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ABSTRACT
Cooperative multi-agent reinforcement learning (MARL) requires
agents to explore to learn to cooperate. Existing value-based MARL
algorithms commonly rely on random exploration, such as 𝜖-greedy,
which is inefficient in discovering multi-agent cooperation. Addi-
tionally, the environment in MARL appears non-stationary to any
individual agent due to the simultaneous training of other agents,
leading to highly variant and thus unstable optimisation signals. In
this work, we propose ensemble value functions for multi-agent
exploration (EMAX), a general framework to extend any value-
based MARL algorithm. EMAX trains ensembles of value functions
for each agent to address the key challenges of exploration and
non-stationarity: (1) The uncertainty of value estimates across the
ensemble is used in a UCB policy to guide the exploration of agents
to parts of the environment which require cooperation. (2) Average
value estimates across the ensemble serve as target values. These
targets exhibit lower variance compared to commonly applied tar-
get networks and we show that they lead to more stable gradients
during the optimisation. We instantiate three value-based MARL
algorithms with EMAX, independent DQN, VDN and QMIX, and
evaluate them in 21 tasks across four environments. Using ensem-
bles of five value functions, EMAX improves sample efficiency and
final evaluation returns of these algorithms by 53%, 36%, and 498%,
respectively, averaged all 21 tasks.

KEYWORDS
Multi-Agent Reinforcement Learning, Ensemble Models, Explo-
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) jointly
trains a team of agents to exhibit behaviour which maximises
shared cumulative rewards. MARL can tackle problems such as
autonomous driving [32, 39] and warehouse logistics [12, 14], but
its real-world adaptation is still limited. Two remaining challenges
of MARL are the large number of samples required to learn coop-
eration and the non-stationarity of the optimisation due to agents
learning simultaneously [25].
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Figure 1: Motivational example: Two agents (triangles) need
to cooperate to pick-up a heavy object (red circle). Agents can
individually explore their movement (left), but random ex-
ploration is inefficient in discovering the cooperation of both
agents to pick-up the heavy goal object (right). To overcome
this inefficiency, we leverage uncertainty across ensembles
of value functions to guide multi-agent exploration towards
state-action pairs which require cooperation.

MARL algorithms have shown good performance in various co-
operation tasks [26], but value-based MARL algorithms still rely
on random exploration processes, such as 𝜖-greedy (e.g. Rashid
et al. [29], Sunehag et al. [35]). We argue that random exploration
is inefficient in exploring the joint action space of all agents to
discover cooperation in MARL. To illustrate this inefficiency, con-
sider the following example in which two agents have to navigate
an environment to jointly pick-up a heavy object, visualised in
Figure 1. Agents can navigate within the shared environment by
themselves and thus individually explore their movement. To dis-
cover the desired cooperation, both agents have to pick-up the
object at the same time. However, this behaviour is highly unlikely
following random exploration, leading to poor sample efficiency in
tasks which require cooperation.

To address this inefficient exploration for learning coordinated
behaviour, it is essential for agents to focus their exploration on
parts of the environment which require cooperation. To this end,
we propose ensemble value functions for multi-agent exploration
(EMAX), a general framework to extend any value-based MARL
algorithms by training ensembles of value functions for each agent.
EMAX guides the exploration of agents towards parts of the envi-
ronment with significant disagreement of value estimates, given by
the deviation of estimates across the ensemble. The key insight into
our exploration is that disagreement within the ensemble of value
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functions indicates the possibility of a state-action pair being lucra-
tive and therefore, its importance for exploration. For state-action
pairs where little exploration and cooperation is needed, such as
the navigation of the agents in our example, disagreement quickly
diminishes. However, for state-action pairs where cooperation is
needed, such as the picking-up of the heavy object, agents will
receive highly variant rewards because they both fail and succeed
in cooperating. This variance in received rewards causes a high
disagreement of value estimates across the ensemble. Therefore,
agents can follow this disagreement to guide their exploration us-
ing an upper-confidence bound (UCB) [4] policy. Moreover, EMAX
computes average value estimates across the ensemble as target
values instead of using target networks. These target values exhibit
lower variance [15], eliminate the need for target networks, and
stabilise the optimisation of agents.

In a simplified setting of a common-reward normal form game,
we demonstrate that EMAX focuses its exploration on parts of the
environment which require cooperation, and thereby improves sam-
ple efficiency and convergence to high-reward cooperation policies
(Section 5). We instantiate three value-based MARL algorithms,
independent DQN [21], VDN [35], and QMIX [29], with EMAX
and compare them against the corresponding vanilla algorithms in
21 tasks across four diverse multi-agent environments. EMAX im-
proves sample efficiency and final achieved returns across all tasks
over all three vanilla algorithms by 53%, 36%, and 498%, respectively,
and is shown to reliably reduce variance of gradients throughout
optimisation, leading to more stable training (Section 6.2). Lastly,
we show that comparably small ensembles with five value functions
are sufficient to benefit from the advantages of EMAX and discuss
the computational cost of ensemble models.

