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ABSTRACT
Automated decision support systems, based on reinforcement learn-
ing, are increasingly important across a wide range of complex
problem settings that consider individuals or groups of individuals.
To use such systems in the real world, fairness of treatment is an
essential trait to allow stakeholders to make informed decisions that
balance the performance-fairness trade-off. In this work, we pro-
pose a universal framework to establish fairness in reinforcement
learning agents, with regards to multiple fairness notions. To this
end, we formulate sequential fairness notions in function of groups
and individuals. First, we present a Markov decision process that is
explicitly aware of individuals and group arrangements. Next, we
formalise fairness notions in terms of this extended Markov deci-
sion process, by maintaining a history of states, actions, rewards,
and ground truth feedback. Based on this formalism we classify
distinct fairness settings and identify key research challenges to
implement this reinforcement learning framework.
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1 INTRODUCTION
Fair and balanced automated decision support is essential, to avoid
discrimination or favouritism towards individuals and groups. This
is crucial in a wide array of applications, such as finance [15], job hir-
ing [24, 25], epidemic mitigation [3, 7, 14] and fraud detection [19].
Fair decision support systems allow stakeholders to make informed
decisions taking into account an appropriate performance-fairness
trade-off. This is important, as advice that is proposed by a virtual
agent potentially impacts individuals and groups. Therefore, it is
vital to study this matter to enable a wider acceptance of algorithms
that support decision makers. As fairness requirements depend on
the problem context and the decision maker’s preferences, a frame-
work should be capable of dealing with multiple fairness notions,
that encompass the ethical considerations of the problem domain.
Consequently, it is important to develop a framework that considers
fairness based on sensitive features (e.g., race and gender) and their
combinations.

Previous workmainly focused on supervised learning techniques
that operate on a given dataset [5, 6, 8, 17, 18]. However, automated
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decision problems are typically sequential. Furthermore, the set-
ting evolves over time and as such a reinforcement learning (RL)
approach is warranted [4]. This means that we must deal with
the impact of short-term decisions on long term performance. RL
enables an agent to learn a policy by interacting with an envi-
ronment [27]. At each time 𝑡 , the agent observes the state 𝑠𝑡 of
the environment and decides on an action 𝑎𝑡 to take, for which it
receives a reward 𝑟𝑡 and observes the next state 𝑠𝑡+1. The agent
learns through trial and evaluation by repeatedly interacting with
the environment, where it must carefully balance exploration and
exploitation to reach an optimal policy [27]. Additionally, the agent
may need to deal with stochastic and non-stationary environments
where it must adapt its behaviour to maintain its performance.

In a supervised classification setting, the ground truth is known
and it is used to train the model. Based on this ground truth, a
confusion matrix is derived to reflect on the correctness of the
model’s predictions. By definition, reinforcement learning agents do
not have a priori access to a ground truth, as the agent collects data
while interacting with an environment. Therefore, actions taken by
the agent cannot be classified to be correct or false, which impedes
the use of fairness notions that rely on a confusion matrix. As most
fairness notions rely on the ground truth, they are only applicable
when feedback regarding this ground truth can be collected from
the environment [17].

It is important to emphasise that this ground truth is different
from the reward signal in a reinforcement learning setting. While
the reward signal may indicate how suitable an action is given
a state, it does not conclusively specify whether the action was
correct or false. Aswith the reward, feedback concerning the ground
truth can be sparse or delayed, providing limited feedback during
most agent-environment interactions. To illustrate this, consider
the example of job hiring, where we receive delayed feedback as
the candidate can only be evaluated after working for some time.
Moreover, candidates can only be evaluated if they are hired and
not when they are declined.

Recent work on fairness in RL has focused on single fairness
notions in application-specific solutions [2, 11, 12, 23, 26, 29] and
typically relies on reward shaping [2, 16]. However, such an ap-
proach does not suffice for real-world decision support problems
as the desired performance-fairness trade-off cannot a priori be
defined by stakeholders. Moreover, certain problem settings require
multiple fairness notions to be taken into account simultaneously.
We therefore argue that a multi-objective reinforcement learning
approach is warranted.

https://ala2023.github.io/


2 FAIRNESS FRAMEWORK
We describe the various components of the fairness framework,
along with their requirements and suitability regarding distinct
problem settings. As the presence of the ground truth is required for
some fairness notions, it must be either obtained through feedback
or approximated based on previous interactions.

