF to a generalized fair SWF that

can encode preferential treatment, which we call generalized GGF
(G

3
F). Based on G

3
F, we then formulate this novel fair optimization

problem in deep RL. Finally, we explain the difficulties of solving

the above problem and present some theoretical discussion.

0 1/6 2/6 3/6 4/6 5/6 1
0

1/12
1/6

2/6

1/2

3/4

1

Figure 1: Linear interpolation graph for different 𝑥 values

4.1 G
3
F

G
3
F extends GGF by introducing an additional weight 𝒑 to en-

code preferential treatment. The weight 𝒑 is also called importance
weight. Formally, let 𝒑 ∈ Δ𝐷 and 𝒘 ∈ Δ𝐷 be two fixed weighting

vectors, the G
3
F is defined as follows:

G
3
F𝒑,𝒘 (𝒖) =

∑︁
𝑖

𝝎𝑖𝒖
↑
𝑖
, (7)

where 𝒖 ∈ R𝐷 and the weight 𝝎𝑖 is defined as:

𝝎𝑖 = 𝑤∗
(

𝑖∑︁
𝑘=1

𝒑𝜎 (𝑘)

)
−𝑤∗

(
𝑖−1∑︁
𝑘=1

𝒑𝜎 (𝑘)

)
, (8)

with𝑤∗
being a monotone increasing function that linearly interpo-

lates the points (𝑖/𝐷,∑𝑖
𝑘=1

𝒘𝑘) together with the point (0, 0), and 𝜎
is the permutation sorting the components of vector 𝒖 in increasing

order, i.e., 𝒖𝜎 (𝑖) = 𝒖↑
𝑖
for all 𝑖 .

Intuitively, such preferential treatment can be enforced via user
duplication [6], which states that if a user is more important, s/he

should be counted more times (via importance weight) than other

users. Since this weight is often normalized, formally, if each user 𝑖

receives some fractional entitlement 𝒑𝑖 (i.e., importance weights),

when two users are equally important, they would receive equal

weights. In contrast, if a user is entitled to a preferential treatment,

s/he would consequently receive a larger share of the total im-

portance weight. The exact choice of 𝒑 therefore depends on the

specific problem one wants to solve.

Recall that G
3
F in (7) is defined with positive decreasing weights

𝒘 , it therefore satisfies efficiency, equity, and impartiality, but with-

out assuming that all users are equal. Obviously, G
3
F will reduce to

GGF when 𝒑 follows a uniform distribution. For a better illustra-

tion on why G
3
F is a suitable choice in our setting, we consider the

following example.

Example 4.1. Assume given an instance of G
3
F𝒑,𝒘 where 𝒘 is

chosen as (3/6, 2/6, 1/6) and 𝒑 is set to (4/6, 1/6, 1/6). By applying

linear interpolation at the key points: 𝑤∗ (0) = 0, 𝑤∗ (1/3) = 1/6,

𝑤∗ (2/3) = 1/2,𝑤∗ (1) = 1, we can obtain the complete values (see

Figure 1). The following cases show that G
3
F satisfies the three

properties of a fair solution.

In the first case, We consider two vectors 𝒖 = (10, 5, 15), and
𝒖′ = (12, 5, 15). By efficiency, 𝒖′ should be preferred to 𝒖, which is

true by comparing the corresponding aggregation values:

G
3
F𝒑,𝒘 (𝒖) = 9.17,G3

F𝒑,𝒘 (𝒖′) = 10.50.

Let 𝒖 = (10, 5, 15), and 𝒖′ = (10, 12, 8) in the second case. By

equity, 𝒖′ should be preferred to 𝒖 since the last two objectives are

equally important and 𝒖′ is more balanced over them. Indeed, we

have:

G
3
F𝒑,𝒘 (𝒖) = 9.17,G3

F𝒑,𝒘 (𝒖′) = 9.67.

Therefore the equity property holds.

In the lase case, we consider 𝒖 = (10, 5, 15), and 𝒖′ = (10, 15, 5).
And we can obtain:

G
3
F𝒑,𝒘 (𝒖) = G

3
F𝒑,𝒘 (𝒖′) = 9.17.

Thus the two solutions are equivalent, which verifies the impartial-

ity property.

4.2 Problem Statement
By integrating G

3
F with MOMDPs, we can now formally formulate

this fair optimization problem with preferential treatment investi-

gated in our paper, which is the problem of determining a policy

that generates a fair distribution of rewards subject to the prefer-

ence weighting vector. Since we focus on deep RL, we directly write

this problem with parametrized policy 𝜋𝜽 :

argmax

𝜋𝜽

G
3
F𝒑,𝒘 (𝑱 (𝜋𝜽)), (9)

where 𝑱 (𝜋𝜽) corresponds to the vectorial version of the standard

RL objective. A solution to this problem is called G
3
F-fair policy

or simply fair policy if the context is clear. Note that both 𝒑 and𝒘
are fixed and depend notably on the problem domain, its context,

and what the system designer wants to achieve. These weights are

therefore part of the problem description.

While the usual approaches in MOMDPs aim to find the set of

Pareto optimal solutions (or an approximation), the goal of our

problem is to directly learn the Pareto-optimal G
3
F-fair policy. In

addition, instead of applying G
3
F on the immediate rewards, our

formulation applies G
3
F on the cumulative rewards over trajecto-

ries to reach more equitable reward distribution, since it allows

compensation over time and expectation in this way.