2 RELATEDWORK
In this section, we discuss existing research on ensemble models for
single-agent reinforcement learning (RL), and discuss prior MARL
research addressing the challenge of exploration as well as how our
approach compares to them.

Ensemble models in RL: Several single-agent RL algorithms
train ensembles of value functions. Bootstrapped DQN [23] applies
ensemble value functions for exploration by randomly sampling a
single value function to greedily follow at the beginning of each
episode. SUNRISE [13] and MeanQ [15] apply UCB using the aver-
age and standard deviation of value estimates across the ensemble
to explore. Moreover, SUNRISE uses the ensemble to weight the
value loss based on the variance of target values across the en-
semble. MeanQ stabilises the optimisation by computing target
values with an average value estimate across the ensemble which
is shown to reduce the variance of value estimates [3]. Considering
the multi-agent problem, EMAX adapts several of these techniques
and integrates them into value-based MARL algorithms. Concur-
rently to our work, Shen and How [33] proposed latent-conditioned
policies to approximate ensemble training for robust MARL, but
their work focuses on competitive policy-gradient algorithms.

Multi-agent exploration: For the multi-agent setting, Wang
et al. [37] incentivise agents to interact with each other by intrinsi-
cally rewarding them for mutually influencing their transition dy-
namics or value estimates. Similar intrinsic rewards can be assigned

for reaching goal states to train separate exploration policies [16].
However, intrinsic rewards for exploration have to be carefully bal-
anced for each task due to the modified optimisation objective [31].
To address this challenge, LIGS [20] formulate the assignment of
intrinsic rewards as a MARL problem and train an agent to deter-
mine when and which intrinsic reward should be given to each
agents. Experience and parameter sharing have been leveraged
to greatly improve sample efficiency for MARL by synchronising
agents’ learning and make use of more data [7, 8]. REMAX [30]
identifies valuable initial states for episodes to guide exploration
based on a latent representation of states learned using the interac-
tions of agents in the environment. However, there is little research
using distributional and ensemble-based techniques for MARL ex-
ploration. Zhou et al. [40] extend posterior sampling [24] for MARL,
but are limited to two-player zero-sum extensive games. We aim to
close this gap by proposing EMAX, an ensemble-based technique
for efficient exploration in cooperative MARL. We further high-
light that EMAX is a plug-and-play algorithm that can enhance
any value-based MARL algorithm, including most existing MARL
exploration techniques described in this paragraph.

3 BACKGROUND
3.1 Decentralised Partially Observable Markov

Decision Process
We formalise cooperativemulti-agent environments as decentralised
partially observable Markov decision processes (Dec-POMDP) [28]
defined by (I,S, {A𝑖 }𝑖∈I , {O𝑖 }𝑖∈I ,P,R,Ω). Each agent is indexed
by 𝑖 ∈ I = {1, . . . , 𝑁 }.S denotes the state space of the environment.
Agents receive local observation which are drawn from their obser-
vation space O𝑖 and take actions from their action space A𝑖 . We
denote the space of joint observations and actions across all agents
withO = O1×. . .×O𝑁 andA = A1×. . .×A𝑁 , respectively. The ob-
servation function Ω : S×A×O ↦→ [0, 1] determines a distribution
over joint observations given the current state and taken joint ac-
tion. Given the current state and the joint action, the transition func-
tion P : S × A × S ↦→ [0, 1] and reward function R : S × A ↦→ R
define a distribution over the successor state of the environment and
a scalar reward shared across all agents, respectively. Each agent
𝑖 only receives its local observation 𝑜𝑖𝑡 = Ω(𝑠𝑡 , 𝑎𝑡 )𝑖 at timestep
𝑡 and learns a policy 𝜋𝑖 : H𝑖 × A𝑖 ↦→ [0, 1] defining its action
probabilities given the episodic history of actions and observa-
tions ℎ𝑖 =

(
𝑎𝑖
𝑡−1, 𝑜

𝑖
𝑡

)
𝑡≥1

∈ H𝑖 . Each agent optimises its policy
with the objective of learning a joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑁 ) such
that 𝜋 ∈ arg max𝜋 ′ E

[∑∞
𝑡=1 𝛾

𝑡−1R(𝑠𝑡 , 𝑎𝑡 )
]
with discount factor

𝛾 ∈ [0, 1).

3.2 Value-Based Multi-Agent Reinforcement
Learning

Independent Q-learning: Independent deep Q-network (IDQN)
extends DQN [21] for MARL and independently learns a value func-
tion 𝑄𝑖 , parameterised by 𝜃𝑖 , for each agent 𝑖 . Agents store tuples
(𝑠, 𝑜, 𝑎, 𝑟, 𝑠′, 𝑜′) of experience consisting of state 𝑠 , joint observation
𝑜 , applied joint action 𝑎, received reward 𝑟 , next state 𝑠′, and next
joint observation 𝑜′, respectively, in a replay buffer. The value func-
tion of agent 𝑖 is then optimised by minimising the average loss



Agent 1

...