To introduce fairness notions in an RL context, we illustrate them
based on three running examples. The first example concerns job
hiring, where the aim is to hire highly qualified candidates while
limiting bias towards sensitive features. The second is an epidemic
mitigation example, that aims at imposing contact reductions in
an efficient yet fair way. The third example covers fraud detection,
where fraudulent transactions must be cleverly flagged, taking into
account that verification requires human effort. These running
examples provide an initial overview of distinct fairness concerns,
to indicate current challenges of implementing a framework for
fair RL algorithms.

We highlight that RL can be used both directly or indirectly in the
context of real-world problems. On the one hand, in the epidemic
mitigation example, a detailed simulator is used to train an agent,
after which the learned policies can be studied by public health
experts [1, 30]. On the other hand, in a fraud detection setting
the agent may learn directly in the real world to flag suspicious
transactions.

2.1 Fairness history
A sequential decision process can be formally defined as a Markov
Decision Process (MDP) [27], consisting of a set of states S, a
set of actions A, a set of rewards R and a transition function 𝑝 :
S×R×S×A → [0, 1] describing the probability of a next state 𝑠𝑡+1
and reward 𝑟𝑡 given the current state 𝑠𝑡 and action 𝑎𝑡 . We extend
this standard MDP to an 𝑓MDP to encode a feedback signal 𝑓𝑡 , that
concerns which was the correct action 𝑎𝑡 or rather an indication if
the chosen action 𝑎𝑡 was correct at time 𝑡 . Note that this feedback
is optional and can be partial, sparse or delayed.

We introduce the following notation regarding individuals and
groups. I𝑡 refers to the set of individuals involved in the decision
process at time 𝑡 and we use 𝑖𝑡 to refer to an individual of that set.
In the job hiring example, I𝑡 refers to the set of candidates who
applied for the job at time 𝑡 and on which a decision (i.e., hire or
reject the applicant) should be made. In the epidemic mitigation
example, I𝑡 refers to the entire population when deciding on who
to impose contact restrictions. We refer to the set of all individuals
involved in the decision process from the start 𝑡 = 0 up to time 𝑇
as I𝑇 .

We define G𝑔,𝑡 as the individuals of I𝑡 that make up group 𝑔. We
refer to all individuals involved in the decision process until time𝑇 ,
that belong to group 𝑔, as G𝑇

𝑔 . For ease of notation, we assume that
groups are predefined and can be empty. In the job hiring example,
G𝑇
𝑔 refers to the group of men or women, who applied for a job

before time 𝑇 . For the epidemic mitigation example, G𝑇
𝑔 refers to

an age group for which the RL agent must decide whether or not
to impose contact restrictions.

Given the 𝑓MDP, we assume that a state 𝑠𝑡 provided to the RL
agent encodes the individuals I𝑡 and groups G𝑡 involved in the
decision at time 𝑡 . Furthermore, the agent’s action 𝑎𝑡 encodes the

decision impacting the involved individuals and groups, and the
feedback 𝑓𝑡 specifies the correctness of that decision. We use the
following notation to connect I𝑡 and G𝑡 to 𝑠𝑡 , 𝑎𝑡 and 𝑓𝑡 :

I𝑡 [𝑠𝑡 ], I𝑡 [𝑎𝑡 ], I𝑡 [𝑓𝑡 ] (1)
G𝑡 [𝑠𝑡 ], G𝑡 [𝑎𝑡 ], G𝑡 [𝑓𝑡 ] (2)

To define fairness over time, e.g., to consider new individuals ap-
plying for a job, a history of encountered states and chosen actions
needs to be maintained, with regards to the impacted individuals
and groups. Given an 𝑓MDP, we define a history H𝑇 until time 𝑇
of past interaction tuples and their feedback regarding the ground
truth:

H𝑇 = {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑓𝑡 }𝑇𝑡=0 (3)

We define the encountered states and selected actions from history
H𝑇 until time 𝑇 respectively as H𝑇

𝑆
and H𝑇

𝐴
. We refer to feedback

regarding the correctness of the action as H𝑇
𝑓
. Following from

the definitions in Equations 1 and 2,H𝑇
𝑆
,H𝑇

𝐴
andH𝑇

𝑓
contain all

information available regarding groups G𝑇 and individuals I𝑇 .

