
Increasing Energy Efficiency of Bitcoin Infrastructure with
Reinforcement Learning and One-shot Path Planning for the

Lightning Network
Danila Valko

L3S Research Center, Leibniz University Hannover
Hannover, Germany
d.v.valko@gmail.com

Daniel Kudenko
L3S Research Center, Leibniz University Hannover

Hannover, Germany
kudenko@l3s.de

ABSTRACT
The Lightning Network (LN) is a technological solution designed
to solve the Bitcoin blockchain transaction speed problem by in-
troducing off-chain transactions. Since LN is a sparse and highly
distributed network with three predominant routing protocols, its
native pathfinding algorithms can potentially find multi-hop pay-
ment paths similar from the payment sender’s perspective, but the
algorithms themselves have different performance, computational
cost, energy consumption, and ultimately different 𝐶𝑂2 emissions
per step in the pathfinding phase. Bitcoin itself generates approxi-
mately 61.4 million tonnes of𝐶𝑂2 eq. per year. Since the LN is built
on top of Bitcoin, every small change in its energy consumption
can have a significant impact on overall pollution. In this paper,
we show that the Reinforcement Learning (RL) approach can re-
duce these costs and achieve better performance in terms of energy
consumption at each pathfinding step. We introduce one-shot path
prediction and propose an RL solution for a network agent that
learns its neighborhood and uses local knowledge to quickly solve
the pathfinding problem. Based on a real LN snapshot, we empiri-
cally show that the RL solution can outperform native pathfinding
algorithms in the case of an increasing number of transactions in
relatively small neighborhoods.

KEYWORDS
Reinforcement Learning, Pathfinding, Green Computing, Lightning
Network, Bitcoin Infrastructure

1 INTRODUCTION
New and emerging payment channel blockchain networks such as
the Lightning Network (LN) [31] offer a potential solution to the
scalability limitations of Proof-of-Work blockchains like Bitcoin
and Ethereum by moving transactions off-chain. These networks
also promise faster transaction times and lower fees compared to
on-chain transactions. The LN operates under a unified specifica-
tion called BOLT (Basis of Lightning Technology) [5], and had its
first transaction on May 10, 2017. As of February 10, 2023, it had
approximately 16,000 active nodes, 75,000 active channels, and held
more than 5,300 bitcoins [6]. This node infrastructure produces
approximately 1.4 million tonnes of 𝐶𝑂2, or to put it another way,
0.0033 grams of 𝐶𝑂2 per year per transaction [10], and thus has a
significant negative impact on the environment.

There are three predominant routing protocols and related al-
gorithms that LN uses for routing multi-hop payments – LND [4],

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

c-Lightning (CLN) [1] and Eclair (ECL) [2], they determine the
payment paths that should have low locktimes, low fees and high
probabilities for successful payments. The LN is a sparse and highly
distributed network [43] and these routing algorithms can poten-
tially find paths that are similar from the payment sender’s per-
spective, but the algorithms themselves have different performance,
computational costs, energy consumption, and ultimately different
𝐶𝑂2 emissions per step in the pathfinding phase.

Our main contribution is a "one-shot" path planning Reinforce-
ment Learning (RL) based approach (RLA), which is able to predict
a possible payment path of limited length with better performance.
We empirically evaluate this approach on a real snapshot of the
LN and estimate running times, energy consumption, and 𝐶𝑂2
emissions.

1.1 The pathfinding task in the Lightning
Network

The LN consists of nodes and each of them can ask any other node to
open a bidirectional payment channel by sending a specially formed
funding transaction to the Bitcoin blockchain [31] (Figure 1). The
funding transaction should specify the amount of money that each
node locks in the channel and the information needed to identify
participating nodes.

Figure 1: Payment architecture of the LightningNetwork [32]

A node can send a payment to another party in the LN by trans-
ferring value through the route of channels. The sender then decides
on the payment route/path to the recipient. To do this, they need to

https://alaworkshop2023.github.io/

know about all public nodes and channels, known as the graph [3].
Nodes would take forwarding fees to transfer payments through
their channels, which are expected to be quite small in most cases.

All nodes in the network would be able to act as senders or
recipients of payments and as hubs that route payments between
other nodes at the same time. At the moment, some members of
the community believe [29] that LN could only exist as a hub-
and-spoke network [7, 23], as channels created by small nodes
would be unlikely to provide enough liquidity for LN to operate
efficiently [32].