4.3 Difficulties
Similarly to GGF optimization in RL [43], several challenges ex-

ist for solving Problem (9): (i) G
3
F is a non-linear function, which

makes the problem harder to solve than standard RL. However,

interestingly, G
3
F is a concave function (see Section 4.3.1), which

suggests that (9) may still retain some nice properties. (ii) fair so-

lutions may depend on initial states. (iii) stochastic policies may

dominate deterministic policies when taking fairness into account.

For GGF, Siddique et al. [43] also discuss those points for the

average reward criterion, and in addition, introduce an approxima-

tion bound in terms of average reward between the policy optimal

for the discounted reward and that for the optimal reward. Those

results can be extended to G
3
F, but to keep the exposition simple,

we do not present them in this paper.

4.3.1 Concavity Analysis. Although Ogryczak and Śliwiński [36]

have proved the concavity of G
3
F, here we provide another straight-

forward proof as an alternative.

Lemma 4.2. For any 𝒑 ∈ Δ𝐷 , for any 𝒘 ∈ Δ𝐷 such that its
components are decreasing, function G

3
F𝒑,𝒘 is concave.

Proof. We prove that G
3
F𝒑,𝒘 is a Choquet integral with respect

to a super-modular capacity. By [22], such integrals are concave
1
.

□

The concavity of G
3
F implies that the optimization problem (9)

has some nice properties. For instance, with a linear approxima-

tion scheme, the overall problem would be a convex optimization

problem (i.e., any local optimum would be global). In deep RL, the

overall problem is not convex anymore, but from the point of view

of the last layer of a neural network (which is usually linear, e.g.,

in DQN), the optimization problem is still convex. This suggests

that the overall problem is relatively well-behaved, and provides

guidance on our algorithm design (see Section 5).

4.3.2 State-dependent Optimality. As an extension of the prob-

lem investigated by [43], similarly to GGF-fair policy, an G
3
F-fair

policy may depend on the initial states or more generally, on the

distribution of initial states. Related to this point, because of the

non-linearity of G
3
F, the Bellman principle of optimality does not

hold anymore and dynamic programming can not be directly ap-

plied for finding a fair optimal policy.

4.3.3 Optimality of stochastic policies. It is known that an opti-

mal deterministic policy exists in the single-objective MDP setting.

However, when taking fairness into account in the MOMDP setting,

learning a policy only from the set of deterministic policies may not

be optimal [7]. For instance, given a MOMDP with two objectives,

mixing a policy optimal for the first objective with a policy optimal

for the second objective can lead to a better trade-off between the

two objectives (i.e., fairer solution).

5 PROPOSED ALGORITHMS
In this section, we explain how to integrate G

3
F with several exist-

ing RL algorithms (DQN, A2C, and PPO) for solving Problem (9).

Notably, we introduce a novel state-augmented DQN-based method

for learning stochastic policies.

5.1 Value-based Methods
Value-based RL methods aim to estimate the optimal action-value

function, namely 𝑄𝜋∗ . DQN [25] is one typical value-based deep

RL method. We discuss next its extension to G
3
F.

G
3
F-DQN. Following [43], we modify the output of the deep

Q-network to take values in R |A |×𝐷
instead of R |A |

. The target

Q-value is changed to:

ˆ𝑸𝜽 (𝑠, 𝑎) = 𝒓 + 𝛾 ˆ𝑸𝜽 ′ (𝑠′, 𝑎∗),

where 𝑎∗ = argmax𝑎′∈A G
3
F𝒑,𝒘

(
𝒓 + 𝛾 ˆ𝑸𝜽 ′ (𝑠′, 𝑎′)

)
. The best next

action is chosen such that the immediate reward plus discounted

future rewards (both vectorial) is fair. For execution in a state 𝑠 ,

an action in argmax𝑎∈A G
3
F𝒑,𝒘

(
ˆ𝑸𝜽 (𝑠, 𝑎)

)
is chosen. This adapted

version of DQN is called G
3
F-DQN.

It is similar to GGF-DQN proposed by Siddique et al. [43]. Here,

onemay notice thatG
3
F-DQN implicitly optimizes the lower bound

2

1
Please refer to the full version of this paper for the detailed proof.

2E𝑠′
[
G

3
F𝒑,𝒘

(
𝒓 + 𝛾 ˆ𝑸𝜽 ′ (𝑠′, 𝑎∗𝑠)

)]
is a lower bound of G

3
F𝒑,𝒘

(
E𝑠′ [𝒓 + 𝛾

ˆ𝑸𝜽 ′ (𝑠′, 𝑎∗𝑠)
])

by Jensen inequality since G
3
F𝒑,𝒘 is concave. Notation 𝑎∗𝑠 is to em-

phasize its dependence on 𝑠 .

E𝑠′
[
G

3
F𝒑,𝒘

(
𝒓 + 𝛾 ˆ𝑸𝜽 ′ (𝑠′, 𝑎∗𝑠)

)]
instead ofG

3
F𝒑,𝒘

(
E𝑠′

[
𝒓 + 𝛾 ˆ𝑸𝜽 ′ (𝑠′ ,

𝑎∗𝑠)
])
, which would be a better approximation of the objective

function of (9). For this reason, one may not expect a very good

performance from G
3
F-DQN. Next, we propose two other novel

extensions of DQN that can achieve better performance.