2.2 Fairness notions
We formally define a fairness notion � as a power set � over G𝑇

groups (Equation 4) and I𝑇 individuals (Equation 5), given the
history of encountered statesH𝑇

𝑆
, chosen actionsH𝑇

𝐴
and feedback

H𝑇
𝑓
until time 𝑇 :

� : �(G𝑇 ) × �(H𝑇
𝑆
) × �(H𝑇

𝐴
) × �(H𝑇

𝑓
) ↩→ R (4)

� : �(I𝑇 ) × �(H𝑇
𝑆
) × �(H𝑇

𝐴
) × �(H𝑇

𝑓
) ↩→ R (5)

The fairness notion � ≤ 0 is defined as the negative absolute
difference in treatment between groups or individuals. The closer
� is to zero, the less of a difference there is in treatment between
the groups or individuals. When � = 0, the agent has achieved
exact fairness with respect to the given fairness notion. While �

may be intractable due to limitations of defining exact fairness [11],
we propose to approximate it with �̂. For a future fairness objective,
�, and by extension its approximation �̂ provide a starting point
for a reward signal that can be used with a multi-objective RL
approach.

The availability of a ground truth and as a consequence the con-
fusion matrix1 impacts which fairness notions can be calculated for
a given scenario. Consider the group fairness notion statistical par-
ity [5], where the probability of receiving the preferable treatment
of the agent (H𝑇

𝐴
= 1) should be the same across groups 𝑔 and ℎ:

� = −|P(G𝑇
𝑔 [H𝑇

𝐴 ] = 1|G𝑇
𝑔 [H𝑇

𝑆 ]) −

P(G𝑇
ℎ
[H𝑇

𝐴 ] = 1|G𝑇
ℎ
[H𝑇

𝑆 ]) |
(6)

Statistical parity requires that (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 ) is
equal for both groups 𝑔 and ℎ. Because this fairness notion focuses
on equal acceptance rate across groups, it can be expressed without

1The confusion matrix is defined as a two-dimensional table comparing predictions
of a model to the actual values. In the case of binary actions (e.g., hire or reject an
applicant) it specifies the number of true positives (𝑇𝑃 ), false positives (𝐹𝑃 ), false
negatives (𝐹𝑁 ) and true negatives (𝑇𝑁 ).



knowledge of the ground truth. Other fairness notions require that
the ground truth is (partially) known, such as equal opportunity

� = −|P(G𝑇
𝑔 [H𝑇

𝐴 ] = 1|G𝑇
𝑔 [H𝑇

𝑓
] = 1,G𝑇

𝑔 [H𝑇
𝑆 ]) −

P(G𝑇
ℎ
[H𝑇

𝐴 ] = 1|G𝑇
ℎ
[H𝑇

𝑓
] = 1,G𝑇

ℎ
[H𝑇

𝑆 ]) |
(7)

where H𝑇
𝑓

= 1 is the correct action as specified by the feedback
regarding the ground truth. Equal opportunity requires that the
recall or true positive rate𝑇𝑃/(𝑇𝑃 +𝐹𝑁 ) is equal across groups and
is consequently independent of 𝐹𝑃 . However, in order to calculate it,
we require a (partial) ground truth which informs us about 𝑇𝑃 and
𝐹𝑁 . In the job hiring example, this requires knowing how qualified
a job candidate is to calculate the confusion matrix. One example of
a setting where a partial ground truth is available is fraud detection,
where transactions flagged as fraudulent are manually checked
and provide the number of 𝑇𝑃 and 𝐹𝑃 . In contrast, there is no
information on unflagged transactions which consequently does
not support fairness notions relying on 𝐹𝑁 or 𝑇𝑁 unless random
checks would be performed, or when individuals complain about
fraud cases in their experience.

Ensuring people are treated fairly, with regards to all groups
they are a part of, is achieved by ensuring all their groups are
treated fairly with regards to each other. If the interest is that the
individual itself receives fair treatment, then individual fairness
notions should be used instead.