The pathfinding algorithms are not part of the BOLT specifica-
tion, and it is up to each implementation/node to use what they
see fit in order to find the shortest and most efficient path, with
the information provided by the gossip protocol. Deterministic
pathfinding algorithms typically treat the network like a graph,
with each route/edge between nodes having a unique cost, instead
of a distance.

In addition to two separate fee structures for each channel (base
fee and fee rate), pathfinding in the LN is further complicated by
the channels’ capacity and their liquidity. In practice, this means
each node will create multiple possible paths to its destination,
and try them successively. For instance, LND ranks nodes it has
successfully sent payments through to improve its pathfinding [3].

1.2 The Lightning Network topology and
dynamic

The LN has a small diameter (< 10) with few connected components
(< 10) and an average shortest path of 3 [11, 37]. The Adopting
Bitcoin Conference and LNBIG.com reported that in October 2021,
43% of nodes might be reached by two hops, 93% of nodes by 3
hops, 98.8% of nodes by 4 hops, 99.9% of nodes after 5 hops [38].
The simulation [11] and empirical tests [17] also showed that, on
average, 96-98% of payments are shorter than those with 5 hops.

General statistics show that, on average, LN adds 4-5% of new
nodes and 10-15% of new channels per month, with most of these
channels replacing old ones [6]. The average lifetime of a node
exceeds 100 days, the average lifetime of a channel exceeds 38
days [11, 43]. Field studies show that the percentage of cut nodes
has trended downwards since August 2020, is currently at approxi-
mately 8% [17]. The percentage of cut channels has also been on a
downward trend since May 2021 and currently stands at 10% [17].

Arcane Research estimated that in September 2021, LN processed
about 663,000 transactions with only commonly used wallet plat-
forms [17]. They also noted that payments often rely on efficient
routing nodes - hubs that are stable and integral for the network,
allowing users to transfer funds and interact with the ecosystem
without opening unique channels for each recipient. If we agree that
the number of such hubs is about 10-20% [23] of the total number
of nodes, then some of them might perform more than 200 trans-
actions per month. This estimate does not take into account other
payment sources, developer activity, and most b2b transactions.
Interestingly, Arcane Research predicts that in the next 7 years,
LN will add at least 700 million users paying for games, video and
audio, which will lead to an increase in the number of transactions.

Thus, we can assume that an efficient network agent performs
most transactions in its neighborhood of relatively small size 𝐿

and is able to find a path of length𝑚 ≪ 10, which is a case for a
one-shot solution based on RL.

2 BACKGROUND AND PREREQUISITES
2.1 Reinforcement Learning and Plan-Based

Reward Shaping
A task in RL is modeled as a Markov Decision Process (MDP). An
MDP𝑀 is defined as a tuple𝑀 = (𝑆,𝐴,𝑇 , 𝑅,𝛾), where 𝑆 and 𝐴 are
the state and action space respectively.𝑇 (𝑠, 𝑎, 𝑠′) : 𝑆×𝐴×𝑆 → [0, 1]
is the probability of reaching state 𝑠′ from state 𝑠 after executing
action 𝑎. The reward function 𝑅(𝑠, 𝑎, 𝑠′) : 𝑆 ×𝐴 × 𝑆 → 𝑅 assigns a
numerical reward to a state transition from 𝑠 to 𝑠′ with respect to
the executed action 𝑎. A policy 𝜋 (𝑠, 𝑎) : 𝑆 ×𝐴 → [0, 1] defines how
the agents should act in the environment through the probability
distribution over all actions in every state. The decay factor 𝛾 ≤ 1 is
used to define the expected discounted return 𝐷𝑡 =

∑∞
∞ 𝑘=0𝛾

𝑘𝑅𝑡+𝑘
and the value function 𝑉 (𝑠) = 𝐸𝐴𝑡∼𝜋 (𝑆𝑡) [

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 |𝑆0 = 𝑠]. The
RL agent learns a policy that maximizes the expected discounted
return, where the optimal policy has the maximum expected dis-
counted return [40].

Long sequence, sparse reward RL tasks terminate with a reward
of one once a sequence of specific high-level actions has been
fulfilled. For all other transitions the agent gets a reward of zero.
This also refers to the pathfinding task, where the agent receives
no reward until he reaches his destination. This lack of reward
feedback creates very challenging tasks for RL agents due to the
difficulties of assigning the reward correctly to the important parts
within a long sequence of actions.

Reward shaping can help solve sparse reward tasks by utilizing
external knowledge to add intermediate feedback into the reward
function. Reward shaping creates a new shaped reward function
𝑅′ (𝑠, 𝑎, 𝑠′) = 𝑅(𝑠, 𝑎, 𝑠′) + 𝐹 (𝑠, 𝑎, 𝑠′) [16, 28].