G
3
F-CDQN. Recall that an optimal fair policy may depend on

initial states (Section 4.3.2), and that in G
3
F-DQN, the learned policy

is both deterministic and Markov, which is not sufficient to achieve

fairness in an effective way. While still aiming for a deterministic

policy here, a natural approach to address the other two points

is state augmentation. Indeed, if the agent can base its decisions

on both past accumulated reward and usual state information, the

agent may be able to achieve a higher level of fairness. Intuitively,

such additional information enables the agent to base its decisions

on past accumulated reward, which can help correct past inequities.

Consequently, we first augment an original state 𝑠𝑡 as follows:

𝑠𝑡 =
(
𝑠𝑡 ,

1

𝜆
𝒓1:𝑡

)
where 𝜆 =

∑𝑡−1

𝜏=1
𝛾𝜏−1

acts as a scaling factor, 𝒓1:𝑡 =
∑𝑡−1

𝜏=1
𝛾𝜏−1𝒓𝜏

denotes the discounted cumulative reward received so far, which is

reset to zero at the beginning of an episode. Then we modify the

target Q-value as follows:

ˆ𝑸𝜽 (𝑠𝑡 , 𝑎) = 𝒓𝑡 + 𝛾 ˆ𝑸𝜽 ′ (𝑠𝑡+1, 𝑎
∗),

where 𝑎∗ = argmax𝑎′∈A G
3
F𝒑,𝒘

(
ˆ𝑸𝜽 ′ (𝑠𝑡+1, 𝑎

′)
)
. Here the immedi-

ate reward 𝒓𝑡 is removed from the G
3
F computation since this signal

is already included in the augmented state as part of the cumulative

reward. For execution in a state 𝑠 , an action in argmax𝑎∈A G
3
F𝒑,𝒘

(
ˆ𝑸𝜽 (𝑠, 𝑎)

)
is chosen. This algorithm is called G

3
F-CDQN.

G
3
F-CSDQN. Since stochastic policies may dominate determin-

istic ones (Section 4.3.3), we may improve the performance of G
3
F-

CDQN by learning a stochastic policy. We describe how to achieve

this next.

First, we describe how G
3
F-DQN can be modified to learn sto-

chastic policies. The target Q-value is changed to:

ˆ𝑸𝜽 (𝑠, 𝑎) = 𝒓 + 𝛾 ˆ𝑸∗
𝜽 ′ (𝑠′, ·),

where
ˆ𝑸∗
𝜽 ′ (𝑠′, ·) =

∑
𝑎′∈A 𝜋∗ (𝑎′ |𝑠′) ˆ𝑸𝜽 ′ (𝑠′, 𝑎′) denotes an estimated

Q-value achieved at a next state by a policy 𝜋∗, which is defined as:

𝜋∗ (·|𝑠′) = argmax

𝜋
G

3
F𝒑,𝒘 (𝒓 + 𝛾

∑︁
𝑎′∈A

𝜋 (𝑎′ |𝑠′) ˆ𝑸𝜽 ′ (𝑠′, 𝑎′)) (10)

This reformulation assumes that in the next state, the best stochastic

policy is chosen (in contrast to the deterministic greedy policy in

DQN or G
3
F-DQN). For execution in a state 𝑠 , an action is sampled

from 𝜋∗ (·|𝑠) in argmax𝜋 G
3
F𝒑,𝒘 (∑𝑎′∈A 𝜋 (𝑎′ |𝑠′) ˆ𝑸𝜽 (𝑠′, 𝑎′)).

Problem (10) is a non-linear convex optimization problem that

can be solved via linear programming [35]:

𝑚𝑎𝑥

𝐷∑︁
𝑘=1

𝑘

𝑛
𝒘′
𝑘
𝑥𝑘 −

𝐷∑︁
𝑘=1

𝐷∑︁
𝑖=1

𝒘′
𝑘
𝒑𝑖𝑑𝑖𝑘 (11)

𝑠 .𝑡 . 𝑥𝑘 − 𝑑𝑖𝑘 ≤ r𝑖 + 𝛾𝒚𝑖 , ∀𝑖, 𝑘 = 1, . . . , 𝐷

𝒚 =
∑︁
𝑎′∈A

𝜋 (𝑎′ |𝑠′) ˆ𝑸𝜽 ′ (𝑠′, 𝑎′)

0 ≤ 𝜋 (𝑎′ |𝑠′) ≤ 1,
∑︁
𝑎′∈A

𝜋 (𝑎′ |𝑠′) = 1

𝑑𝑖𝑘 ≥ 0, ∀𝑖, 𝑘 = 1, . . . , 𝐷

where 𝒘′
𝑘
= 𝐷 (𝒘𝑘 − 𝒘𝑘+1

) for 𝑘 = 1, . . . , 𝐷 − 1, 𝒘′
𝐷

= 𝐷𝒘𝐷 , 𝑥𝑘 ’s

and 𝑑𝑖𝑘 ’s are additional variables introduced to linearize the origi-

nal non-linear optimization problem. Finally, by introducing state

augmentation like in G
3
F-CDQN, we can formulate a novel algo-

rithm called G
3
F-CSDQN, which can learn fair stochastic policies

for augmented states. Note that although one may expect a bet-

ter performance from this new algorithm, G
3
F-CDQN may still be

useful in domains where deterministic policies are favored (e.g.,

robotics).