Individual fairness notions aim to treat similar individuals sim-
ilarly [5]. Given two individuals 𝑖𝑡 and 𝑗𝑡 , we assume a distance
𝑑 (𝑖𝑡 , 𝑗𝑡 ) between the individuals. Given the probability distribu-
tions 𝑀𝑖 and 𝑀𝑗 over the actions for 𝑖𝑡 and 𝑗𝑡 respectively, and a
distance metric 𝐷 (𝑀𝑖 | |𝑀𝑗 ) between these probability distributions,
individual fairness requires that:

∀𝑖𝑡 , 𝑗𝑡 ∈ I𝑡 : 𝐷 (𝑀𝑖 | |𝑀𝑗 ) ≤ 𝑑 (𝑖𝑡 , 𝑗𝑡 ) (8)

As group fairness notions aim to treat groups that differ by a
set of sensitive features similarly, they cannot detect unfairness at
an individual level, as all attributes except the sensitive ones are
ignored [5]. Similarly, individual fairness notions lack the ability to
ensure fairness between groups. Ideally, an RL agent conforms to a
collection of both group and individual fairness notions to manage
this trade-off, which can be managed using a multi-objective learn-
ing approach. We refer to the work of Hayes et al. for an overview
of multi-objective reinforcement learning [10].

By formulating fairness notions in terms of the history defined
in the previous section, we establish a formal way to reason about
fairness notions as reward functions. Yet, as maintaining the full
history will prove computationally intractable for most real-world
applications, a major challenge remains to construct approximative
fairness notions. One research direction is to consider a sliding
window approach, where the history is kept for a fixed or dynamic
number of steps [21]. Another path is to explore the use of distinct
neural sub-networks for the different fairness notions.

2.3 Fairness in sequential decision making
Defining fairness in a sequential setting requires knowledge on how
fairness notions can be defined given the agent-environment inter-
actions. Consider the epidemic control example, where an agent

must decide how to impose contact reductions each day for an en-
tire country [22]. Throughout the day, all individuals participate in
different contact pools such as work, school or community. There-
fore, the agent aims to enforce appropriate contact reductions, such
that everyone in the population is subjected to similar restrictions.

Suppose in our epidemic control example, that each week the
agent encounters the different age groups that make up the popula-
tion. Then each week, the agent chooses contact reductions for the
respective age groups. Then at each time 𝑡 , given an observed state
𝑠𝑡 and chosen action 𝑎𝑡 , given G𝑡 groups, a group fairness notion
can be defined if 𝑠𝑡 contains all respective groups G𝑡 [𝑠𝑡 ] and the
chosen action 𝑎𝑡 represents the action taken towards each group
G𝑡 [𝑎𝑡 ]. Figure 1a visualises the possible scenarios with regards to
the available action, which can be an action over all groups G𝑡 , or a
specific action for each group 𝑔 specifically. Note that if individuals
are defined within the state representation, then Equation 2 can be
defined by grouping individuals in I𝑡 under their respective groups
G𝑡 .

(a) (b)

Figure 1: Scenarios where group fairness can be calculated.
(a) All groups G𝑡 are encountered at each time 𝑡 . Top: action
𝑎𝑡 is an action over all groups G𝑡 . Bottom: action 𝑎𝑡 encodes a
specific action for each group 𝑔. (b) All groups G𝑡 are encoun-
tered over a history until time 𝑇 . The + symbol indicates a
union over states and actions.

Next in the epidemic control example, consider that the agent
only encounters certain age groups on a weekly basis, which could
be the case when youngsters have school vacations at different
times, as is the case in The Netherlands [20]. In this instance, young-
sters participate more in the community during the week than
adults. Then a sufficiently long time horizon must be considered to
encounter all age groups. Concretely, if the state 𝑠𝑡 contains only
information on a subsetB𝑡 ⊂ G𝑡 of the respective groups, a fairness
notion can only be defined when considering multiple timesteps of
encountered groups B𝑇 to contain sufficient information about all
impacted G𝑡 groups for time 𝑡 :

G𝑡 [𝑠𝑡 ] =
Ø

𝑔∈B)

G𝑇
𝑔 [H𝑇

𝑆 ] (9)

Similarly, we require multiple timesteps if the action 𝑎𝑡 does not
define the action for all groups:

G𝑡 [𝑎𝑡 ] =
Ø

𝑔∈B)

G𝑇
𝑔 [H𝑇

𝐴 ] (10)

If individuals are defined within the state representation of the
environment, Equations 9 and 10 can be extended to consider cases
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