The shaping function should modify the reward function to
simultaneously incentivize reaching a new subgoal and penalize
remaining at the same step in the plan. Additionally the total reward
for reaching the goal is required to stay positive. The step count is
greater or equal to zero in any non-terminal state for plan-based
reward shaping. The exponential plan-based reward allows for both
the negative on-step rewards and the positive on-subgoal rewards
to increase proportionally with the number of fulfilled steps in the
plan [16]:

𝐹 (𝑠, 𝑎, 𝑠′) =
{
0, if 𝑠 is a terminal state,
𝑅𝑔𝑜𝑎𝑙

𝑏𝑠𝑡𝑒𝑝 (𝑠)

𝑏 |𝑃 | , otherwise

where 𝑅𝑔𝑜𝑎𝑙 – the final reward, and 𝑏 > 1 is the constant base
parameter, the step function 𝑠𝑡𝑒𝑝 () is used to track the number
of steps in the plan achieved at the current state, and |𝑃 | is the
total number of steps in the plan 𝑃 . Whenever a new landmark (an
appropriate step) is reached, the agent gets an exponentially larger
reward.

2.2 Proximal Policy Optimization
The Proximal Policy Optimization (PPO) is a family of policy opti-
mization methods that use multiple epochs of stochastic gradient
ascent to perform each policy update. These methods have the

stability and reliability of trust-region methods but have better
overall performance and applicable in more general settings [36].
There is strong evidence that PPO based agents are able to solve
pathfinding tasks and better at adjusting such a heuristic [9, 39].
So, we employed Stable-Baselines3 PPO [8] and the OpenAI Gym
goal-based environment [12] with mostly default hyperparameters
(see § 4.5).

3 RELATEDWORK
As for LN, there have been several recent studies that consider its
topological properties [24, 33, 37, 41, 43] as well as the pathfind-
ing task using native routing algorithms [21]. Recently, various
deterministic algorithms for LN and their enhancements have been
proposed: Flare [32], SilentWhispers [26], SpeedyMurmurs [34] and
Flash [42], etc. They take into account network dynamics, privacy
and anonymity, success rate, and execution performance.

Reinforcement learning has also been applied to the pathfind-
ing/routing problem in various classes of networks, from wired
and static networks to very dynamic wireless and ad hoc networks.
Dozens of RL-based protocols have been proposed in a quarter
century (see review [27]). In some cases, they surpass Dijkstra’s
algorithms [13].

To our knowledge, only one paper has introduced an RL-based
solution for LN, which proposes a learning environment for making
simultaneous multi-channel payments and achieving efficient fee
setting [9]. They proposed an environment and trained an agent
to find a combination of channels around some node in order to
maximize the profit. However, this solution does not solve the path
finding task itself, but use the built-in Dijkstra’ algorithm for the
cheapest path selection and transaction simulation. Thus, this is
not suitable for an empirical comparison to our proposed method
in terms of energy efficiency during the pathfinding phase.

The general idea of one-shot path planning for 2D and 3D small
environments using a convolutional neural network was recently
presented in [19]. However, this cannot be used directly for higher-
dimensional environments, such as a network with many neighbors
per node. The average degree of LN is rarely below 6 [11], in our
snapshot it is 20.

Thus, this paper presents to the best of our knowledge the first
attempt focusing on RL performance and𝐶𝑂2 emissions in the case
of blockchain-related networks. In addition, it introduces the novel
approach of RL one-shot path prediction.

4 DATA AND METHOD
4.1 Environment and reward function
In our implementation, each episode is one transaction from 𝑢

to 𝑣 that may be successfully performed using any path 𝑃 that
belongs to LN, represented as a graph𝐺 . The initial state 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is
a vector with size of 𝑛, which encodes the state of the neighborhood.
In a very simple implementation, 𝑛 = 𝐿 and the initial state is
simply a binary encoding that has 1 for the position associated
respectively with 𝑢 and 𝑣 , 0 otherwise. Similarly, the final state
𝑆𝑓 𝑖𝑛𝑎𝑙 can represent any possible path 𝑃 ⊂ 𝐺 from𝑢 to 𝑣 as a binary
encoding of the neighborhood. A complicated but probably more
practical way is to use some fast graph embeddings that can handle
large LN-graphs and representations with large neighborhood size.