Agent N

...

...

Value Aggregation

...

Agent 1

...

Agent N

...

...

Value Aggregation

Agent i

...

Figure 2: Illustration of EMAX with (left) the UCB exploration strategy for agent 𝑖, (middle) the computation of value estimates,
and (right) the target computation. Computation of individual agent value functions are highlighted in green, exploration in
red, value aggregation for value decomposition algorithms in blue, and target aggregation in orange.

across sampled batches of experience:

L(𝜃𝑖 ) =
[
𝑄𝑖 (ℎ𝑖 , 𝑎𝑖 ) − 𝑟 − 𝛾 max

𝑎′
𝑖
∈A𝑖

𝑄𝑖 (ℎ′𝑖 , 𝑎
′
𝑖 )
]2

(1)

with 𝑄𝑖 denoting a target network with parameters 𝜃𝑖 which are
periodically copied from 𝜃𝑖 .

Value decomposition: Independent learning serves as an effec-
tive baseline in many cooperative MARL tasks [26] but suffers from
the non-stationarity arising from the learning of other agents [25]
and the multi-agent credit assignment problem, i.e. agents need to
identify their individual contribution to received rewards [10, 29].
Value decomposition algorithms address this latter multi-agent
challenge using a centralised state-action value function 𝑄tot, con-
ditioned on the state and joint action of all agents. In environments,
where the state is not available during training, we approximate
the state with the joint observation. Directly learning such a value
function is often computationally infeasible due to the exponential
growth of the joint action space with the number of agents, so the
centralised value function is approximated with an aggregation of
individual value functions of each agent conditioned on the local
observation-action history. The value functions and aggregation are
optimised by minimising the joint value function loss with target
values 𝑦tot:

L(𝜃 ) = [𝑄tot (𝑠, 𝑎) − 𝑦tot]2 (2)

Two common value decomposition algorithms are VDN [35] and
QMIX [29]. VDN assumes a linear aggregation of the centralised
value function and targets

𝑄tot (𝑠, 𝑎) =
∑︁
𝑖∈I

𝑄𝑖 (ℎ𝑖 , 𝑎𝑖 ) (3)

𝑦tot = 𝑟 + 𝛾 max
𝑎′∈A

∑︁
𝑖∈I

𝑄𝑖 (ℎ′𝑖 , 𝑎
′
𝑖 ) (4)

and QMIX assumes a less restrictive monotonic mixing function of
individual values

𝑄tot (𝑠, 𝑎) = 𝑓𝑚 (𝑄1 (ℎ1, 𝑎1), . . . , 𝑄𝑁 (ℎ𝑁 , 𝑎𝑁 ))

𝑦tot = 𝑟 + 𝛾 max
𝑎′∈A

𝑓𝑚

(
𝑄1 (ℎ′1, 𝑎

′
1), . . . , 𝑄𝑁 (ℎ′𝑁 , 𝑎

′
𝑁 )

)
(5)

with 𝑓𝑚 and 𝑓𝑚 denoting the deep monotonic mixing function and
a delayed target mixing function, respectively.

4 ENSEMBLE VALUE FUNCTIONS FOR
MULTI-AGENT REINFORCEMENT
LEARNING

In this section, we present ensemble value functions for multi-agent
exploration (EMAX), a general framework to leverage ensembles of
value functions for improved exploration and stable optimisation in
value-basedMARL. Following the intuition that the disagreement of
value estimates, given by the standard deviation of value estimates
across the ensemble, indicates the degree of required cooperation
and exploration of states and actions, agents follow a UCB policy to
guide their exploration. To stabilise the optimisation, low variance
target estimates are computed across the ensemble. In the following,
we define the training of ensembles of value functions for IDQN,
its integration into value decomposition methods such as VDN
and QMIX, and describe the exploration and evaluation policies of
EMAX. Figure 2 illustrates the architecture of our approach.