5.2 Policy Gradient Methods
Although usually less sample-efficient than DQN-based algorithms,

policy gradient methods constitute another natural choice for solv-

ing Problem (9). Following the work by Siddique et al. [43], we

show how to extend two actor-critic (AC) methods: A2C [24] and

PPO [40] to solve our problem. We call our new algorithms: G
3
F-

A2C and G
3
F-PPO respectively. A nice feature of those methods

is that they can directly learn a stochastic policy. Note that other

policy gradient methods could be extended in a similar fashion.

G
3
F-A2C. To reduce the variance of the estimation of the policy

gradient (4), A2C uses a control variate method where a state-

dependent baseline is subtracted from 𝑸𝜋𝜽 . Using 𝑣 (𝑠) as a base-
line yields the advantage function, which is estimated in A2C by

𝑨A2C (𝑠𝑡 , 𝑎𝑡) =
∑
𝑡=1

𝛾𝑡−1𝑅𝑡 − 𝑣 (𝑠𝑡) where 𝑅𝑡 is the immediate re-

ward obtained at time step 𝑡 . In A2C, the actor update derives from

the policy gradient obtained from:

𝑱A2C (𝜽) = E𝑠∼𝑑𝜋 ,𝑎∼𝜋𝜽 (· |𝑠) [𝑨A2C (𝑠, 𝑎)] .

For G
3
F-A2C, the policy gradient is formulated as follows:

∇𝜽G
3
F𝒑,𝒘 (𝑱A2C (𝜽)) (12)

= ∇𝑱A2C (𝜽)G
3
F𝒑,𝒘 (𝑱A2C (𝜽)) · ∇𝜽 𝑱A2C (𝜽) (13)

= 𝝎
⊺
𝜎 · ∇𝜽 𝑱A2C (𝜽), (14)

where ∇𝑱A2C (𝜽)G
3
F𝒑,𝒘 (𝑱A2C (𝜽)) ∈ R𝐷 is the gradient of function

G
3
F𝒑,𝒘 with respect to its components and ∇𝜽 𝑱A2C (𝜽) ∈ R𝐷×𝑁

(𝑁 being the number of policy parameters) represents the classic

policy gradient extended to the vector case.

G
3
F-PPO. Following the design of PPO [40], the advantage is es-

timated with 𝜆-returns. Formally, the estimated advantage function

𝑨PPO (𝑠, 𝑎) can be written as 𝑨PPO (𝑠𝑡 , 𝑎𝑡) =
∑
𝑡 (𝛾𝜆)𝑡−1𝛿𝑡 where

𝛿𝑡 = 𝑅𝑡 +𝛾𝑣 (𝑠𝑡+1)−𝑣 (𝑠𝑡). A similar clipped surrogate objective func-

tion can be formulated to guide policy training. Denoted 𝑱PPO (𝜽),

DQN

GGF-DQN

G
3 F -DQN

G
3 F -CDQN

G
3 F -CSDQN A2C

GGF-A2C

G
3 F -A2C

PPO

GGF-PPO

G
3 F -PPO

0.2

0.4

0.6

0.8

1.0

1.2

G
3
F

S
co

re

(a) G
3
F score during testing.

DQN

GGF-DQN

G
3 F -DQN

G
3 F -CDQN

G
3 F -CSDQN A2C

GGF-A2C

G
3 F -A2C

PPO

GGF-PPO

G
3 F -PPO

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

de
ns

it
y

Sea-otters Abalones

(b) Population densities during testing.

Figure 2: Performances of DQN, A2C, PPO and their GGF, G
3
F counterparts in SC. The weight 𝒑 is set to (0.9, 0.1) for G

3
F

algorithms.

CV min density max density
0.0

0.2

0.4

0.6

0.8

1.0 G3F -CDQN

G3F -CSDQN

CV min density max density
0.0

0.2

0.4

0.6

0.8

1.0

CV min density max density
0.0

0.2

0.4

0.6

0.8

1.0

p0 = 0.1 p0 = 0.3 p0 = 0.5 p0 = 0.7 p0 = 0.9

Figure 3: Effects of using different weights for 𝒑 in G
3
F algorithms. CV, minimum and maximum densities of G

3
F-CDQN and

G
3
F-CSDQN (left), G

3
F-A2C (middle), and G

3
F-PPO (right) during testing in SC.

p0 = 0.1 p0 = 0.3 p0 = 0.5 p0 = 0.7 p0 = 0.9
0

2

4

6

8

A
ve

ra
ge

w
ai

ti
ng

ti
m

e
(k

) G3F -CDQN

G3F -CSDQN

p0 = 0.1 p0 = 0.3 p0 = 0.5 p0 = 0.7 p0 = 0.9
0

2

4

6

8

A
ve

ra
ge

w
ai

ti
ng

ti
m

e
(k

)

p0 = 0.1 p0 = 0.3 p0 = 0.5 p0 = 0.7 p0 = 0.9
0

2

4

6

8
A

ve
ra

ge
w

ai
ti

ng
ti

m
e

(k
)

North East South West

Figure 4: Effects of using different weights for 𝒑 in G
3
F algorithms. Individual waiting times of G

3
F-CDQN and G

3
F-CSDQN

(left), G
3
F-A2C (middle), and G

3
F-PPO (right) during testing in TL.

it is defined so as to limit policy changes after an update:

E𝑠∼𝒅𝜋 ,𝑎∼𝜋𝜽 (· |𝑠) [min(𝜌𝜽𝑨PPO (𝑠, 𝑎), 𝜌𝜽𝑨PPO (𝑠, 𝑎))] , (15)

where 𝜌𝜽 =
𝜋𝜽 (𝑎 |𝑠)
𝜋𝑏 (𝑎 |𝑠) is an importance sampling weight, 𝜋𝑏 is the

behavior policy generating the training data, 𝜌𝜽 = clip(𝜌𝜽 , 1 −
𝜖, 1 + 𝜖) is a clipped weight, and 𝜖 is a hyperparameter to control

how much the current policy can change. The policy gradient for

G
3
F-PPO can then be obtained by replacing 𝑱A2C in (12) with 𝑱PPO.