Figure 2: The state and the action mapping example

The action 𝐴 represents any path 𝑃 of length𝑚 as a sequence
of 𝑎𝑖 , that can be mapped to the subset of nearest nodes in the 𝑢
neighborhood of size 𝐿:

𝐴 = {𝑎𝑖 |𝑎𝑖 ∈ [0, 1], 0 ≤ 𝑖 < 𝑚},

𝑚𝑎𝑝 (𝐴,𝐺 |𝐿) = {𝑝𝑖 |𝑝𝑖 = 𝑎𝑖 → {𝑢, ..., 𝑣} ⊆ 𝐺 |𝐿, 𝑎𝑖 ∈ 𝐴} = 𝑃, |𝑃 | =𝑚.

In short, the agent performs action 𝐴, which is then sequentially
mapped𝑚𝑎𝑝 () to the next available neighbor, starting with 𝑢 (Fig-
ure 2). If the path composed in this way contains a destination node
𝑣 (a final state), the agent receives a positive reward.

As a baseline we implemented a goal based environment with
the final reward 𝑅𝑔𝑜𝑎𝑙 , which means an agent gets +10 when the
path 𝑃 it predicts is an applicable path from node 𝑢 to 𝑣 , and 0
otherwise (any inapplicable path is also a terminal state). Since the
agent is able to predict paths with maximum length𝑚, the final path
is obtained by pruning immediately after it reaches the destination
𝑣 .

Then this base reward was then adjusted with the total path cost
𝐶𝑡𝑜𝑡𝑎𝑙 to induce the agent to find an effective path in terms of the
LN cost function. We used normalized LND cost function that has
a bias against channels with known recent failures:

𝑐𝑜𝑠𝑡 [𝑢, 𝑣] = 𝑎𝑚𝑜𝑢𝑛𝑡 [𝑢, 𝑣] · 𝑑𝑒𝑙𝑎𝑦 [𝑢, 𝑣] · 𝜌 + 𝑓 𝑒𝑒 [𝑢, 𝑣] + 𝑏𝑖𝑎𝑠 [𝑢, 𝑣]
𝑐

,

𝐶𝑡𝑜𝑡𝑎𝑙 =
∑︁

[𝑢,𝑣]∈𝑃
𝑐𝑜𝑠𝑡 [𝑢, 𝑣],

here 𝜌 – is a risk factor set to 15 · 10−9 by default [21] and
𝑏𝑖𝑎𝑠 [𝑢, 𝑣] accounts for previous payment failures caused by the
channel [𝑢, 𝑣]; 𝑐 – the basis of normalization, 𝑐 = 1000 [21]. The
value of 𝑏𝑖𝑎𝑠 [𝑢, 𝑣] is extremely large during the first hour after
failure and decreases exponentially with every hour elapsed after
the last failure.

Finally, we added an immediate exponential reward bonus𝑘𝑏𝑜𝑛𝑢𝑠 ·
𝑅𝑔𝑜𝑎𝑙 as a reward shaping procedure, (see § 2.1) that encourages
the agent for each step that lie on the Dijkstra’s planned trajectory
𝑃𝑝𝑙𝑎𝑛𝑛𝑒𝑑 . This modification allows the agent to quickly discover
the shortest path, if it exists. This trick was observed to be more
effective than a simple additive bonus in the case of agent training
for sufficiently large and sparse networks. Thus,

𝑅(𝑠, 𝑠′) =
{
𝛾𝑘𝑏𝑜𝑛𝑢𝑠 · 𝑅𝑔𝑜𝑎𝑙 , if 𝑠′ is not a final state,
𝑅𝑔𝑜𝑎𝑙 −𝐶𝑡𝑜𝑡𝑎𝑙 + 𝛾𝑘𝑏𝑜𝑛𝑢𝑠 · 𝑅𝑔𝑜𝑎𝑙 , otherwise

𝑘𝑏𝑜𝑛𝑢𝑠 =
𝑏 | {𝑝 |𝑝∈𝑃∧𝑝∈𝑃𝑝𝑙𝑎𝑛𝑛𝑒𝑑 } |

𝑏 |𝑃𝑝𝑙𝑎𝑛𝑛𝑒𝑑 |

here 𝛾 – the decay factor, and 𝑏 – the scale parameter that were
set 0.99 and 32, respectively, based on [18].