Independent target computation: In the case of independent
learning with ensemble value functions, each agent 𝑖 trains an
ensemble of 𝐾 value functions {𝑄𝑘

𝑖
}𝐾
𝑘=1 with 𝑄𝑘

𝑖
being parame-

terised by 𝜃𝑘
𝑖
. Each value function is conditioned on agent 𝑖’s local

observation-action history. For the following, we define the average
and standard deviation of value estimates across the ensemble of



agent 𝑖:

𝑄mean
𝑖 (ℎ, 𝑎) = 1

𝐾

𝐾∑︁
𝑘=1

𝑄𝑘𝑖 (ℎ, 𝑎) (6)

𝑄std
𝑖 (ℎ, 𝑎) =

√√√∑𝐾
𝑘=1

(
𝑄𝑘
𝑖
(ℎ, 𝑎) −𝑄mean

𝑖
(ℎ, 𝑎)

)2

𝐾
(7)

To optimise the 𝑘𝑡ℎ value function of agent 𝑖 , we minimise the
following loss:

L(𝜃𝑘𝑖 ) =
[
𝑄𝑘𝑖 (ℎ𝑖 , 𝑎𝑖 ) − 𝑟 − 𝛾 max

𝑎′
𝑖
∈A𝑖

𝑄mean
𝑖 (ℎ′𝑖 , 𝑎

′
𝑖 )
]2

(8)

Computing target values as the average across all value estimates
of the ensemble [15] reduces the computational and memory cost
of training ensemble networks by alleviating the need for target
networks and, as we empirically show later, reduces the variability
of gradients. Such reduced variability of gradients improves the
stability of training and is particularly valuable in MARL where
non-stationarity can make training otherwise unstable.

Value decomposition: Value decomposition techniques such
as VDN [35] and QMIX [29] can naturally be extended with EMAX
to benefit from its improved training stability. In this case, each
agent trains an ensemble of independent value functions as pro-
posed above. The total loss for the 𝑘th value functions of all agents
with parameters 𝜃𝑘 is given by Equation (2) with centralised value
function and targets for VDN

𝑄𝑘tot (𝑠, 𝑎) =
∑︁
𝑖∈I

𝑄𝑘𝑖 (ℎ𝑖 , 𝑎𝑖 )

𝑦tot = 𝑟 + 𝛾 max
𝑎′∈A

∑︁
𝑖∈I

𝑄mean
𝑖 (ℎ′𝑖 , 𝑎

′
𝑖 )

(9)

and QMIX shown in Equations (9) and (10), respectively.

𝑄𝑘tot (𝑠, 𝑎) = 𝑓𝑚
(
𝑄𝑘1 (ℎ1, 𝑎1), . . . , 𝑄𝑘𝑁 (ℎ𝑁 , 𝑎𝑁 )

)
𝑦tot = 𝑟 + 𝛾 max

𝑎′∈A
𝑓𝑚

(
𝑄mean

1 (ℎ′1, 𝑎
′
1), . . . , 𝑄

mean
𝑁 (ℎ′𝑁 , 𝑎

′
𝑁 )

)
(10)

The aggregation of QMIX is able to represent a wider set of cen-
tralised value functions, but VDN has been shown to be more sam-
ple efficient in tasks which do not seem to require a non-linear
aggregation for effective cooperation [26]. Therefore, we consider
both the extension of VDN and QMIX with EMAX.

Exploration policy: In cooperative MARL, agents should focus
their exploration on actions and parts of the state space which
require cooperation to achieve high rewards. To incentivise such
exploration with ensemble value functions, agent 𝑖 follows a UCB
policy akin to SUNRISE [13] and MeanQ [15]

𝜋
expl
𝑖

(ℎ𝑖 ) ∈ arg max
𝑎∈A𝑖

𝑄mean
𝑖 (ℎ𝑖 , 𝑎) + 𝛽𝑄std

𝑖 (ℎ𝑖 , 𝑎) (11)

with uncertainty weighting hyperparameter 𝛽 > 0 chosen in con-
sideration of the scale of rewards and the amount of exploration
required for a task. This exploration strategy, in contrast to common
random exploration for value-based MARL such as 𝜖-greedy poli-
cies, uses uncertainty over value estimates, given by the disagree-
ment of value estimates across the ensemble, to guide exploration.
Value estimates in parts of the environment which require no or

limited exploration across agents will quickly converge, leading
to low disagreement in ensemble value functions and hence less
exploration. In contrast, value estimates in parts of the environment
which require cooperation will experience large disagreement due
to agents often failing to cooperate and thereby experiencing highly
varying rewards. This leads to UCB with ensemble value functions
focusing its exploration on parts of the environments which are
most interesting for exploration. We empirically demonstrate these
benefits in Section 5.

Evaluation policy:When evaluating agents, value-basedMARL
algorithms typically follow the greedy policy with respect to their
value function. With EMAX, agent 𝑖 selects its action during evalu-
ation using a majority vote across the greedy actions of all models
in its ensemble

𝜋eval𝑖 (ℎ𝑖 ) ∈ arg max
𝑎∈A𝑖

𝐾∑︁
𝑘=1

1A𝑜𝑝𝑡𝑘
𝑖
(𝑎)

A𝑜𝑝𝑡𝑘𝑖 = {𝑎′ ∈ A𝑖 | 𝑎′ ∈ arg max
𝑎

𝑄𝑘𝑖 (ℎ𝑖 , 𝑎)} (12)

with indicator function 1A𝑜𝑝𝑡𝑘
𝑖
for the greedy action of 𝑄𝑘

𝑖
. Such

a policy decreases the likelihood of taking poor actions because
any individual value function preferring a poor action due to errors
in value estimates does not impact the action selection as long as
the majority of models agree on the optimal action. We empirically
study this effect in Appendix D.1

Ensemble diversity: All aforementioned ensemble value func-
tion techniques rely on value functions within the ensemble stay-
ing sufficiently diverse, in particular early in training. Similar to
MeanQ [15], we apply three ideas to ensure diversity: (1) Ensemble
models are separately and randomly initialised. (2) Each model is
trained on bootstrapped samples of the entire experience collected.
(3) We sample separate batches of experience from the replay buffer
to train each model in the ensemble.