6 EXPERIMENTAL RESULTS
We experimentally evaluated our algorithms (with relevant base-

lines) in the same three domains as in Siddique et al. [43] to help

with comparability. Those domains are: (i) Species conservation

(SC), (ii) Traffic light control (TL), and (iii) Data center control (DC).

We provide below a short description of those domains.

The first domain (SC) [8] simulates an ecological conservation

problem in which two species—an endangered species (sea otters)

and its prey (northern abalone)—interact with one another, poten-

tially leading to the extinction of some species. In this domain, a

state is comprised of the population level of the two species. The

action space consists of five actions including do nothing, intro-
duce sea otters, enforce antipoaching, control sea otters, and one-half
antipoaching and one-half control sea otters. The reward vector is

composed of each species’ density. Fairness is expressed over the

two species (𝐷 = 2) and can be understood as both species remain-

ing alive and having a balanced population. Because densities may

not be comparable directly, using equal weights for 𝒑 may not be

suitable. In that case, G
3
F may be beneficial.

The second domain (TL) is a traffic light control problem in

which an agent controls the traffic lights at a single intersection to

optimize traffic flow. To simulate the traffic, we use the Simulation of

Urban Mobility (SUMO)
3
. A state in this domain is composed of the

waiting times and densities of cars waiting at the intersection. An

3
https://github.com/eclipse/sumo

action amounts to selecting the next traffic-light phase. We assumed

four phases: NSL, NSSR, EWL, and EWSR, with NSR representing

the (north-south left) phase when the green light is assigned to the

left lanes of roads approaching from the north and south, NSSR

representing the (north-south straight and right) phase when the

green light is assigned to the straight and right lanes of roads

approaching from the north and south, and so on. Typically, the

goal in this domain is to minimize the total waiting time of all cars

stopped at the intersection. However, we consider fairness over

each direction at the intersection (i.e., 𝐷=4). More specifically, we

assume that some lanes will be given preferential treatment (e.g.,

due to morning rush, traffic flows are unbalanced) and that the

waiting times for cars in these lanes will be optimized with higher

priorities, while other lanes with equal preferences will be treated

fairly.

The third and last domain (DC) is a data center traffic control

problem [39], which involves connecting a large number of comput-

ers according to some network topology. In particular, we consider

a network with a fat-tree topology, which connects 16 computers

via 20 switches. A state is composed of each computer network

information. A continuous action corresponds to the allocation of

bandwidth for each host. The vector reward is calculated by penal-

izing the bandwidths per host by the sum of queue lengths. In this

domain, fairness can be expressed with respect to the number of

hosts (e.g., 𝐷 = 16).

The three experimental domains are listed in ascending order of

increasing number of objectives and complexity. The action spaces

in the SC and TL domains are discrete, whereas the action space

in the DC domain is continuous. As usual practice, we set weights

𝒘𝑖 =
1

2
𝑖 , 𝑖 = 0, ..., 𝐷 − 1. We will experiment with various 𝒑 settings

to demonstrate its effects on G
3
F. Again, recall that weights 𝒑 and

𝒘 are problem-dependent and should be set by the system designer

to achieve the level of fairness she desires. All experimental results

are averaged over 10 runs with different seeds.

On these three domains, we have run an extensive set of ex-

periments to answer a series of questions. We list below the main

questions with their empirical answers. More experimental results

can be found in the full version of this paper.

Does G
3
F algorithms yield higher G

3
F score than GGF or

standard algorithms? This first question is a sanity check to

verify that our new algorithms do optimizeG
3
F.We compare theG

3
F

scores of DQN, A2C, and PPO with their GGF and G
3
F counterparts

in the SC domain. The G
3
F scores are obtained by applying G

3
F𝒑,𝒘

on the empirical average vector returns of trajectories sampled

with the learned policies during the test phase. Figure 2a depicts

the distribution of this score for the policies learned by DQN, A2C,

PPO, and their GGF and G
3
F extensions. The weight 𝒑 is set to

(0.9, 0.1) for G
3
F methods, where the first component corresponds

to sea otters. As expected, the GGF algorithms can find a fairer

solution than their original versions, thus have a higher G
3
F score.

However, the G
3
F algorithms show an even higher score than both

their GGF and original counterparts, indicating that fairness with

priority set by 𝒑 was better achieved, as can be seen in Figure 2b.

For instance, G
3
F-A2C nearly balances the densities thanks to the

higher priority given to sea otters. Recall that naturally the density

of abalone would be much larger [43].