5 DIDACTIC EXAMPLE: EXPLORATION IN
TWO-PLAYER COMMON-REWARDMATRIX
GAME

In this section, we consider a simplified setting of single-stage (state-
less) two-player common-reward matrix games using the example
of the climbing game [9]. Table 1 shows the reward table for this
game with both agents choosing between actions 𝐴, 𝐵 and 𝐶 .

Agent 2
𝐴 𝐵 𝐶

Agent 1
𝐴 11 −30 0
𝐵 −30 7 6
𝐶 0 0 5

Table 1: Climbing game reward table.

Converging to the optimal cooperation policy of (𝐴,𝐴) in this
game is difficult because any agent deviating from this joint policy
leads to significant penalties, so agents might converge to subopti-
mal policies with lower risk. This setting does not require target
1All appendices are available online at https://arxiv.org/abs/2302.03439.

https://arxiv.org/abs/2302.03439


IQL UCB Ensemble IQL UCB (ours) IQL ε-greedy Ensemble IQL ε-greedy

0 200 400 600 800 1000
Timesteps

0

2

4

6

8

10

Ev
al

ua
tio

n 
re

wa
rd

s

(a) Evaluation rewards

0 500 1000
Timesteps

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Ag
en

t 1
 Q

-v
al

ue
s

A

0 500 1000
Timesteps

B

0 500 1000
Timesteps

C

(b) Q-values of one agent for actions A, B, C.

Figure 3: Tabular independent Q-learning (IQL) agents trained in the climbing game. We visualise (a) evaluation rewards
(interquartile mean with 95% confidence intervals) and (b) Q-values with shading indicating UCB uncertainty throughout
training, both given by the interquartile mean of Q-value estimates and uncertainty, respectively. Our approach with ensemble
value functions and UCB (orange) consistently converges to the optimal joint policy (𝐴,𝐴), whereas all baselines converge to
suboptimal policies in most runs.

computation (due to single stage immediate rewards), hence we
can study the impact of our proposed UCB exploration to discover
optimal cooperation policies in isolation.

We evaluate tabular independent Q-learning (IQL) [36] with and
without our ensemble value functions using 𝜖-greedy and UCB
exploration policies. In order to represent initial uncertainty about
value estimates, we initialise value functions of all algorithms with
a zero-mean Gaussian distribution. For more details on value initial-
isation and hyperparameters for all algorithms, see Appendix A.1.
Results are reported over 100 runs. Figure 3a shows that only our
approach with ensemble value functions and UCB exploration (or-
ange) robustly converges to the optimal solution with a reward of
11, whereas all baselines converge to suboptimal policies in most
runs.

Inspecting the Q-values throughout training, visualised in Fig-
ure 3b, explains why UCB exploration with ensemble value func-
tions is effective: Early in training, all value estimates are centred
at zero with high uncertainty, but uncertainty gradually decreases
as the agents explore. In particular the uncertainty of value esti-
mates for actions 𝐵 and 𝐶 are quickly reduced due to low variance
in received rewards in comparison to 𝐴. For action 𝐴, exploring
agents will sometimes receive very high and sometimes very low
rewards, leading to high disagreement of value estimates for 𝐴
across the ensemble. With high disagreement of value estimates
for action 𝐴 and decreasing disagreement for other actions, both
agents will eventually start to continually choose action 𝐴 which
allows them to converge to the optimal policy of (𝐴,𝐴). In contrast,
UCB exploration without ensemble value functions computes its
exploration policy as

𝜋
expl
𝑖

∈ arg max
𝑎∈A𝑖

𝑄𝑖 (𝑎) + 𝛽
𝑡

𝑁𝑖 (𝑎)
(13)

with counts of actions being used to approximate the uncertainty.
This measure of uncertainty does not reflect the true variance of

received rewards and hence does not benefit from a similar effect
of focusing exploration on actions which particularly require co-
operation. Likewise, 𝜖-greedy explores uniformly at random, so
successful cooperation with (𝐴,𝐴) is unlikely. This leads to low
value estimates for action𝐴 and convergence to suboptimal policies.
We provide additional visualisations and analysis in Appendix B.

6 EXPERIMENTS
After illustrating the impact of UCB exploration with tabular en-
semble value functions in a two-player matrix game, we evaluate
EMAX and four deep value-based MARL baselines across 21 diverse
multi-agent tasks in four environments.

6.1 Evaluation Details
We evaluate a total of seven deep MARL algorithms: Indepen-
dent DQN (IDQN), VDN, and QMIX as well as their extensions
with EMAX, which we will denote IDQN-EMAX, VDN-EMAX,
and QMIX-EMAX, respectively, and MAVEN [18]. MAVEN extends
QMIX for cooperative exploration by conditioning the individual
value functions of agents and the mixing network on a latent vari-
able sampled from a learned variational distribution. Following
suggestions from Agarwal et al. [1], we report performance profiles
and use the interquartile mean (IQM) and 95% confidence inter-
vals computed over five runs in all tasks. For every algorithm and
task, agents share network parameters and unless stated otherwise
EMAX uses ensembles with 𝐾 = 5 value functions. Details on hy-
perparameters are provided in Appendix A.2. We evaluate in 21
tasks across four multi-agent environments, visualised in Figure 4,
focused on cooperation and exploration: eight level-based foraging
(LBF) tasks [2, 26], four boulder-push (BPUSH) tasks [6], six multi-
robot warehouse (RWARE) tasks [8, 26], and three multi-agent
particle environment (MPE) tasks [17, 22].



(a) Level-based foraging (b) Boulder-push (c) Multi-robot warehouse
(d) Multi-agent particle environ-
ment

Figure 4: Visualisations of four multi-agent environments.

Level-Based Foraging: The level-based foraging (LBF) envi-
ronment [2, 26] contains diverse tasks in which agents and food
are randomly scattered in a gridworld. Agents observe the loca-
tion of themselves as well as all other agents and food in the
gridworld, and are able to choose between discrete actions A =

{do nothing,move up,move down,move left,move right, pick-up}.
Agents and food are assigned levels and agents can only pick-up
food if the level of all agents standing next to the food and choosing
the pick-up action together is greater or equal to the level of the
food. Agents only receive rewards for successful collection of food.
Episodes terminate after all food has been collected or after at most
50 timesteps. Each episode randomises the level and starting loca-
tions of agents and food. Tasks vary in the size of the gridworld,
the number of agents and food, and the level assignment.

Boulder-Push: In the boulder-push environment (BPUSH) [6],
agents need to navigate a gridworld to move a boulder to a tar-
get location. Agents observe the location of the boulder, all other
agents, and the direction the boulder needs to be pushed in. The
action space of all agents consists of the same discrete actions
A = {move up,move down,move left,move right}. Agents only
receive rewards of 0.1 per agent for successfully pushing the boul-
der forward in its target direction, which requires cooperation of
all agents, and a reward of 1 per agent for the boulder reaching its
target location. Unsuccessful pushing of the boulder by some but
not all agents leads to a penalty reward of −0.01. Episodes termi-
nate after the boulder reached its target location or after at most 50
timesteps. BPUSH tasks considered in this work vary in the size of
the gridworld and the number of agents varying between two and
four.

Multi-Robot Warehouse: The multi-robot warehouse environ-
ment (RWARE) [8, 26] represents gridworld warehouses with blocks
of shelves. Agents need to navigate the warehouse and collect cur-
rently requested items. Agents only observe nearby agents and
shelves immediately next to their location, and choose discrete ac-
tionsA = {turn left, turn right,move forward, load/ unload shelf}.
Agents are only rewarded for successful deliveries of requested
shelves, which require long sequences of actions, with a reward of
1, thus rewards are very sparse making RWARE tasks hard explo-
ration problems. At each timestep, the total number of requested
shelves is equal to the number of agents and once requested shelves,

a currently unrequested shelf is uniformly at random sampled and
added to the list of requested shelves. Episodes terminate after 500
timesteps. It is worth highlighting that no value-based algorithm
achieved non-zero rewards in this environment within four million
timesteps of training in prior evaluations [26].

Multi-Agent Particle Environment: In the multi-agent parti-
cle environment (MPE) [17, 22], agents navigate continuous two-
dimensional, fully-observable environments. In all tasks, agents
observe the relative position and velocity of all agents, as well as the
relative positions of landmarks in the environment. Agents choose
between five discrete actions consisting of doing nothing and move-
ment in all four cardinal directions. We evaluate agents in three
diverse tasks within MPE which all require cooperation between
all agents with densely rewarded objectives. (1) Predator-prey in
which three agents control predators in an environment with three
landmarks, representing obstacles, and a faster, pre-trained2 prey.
The agents are rewarded with +10 for touching the prey agent.
(2) Spread in which three agents need to cover three landmarks
while avoiding collisions with each other. At each timestep, agents
receive a negative reward corresponding to the minimum distance
from each landmark to its closest agent as well as a small nega-
tive reward of −1 for agent collisions. (3) Adversary in which two
agents are in an environment with an pre-trained adversary and
two landmarks. At the beginning of each episode, one of the two
landmarks is randomly determined as the goal landmark for the
agents (agents observe this goal landmark but the adversary has no
information about it). The agents receive rewards corresponding to
the negative distance from the goal landmark to the closest agent
and a reward corresponding to the distance of the adversary agent
to the goal landmark.