As the G
3
F score does not directly show the vector compositions,

plots of non-aggregated accumulated densities estimated during

the testing phase are also presented (Figure 2b), which is simple to

do for the SC domain because it is bi-objective. Compared to the

standard or GGF counterparts, optimizingG
3
Fwith a higher priority

given to sea otters achieves more balanced individual densities.

This suggests that a non-uniform 𝒑 may help correct advantages

conferred to some users by the environment.

What is the effect of training a policy with different weights
for 𝒑? To answer this question, we evaluate the performances of

the G
3
F algorithms with different weights for 𝒑 in the SC and

TL domains. Figure 3 shows the performance of G
3
F-CDQN, G

3
F-

CSDQN,G
3
F-A2C, andG

3
F-PPO during the testing phase in terms of

Coefficient of Variation (CV), minimum andmaximumdensity. Recall

that CV is defined as the ratio of the standard deviation to the mean.

It can be interpreted as a simple measure of inequality, with lower

CV values implyingmore balanced solutions. For experiments in the

SC domain, we increase the preference weight of first objective 𝒑0

from 0.1 to 0.9 (i.e., 𝒑1 decreases from 0.9 to 0.1, correspondingly).

As a result, the density of the sea otter increases, resulting in lower

CV, higher minimum density, and lower maximum density for all

G
3
F algorithms.

In the TL domain, we vary weight 𝒑0 (assigned to North), while

the remaining weight is assigned uniformly over the remaining

three components (directions) of 𝒑. As shown in Figure 4, waiting

times of cars coming from lanes with higher weights are shorter

than those coming from laneswith lowerweights. It can be observed

that the waiting times of cars coming from the north and south

are close, despite the fact that they are assigned different weights.

This is due to the fact that the agent’s action can affect two lanes at

the same time in this case. For example, an action NSL corresponds

to the phase when the left lanes of north and south are given a

green light and cars can only turn left during this phase. As a result,

optimizing the waiting time in one lane will have an effect on the

opposite lane as well.

The above results show that by appropriately adjusting the

weights 𝒑, we can achieve desired control over multiple objectives.

Whenmoreweight is given to one objective and equalweights
are assigned to the other objectives, does the "equal treatment
of equals" principle still hold? The previous discussion in the TL

domain suggests that this may not always be the case, due to the

inherent structure of the control problem. It is however interest-

ing to answer this question when less or no dependence between

objectives is expected. We therefore turn to the DC domain where

there are 16 objectives in total. In this domain, the first objective

is given a weight of
1

4
, and the other objectives are assigned equal

weights, i.e.,
1

20
. Figure 5a illustrates the performances of standard

deep RL algorithms and their GGF/G
3
F counterparts in terms of CV

(w.r.t the objectives with identical weights, i.e., the first objective

is excluded in this statistic), minimum, and maximum bandwidths.

As expected, the GGF algorithms have a lower CV than standard

RL algorithms, which indicates that they can find fairer policies

than their original versions. Compared to standard or GGF ver-

sions of A2C and PPO, the G
3
F counterparts have lower minimum

and maximum bandwidths since more weight is given to the first

CV min bandwidth max bandwidth
0.00

0.02

0.04

0.06

0.08

0.10

0.12
A2C

GGF-A2C

G3F -A2C

PPO

GGF-PPO

G3F -PPO

(a) CV (w.r.t the objectives with equal importance weights), minimum
and maximum bandwidths.

A2C GGF-A2C G3F -A2C PPO GGF-PPO G3F -PPO

1.6

1.7

1.8

1.9

2.0

G
3
F

S
co

re

(b) G
3
F score.

Figure 5: Performances of A2C, PPO and their GGF, G
3
F counterparts during testing in DC.

0 10 20 30 40 50 60
Number of Interactions (k)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

ac
cu

m
ul

at
ed

de
ns

it
y

DQN

G3F -DQN

G3F -CDQN

G3F -CSDQN

G3F -A2C

G3F -PPO

(a) Accumulated densities during training.

CV min density max density
0.00

0.25

0.50

0.75

1.00

1.25

1.50
DQN G3F -DQN G3F -CDQN G3F -CSDQN

(b) CV, minimum and maximum densities during testing.

Figure 6: Performances of DQN-based algorithms in SC. The weight 𝒑 is set to (0.9, 0.1) for G
3
F algorithms.

objective. However, we notice that the objectives with identical

weights are treated fairly, as indicated by lower CVs than standard

RL algorithms, which validates that the “equal treatment of equals”

principle still hold in this case.

Does considering past discounted reward or learning a sto-
chastic policy help in DQN-based algorithms? For this question,

we compare all our DQN variants in the SC and TL domains to

investigate the benefits of considering past discounted reward or

stochastic policies. Figures 2a, 6a and 6b show the performances

of those algorithms in the SC domain. Note that while Figure 6a

plots the training curves within 60k interactions, the AC methods

are indeed trained with 600k interactions for convergence before

testing. These figures show that moving from DQN, G
3
F-DQN, G

3
F-

CDQN, to G
3
F-CSDQN nearly always yields an increase in terms of

average density (more efficient), a decrease in terms of CV (more

equitable), an increase in terms of min density (more equitable),

and an increase in terms of G
3
F (fairer). This latter point experi-

mentally confirms the theoretical discussion about the optimality

of stochastic policies in Section 4.3.