6.2 Evaluation Results
Figure 5 visualises the learning curve and performance profile of
evaluation returns of all algorithms across all 21 tasks. Across all
tasks, EMAX improves final evaluation returns of IDQN, VDN, and
QMIX, shown in Figure 5a, by 53%, 36%, and 498%, leading to higher
final returns compared to their vanilla baselines in 19, 16, and 20

2Pre-trained agents are obtained from the EPyMARL codebase [26]. Theywere obtained
by training all agents (including adversaries) with the MADDPG algorithm for 25,000
episodes.
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Figure 5: (a) Evaluation returns throughout training and (b) performance profile [1] visualising the distribution of evaluation
returns at the end of training of all algorithms, both aggregated across all 21 tasks. EMAX (orange) significantly improves the
sample efficiency and final achieved returns of all algorithms. Lines and shading represent the interquartile mean and 95%
confidence intervals of evaluation returns, respectively, aggregated over five runs for every task, for a total of 105 runs per
algorithm. For each task, evaluation returns are normalised between the minimum (0) and maximum (1) achieved returns.

out of 21 tasks, respectively. These results mostly arise from im-
proved sample efficiency for IDQN and VDN, and QMIX-EMAX
learning in several hard exploration tasks where QMIX fails to
achieve any reward. The performance profile in Figure 5b visualises
the the distribution of evaluation returns at the end of training
across all algorithms and tasks. These profiles indicate that EMAX
significantly improves the robustness of all algorithms, consistently
achieving higher returns. We provide learning curves in all individ-
ual tasks, normalised evaluation returns for each environment, as
well as a table with evaluation returns of final returns in any task
in Appendix C.

In LBF, EMAX significantly improves the performance of QMIX
whereas minor improvements can be seen for IDQN and VDN. In-
specting learning curves in individual tasks (see Appendix C) shows
that QMIX fails to achieve any rewards in several LBF tasks with
particularly sparse rewards. We hypothesise that QMIX, similarly
MAVEN, suffer from the large dimensionality of the joint observa-
tion as input to the mixing network which is inefficient to train with
the sparse learning signal of these tasks. The uncertainty-guided
exploration of EMAX seems to alleviate these inefficiencies.

In BPUSH, a similar trend can be observed with, most notably,
VDN-EMAX and QMIX-EMAX learn to solve a BPUSH task with
four agents in which no baseline demonstrates any positive rewards
(see Figure 12d). This task requires complex cooperation because
four agents need to move in unison to successfully complete this
task and any miscoordination leads to negative rewards.

In RWARE, consistent with prior work [26], independent learn-
ing value-based algorithms outperform centralised value decompo-
sition methods due to highly sparse rewards. IDQN-EMAX outper-
forms all baselines across all six RWARE tasks, and IDQN-EMAX
and VDN-EMAX both significantly improve upon their vanilla base-
lines in all RWARE tasks, achieving 330% and 252% higher final
evaluation returns, respectively, whereas QMIX with and without
EMAX as well as MAVEN fail to learn.

In contrast to other environments, MPE has continuous observa-
tions and dense rewards. In all three MPE tasks, we see improve-
ments in sample efficiency and final performance for algorithms
with EMAX compared to all the baselines.

Training stability: In MARL, the environment becomes non-
stationary from the perspective of each agent as its perceived transi-
tions and rewards are impacted by the constantly changing policies
of other agents. EMAX computes target values as average value
estimates across an ensemble which have been shown to reduce
variance of target values [15]. To demonstrate the stabilising effect
of these target values on the optimisation, we visualise the stabil-
ity of gradients measured by the conditional value at risk (CVaR)
of gradient norms, detrended over consecutive values, during the
optimisation of IDQN, VDN, QMIX with and without EMAX

CVaR(𝑔′) = E
[
𝑔′ | 𝑔′ ≥ VaR95% (𝑔′)

]
(14)

𝑔′𝑡 = |∇𝑡+1 | − |∇𝑡 | (15)

where the value at risk (VaR) corresponds to the value at the 95%
quantile of all detrended gradient norm values. Figure 6 shows
the average and standard error of these CVaR values across all 21
tasks. We observe that the target computation of EMAX indeed
significantly reduces the CVaR of gradient norms for IDQN, VDN,
and QMIX indicating more stable optimisation. We hypothesise that
the difference for QMIX is less significant because it fails to learn
in several tasks, leading to little training signal with low gradient
variability independent of the target values.

Ensemble size: The computational cost of training an ensemble
of models scales with the ensemble size 𝐾 . Hence, we investigate
the cost of training these ensemble models for varying 𝐾 and pose
the question of how many models are needed in the ensemble
for EMAX to benefit from the improved exploration and stability.
Table 2 shows the average time to train IDQN, VDN, QMIX, and
their corresponding EMAX extensions with 𝐾 ∈ {2, 5, 8} for 10,000
timesteps in the LBF 10x10-3p-3f task. These times were averaged
across ten runs. We can see that training an ensemble of 𝐾 = 5
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Figure 6: Average and standard error of the conditional value
at risk (CVaR) of detrended consecutive gradient norms of all
algorithms across all tasks. We detrend consecutively logged
gradient norms for each task by computing the difference
between them and compute the CVaR as the expected value
of these gradient norm differences in the top 5% percentile
before computing the average and standard error across all
tasks. This metric corresponds to the short-term risk across
time suggested by Chan et al. [5].

value functions, as applied in our evaluation, increases the training
time by less than 100%. While this cost is significant, we believe
that it is justified in cases where sample efficiency and stability are
of importance as EMAX offers significant improvements in both of
these. To investigate the question of how many models are needed
in the ensemble, we evaluate all algorithms with varying 𝐾 in the
RWARE 11x10 task with four agents (Figure 7), in which EMAX led
to substantial improvements for IDQN and VDN. It appears that
the benefits of larger ensemble models saturate at 𝐾 = 5. EMAX
with 𝐾 = 8 performs identical or worse for all algorithms, and the
smaller ensemble 𝐾 = 2 reaches lower returns for IDQN and VDN.
These results suggest that a comparably small ensemble with 𝐾 = 5,
which approximately doubles wall clock training time, can signif-
icantly improve sample efficiency with EMAX. Additionally, we
hypothesise that larger ensemble value functions may require more
data to train, thus leading to diminishing benefits for ensembles of
many value functions.

All gridsearches and evaluations for deep experiments were
conducted on (1) desktop computers with two Nvidia RTX 2080 Ti
GPUs, Intel i9-9900X @ 3.50GHz CPU, 62GB RAM, running Ubuntu
20.04, and (2) two server machines with four Nvidia V100 GPUs,
Intel Xeon Platinum 8160 @ 2.10GHz CPU, 503GB RAM, running
CentOS Linux 7 OS. The speedtest for varying ensemble sizes has
been conducted on the desktop computer.

7 CONCLUSION
In this paper, we propose EMAX, a general framework to extend
any value-based MARL algorithms using ensembles of value func-
tions. EMAX leverages the disagreement of value estimates across
the ensemble with a UCB policy to guide exploration towards parts
of the environment which require coordination. Additionally, gra-
dients during training are stabilised by computing target values as
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Figure 7: Evaluation returns for all vanilla and EMAX algo-
rithms with varying ensemble sizes 𝐾 ∈ {2, 5, 8} in RWARE
11x10 4ag.

Table 2: Average time (in seconds) for vanilla and EMAX
algorithms with varying ensemble sizes 𝐾 to complete 10,000
timesteps of training in the LBF 10x10-3p-3f task. Relative
increase to the training time of the baseline algorithm (𝐾 = 1)
is given in parenthesis. Times are averaged across ten runs.

Algorithm Baseline 𝐾 = 2 𝐾 = 5 𝐾 = 8

IDQN 16.80 21.29 (+27%) 33.04 (+97%) 48.06 (+186%)
VDN 16.92 21.56 (+27%) 33.25 (+97%) 48.16 (+185%)
QMIX 17.70 22.53 (+27%) 33.71 (+90%) 48.66 (+175%)

the average value estimate across the ensemble. Empirical results in
21 tasks across four environments demonstrate that EMAX signif-
icantly improves sample efficiency, final performance, and training
stability for all three extended algorithms. Lastly, we discuss the
computational cost introduced by EMAX and show that comparably
small ensemble models are sufficient to achieve the demonstrated
improvements.

EMAX is currently limited to value-based cooperative MARL
algorithms. Firstly, future work should consider the extension of
EMAX to multi-agent actor-critic algorithms such as MAPPO and
IPPO, which have shown to be effective in cooperative MARL [38].
Ensembles of critics and policies could be trained for each agent,
with similar target computation and UCB policies across actors
being used to leverage the techniques proposed in this work. Sec-
ondly, future work could aim to reduce the computational cost of
training ensembles of value functions. Prior work has explored
the application of hypernetworks [11] and latent-conditioned mod-
els [33] to approximate ensembles using a single network. Similar
techniques could help to significantly reduce the computational
cost of EMAX, thereby making it more widely accessible. Lastly,
ensembles of value functions can be used to efficiently explore in
two-player zero-sum games [19, 27, 34].
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