While the above results are obtained with non-uniform 𝒑, we
also run experiments in the GGF setting (i.e., with uniform 𝒑). The
results show that our proposed G

3
F-CDQN (i.e., GGF-CDQN) can

find better solutions than GGF-DQN, suggesting that our novel

DQN-based methods also apply to usual fair optimization problem

without any preferential treatment. Similar conclusion can be drawn

for the TL domain as well.

Interestingly, G
3
F-CDQN and G

3
F-CSDQN outperform DQN in

terms of average density, which is exactly what is optimized by

DQN. This is explained by the fact that this domain is actually

partially observable. In addition, Figure 6a also includes the training

curves of the AC methods (A2C and PPO) for comparison. It can

be observed that the DQN-based variants learn much faster than

the AC methods in terms of number of interactions. Therefore, the

DQN-based variants would become more preferable choices when

the sample efficiency is important.

7 CONCLUSION
We investigated the fair optimization problem with preferential

treatment in RL. We presented several extensions of deep RL algo-

rithms to tackle it, and notably proposed a novel state-augmented

DQN-based method, which can be adapted to learn either deter-

ministic or stochastic policies. Extensive experimental results on

several domains were provided for validation. As future work, we

plan to investigate the multi-agent extension of our new problem.

REFERENCES
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classification. In International
Conference on Machine Learning. PMLR, 60–69.

[2] Edoardo Amaldi, Stefano Coniglio, Luca G. Gianoli, and Can Umut Ileri. 2013. On

Single-Path Network Routing Subject to Max-Min Fair Flow Allocation. Electronic
Notes in Discrete Mathematics 41 (June 2013), 543–550.

[3] Xiaohui Bei, Shengxin Liu, Chung Keung Poon, and Hongao Wang. 2022. Candi-

date selections with proportional fairness constraints. Autonomous Agents and
Multi-Agent Systems 36, 1 (2022), 1–32.

[4] Aurélie Beynier, Yann Chevaleyre, Laurent Gourvès, Ararat Harutyunyan, Julien

Lesca, Nicolas Maudet, and Anaëlle Wilczynski. 2019. Local envy-freeness in

house allocation problems. Autonomous Agents and Multi-Agent Systems 33, 5
(2019), 591–627.

[5] Steven J. Brams and Alan D. Taylor. 1996. Fair Division: From Cake-Cutting to
Dispute Resolution. Cambridge University Press.

[6] Steven J. Brams and Alan D. Taylor. 1996. Fair Division: From Cake-Cutting to
Dispute Resolution. Cambridge University Press.

[7] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, and Shie Mannor. 2017. Multi-

objective bandits: Optimizing the generalized gini index. In International Confer-
ence on Machine Learning. PMLR, 625–634.

[8] Iadine Chadès, Janelle MR Curtis, and Tara G Martin. 2012. Setting realistic

recovery targets for two interacting endangered species, sea otter and northern

abalone. Conservation Biology 26, 6 (2012), 1016–1025.

[9] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. 2021.

Weighted envy-freeness in indivisible item allocation. ACM Transactions on
Economics and Computation (TEAC) 9, 3 (2021), 1–39.

[10] Jingdi Chen, YimengWang, and Tian Lan. 2021. Bringing Fairness to Actor-Critic

Reinforcement Learning for Network Utility Optimization. In INFOCOM.

[11] Yann Chevaleyre, Paul E Dunne, Michel Lemaître, Nicolas Maudet, Julian Padget,

Steve Phelps, and Juan A Rodríguez-aguilar. 2006. Issues in Multiagent Resource

Allocation. Computer 30 (2006), 3–31.
[12] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair Clustering Through Fairlets. In Advances in Neural Information Processing
Systems, Vol. 30. Curran Associates, Inc.

[13] Yinlam Chow and Mohammad Ghavamzadeh. 2014. Algorithms for CVaR opti-

mization in MDPs.

[14] Cyrus Cousins. 2021. An axiomatic theory of provably-fair welfare-centric

machine learning. Advances in Neural Information Processing Systems 34 (2021),
16610–16621.

[15] Virginie Do and Nicolas Usunier. 2022. Optimizing generalized Gini indices for

fairness in rankings.

[16] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through Awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference. 214–226.

[17] Ganesh Ghalme, Vineet Nair, Vishakha Patil, and Yilun Zhou. 2022. Long-Term

Resource Allocation Fairness in Average Markov Decision Process (AMDP) En-

vironment. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. 525–533.

[18] Hoda Heidari, Claudio Ferrari, Krishna Gummadi, and Andreas Krause. 2018.

Fairness behind a veil of ignorance: A welfare analysis for automated decision

making. Advances in Neural Information Processing Systems 31 (2018).
[19] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron

Roth. 2017. Fairness in reinforcement learning. In International conference on
machine learning. PMLR, 1617–1626.

[20] Jiechuan Jiang and Zongqing Lu. 2019. Learning fairness in multi-agent systems.

Advances in Neural Information Processing Systems 32 (2019).
[21] Y. Liu and S. Koenig. 2005. Risk-Sensitive Planning with One-Switch Utility

Functions: Value Iteration. In AAAI. AAAI, 993–999.
[22] László Lovász. 1983. Submodular functions and convexity. In Mathematical

programming the state of the art. Springer, 235–257.
[23] Debmalya Mandal and Jiarui Gan. 2022. Socially Fair Reinforcement Learning.

arXiv preprint arXiv:2208.12584 (2022).
[24] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-

thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronous Methods for Deep Reinforcement Learning. In ICML.
[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518 (2015),
529–533.

[26] Hervé Moulin. 2004. Fair division and collective welfare. MIT press.

[27] H. Moulin. 2004. Fair Division and Collective Welfare. MIT Press.

[28] Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. 2019. Learning Optimal Fair

Policies. In ICML.

[29] Lorenzo Nardi and Cyrill Stachniss. 2019. Uncertainty-aware path planning for

navigation on road networks using augmented MDPs. In ICRA.
[30] Somjit Nath, Mayank Baranwal, and Harshad Khadilkar. 2021. Revisiting State

Augmentation methods for Reinforcement Learning with Stochastic Delays. In

CIKM.

[31] Arnie Neidhardt, Hanan Luss, and K. R. Krishnan. 2008. Data Fusion and Opti-

mal Placement of Fixed and Mobile Sensors. In 2008 IEEE Sensors Applications
Symposium.

[32] Viet Hung Nguyen and Paul Weng. 2017. An Efficient Primal-Dual Algorithm

for Fair Combinatorial Optimization Problems. In COCOA.
[33] Wlodzimierz Ogryczak, Hanan Luss, Michał Pióro, Dritan Nace, and Artur

Tomaszewski. 2014. Fair optimization and networks: A survey. Journal of Applied
Mathematics 2014 (2014).

[34] Wlodzimierz Ogryczak, Patrice Perny, and Paul Weng. 2013. A compromise pro-

gramming approach to multiobjective Markov decision processes. International
Journal of Information Technology & Decision Making 12, 05 (2013), 1021–1053.

[35] Włodzimierz Ogryczak and Tomasz Śliwiński. 2007. On optimization of the

importance weighted OWA aggregation of multiple criteria. In International
Conference on Computational Science and Its Applications. Springer, 804–817.

[36] Włodzimierz Ogryczak and Tomasz Śliwiński. 2010. On solving optimization

problems with ordered average criteria and constraints. Fuzzy Optimization:
Recent Advances and Applications (2010), 209–230.

[37] M.L. Puterman. 1994. Markov decision processes: discrete stochastic dynamic
programming. Wiley.

[38] John Rawls. 1971. The Theory of Justice. Havard university press.

[39] Fabian Ruffy, Michael Przystupa, and Ivan Beschastnikh. 2019. Iroko: A Frame-

work to Prototype Reinforcement Learning for Data Center Traffic Control. In

Workshop on ML for Systems at NeurIPS. http://arxiv.org/abs/1812.09975

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[41] Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. 2019. Average In-

dividual Fairness: Algorithms, Generalization and Experiments. In Advances in
Neural Information Processing Systems.

[42] Huaizhou Shi, R. Venkatesha Prasad, Ertan Onur, and I. G. M. M. Niemegeers.

2014. Fairness in Wireless Networks:Issues, Measures and Challenges. IEEE
Communications Surveys & Tutorials 16, 1 (2014), 5–24.

[43] Umer Siddique, Paul Weng, and Matthieu Zimmer. 2020. Learning Fair Policies

in Multi-Objective (Deep) Reinforcement Learning with Average and Discounted

Rewards. In ICML.
[44] Ashudeep Singh and Thorsten Joachims. 2019. Policy Learning for Fairness in

Ranking. In Advances in Neural Information Processing Systems.
[45] Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H

Mguni, Jun Wang, and Haitham Ammar. 2022. Sauté RL: Almost surely safe

reinforcement learning using state augmentation. In ICML.
[46] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P Gummadi, Adish Singla,

Adrian Weller, and Muhammad Bilal Zafar. 2018. A unified approach to quantify-

ing algorithmic unfairness: Measuring individual &group unfairness via inequal-

ity indices. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 2239–2248.

[47] Ankang Sun, Bo Chen, and Xuan Vinh Doan. 2021. Connections between fair-

ness criteria and efficiency for allocating indivisible chores. arXiv preprint
arXiv:2101.07435 (2021).

[48] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 2000.

Policy Gradient Methods for Reinforcement Learning with Function Approxima-

tion. In NIPS.
[49] Min Wen, Osbert Bastani, and Ufuk Topcu. 2021. Algorithms for Fairness in

Sequential Decision Making. In ICML.
[50] Paul Weng. 2019. Fairness in reinforcement learning. arXiv preprint

arXiv:1907.10323 (2019).
[51] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P.

Gummadi, and Adrian Weller. 2017. From Parity to Preference-Based Notions of

Fairness in Classification. In Advances in Neural Information Processing Systems.
[52] Xueru Zhang and Mingyan Liu. 2021. Fairness in learning-based sequential

decision algorithms: A survey. In Handbook of Reinforcement Learning and
Control. Springer, 525–555.

[53] Matthieu Zimmer, Claire Glanois, Umer Siddique, and Paul Weng. 2021. Learning

fair policies in decentralized cooperative multi-agent reinforcement learning. In

International Conference on Machine Learning. PMLR, 12967–12978.

http://arxiv.org/abs/1812.09975
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Markov Decision Process and RL
	3.2 Multiobjective Markov Decision Process
	3.3 Deep RL
	3.4 Fairness

	4 Fair Optimization with Preferential Treatment
	4.1 Generalized GGF
	4.2 Problem Statement
	4.3 Difficulties

	5 Proposed Algorithms
	5.1 Value-based Methods
	5.2 Policy Gradient Methods

	6 Experimental Results
	7 Conclusion
	References