4.2 Energy consumption and emissions
measurement

To calculate the relative energy consumption and corresponding
𝐶𝑂2 emissions for native algorithms and our solution, we use an
approach that automatically measures CPU/GPU/RAM consumed
power, and compares the energy mixes used in the power grids
of different countries [25]. In the case of an unknown location, it
uses the default world average of energy mix and carbon dioxide
emissions. This global average energy mix consists of 28.7% coal,
22.9% oil, 33.9% natural gas, and 14.4% low-carbon fuels with the
resulting global average𝐶𝑂2 emissions of electricity of 726 kg𝐶𝑂2
per MWh.

While this solution combines the most commonly used tech-
niques (e.g., RAPL) [30], the advantage over other solutions is that
this way of coding is simpler [15].

4.3 Data and preparation
We utilized data snapshots [14] dated between 14/10/2020 and
23/08/2022 that were widely described in [43]. Such snapshots con-
tain network messages in the LN collected over a certain period and
generated by the gossiping communication mechanism. Based on
this data and with the Python NetworkX library, we replayed over
320,000 channel updates and reconstructed a real network topology
around the last available timestamp. Nodes either without estab-
lished or with deprecated channels were excluded because such
nodes technically cannot participate in transactions. For simplicity,
we also aggregated channels into undirected edges.

To test the approach we sampled six random nodes and selected
its neighborhoods of size 𝐿 ∈ [50, 100] by using the ForestFire sam-
pling method [35]. This is a stochastic snowball sampling method,
which better represents both static properties and evolutionary
patterns of the whole network [22]. According to § 1.2, there is a
reliable guarantee that a sampled neighborhood with representative
connectivity and a radius of less than five is able to cover possible
payment recipients from neighborhood centroid with 99.9% proba-
bility, especially in the case of a payment hub. In the unlikely case
that the sample does not include a path to the destination node, a
re-sampling is triggered.

To compare native algorithms with our approach we sequentially
generated a set of transactions from these six centroid nodes to each
node in their own neighborhood and then executed the pathfinding.

4.4 Implementation of native LN pathfinding
algorithms

As mentioned above, there are three main LN clients with built-in
solutions based on Dijkstra’ or Yen’ algorithms (LND, CLN, and
ECL). We performed our experiments on its Python implementa-
tion, which was introduced in [20, 21] and adapted to the Python
NetworkX library.

4.5 Experiment details and hyperparameters
We used the same setup for the additional training and the ex-
periments and employed default hyperparameters for the Stable-
Baselines3 PPO implementation [8]: policy type: actor-critic; timesteps
per epoch: 100,000 for general training, 10,000 for experiments and
additional training; learning rate: 0.0003; discount factor (𝛾): 0.99;
GAE parameter (_): 0.95; clipping parameter: 0.2; value function co-
efficient: 0.5; maximum value for the gradient clipping: 0.5. Figure 3
shows that this approach is able to converge.

Hardware setup for general training. CPU: AMD EPYC 7662 64-
Core Processor, 256 CPUs; GPU: 2 x A100-PCIE-80GB; 1 TB RAM,
1007.764 GB available; Platform system: Linux-5.10.0-15-amd64-
x86_64-with-glibc2.31; Python version: 3.10.6.

Hardware setup for experiments and additional training. CPU:
11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, 8 CPUs; GPU: 1
x NVIDIA GeForce MX350; 8 GB RAM, 7.675 GB available; Platform
system: Windows-10-10.0.22621-SP0; Python version: 3.9.13.

5 EXPERIMENTS AND RESULTS
In this section we empirically evaluate our approach in comparison
to native LN pathfinding algorithms and discuss the obtained re-
sults. Through our experiments, we want to show that one-shot RL
path prediction can be performed quickly and with a lower energy
consumption in the case of a relatively small neighborhood. The
following results were averaged over six agents, each of which was
trained on a different transaction set, i.e. on different neighbor-
hoods. The results for each agent were averaged over 𝐿 runs, where
𝐿 is the size of the neighborhood.

5.1 Performance and emissions
Intuitively, since an agent generates a complete path by taking
just one action, it should take constant execution time in an en-
vironment of any size. Whereas algorithms based on the Dijkstra
method take increasingly longer to execute because of their com-
plexity. The average runtime of the algorithms that were executed
on sets of transactions in all experimental neighborhoods is shown
in Figure 4.

A large neighborhood makes deterministic algorithms spend
more time searching for the optimal path, and the longer the path,
the longer it takes, see Figure 5. A well-trained agent is able to
predict the applicable path in a fixed time, but in some cases it may
be sub-optimal in terms of length (Figure 6).

Since these algorithms can use the CPU/GPU and RAM in differ-
ent ways, they consume different amounts of energy and produce

Figure 3: The ability to converge. The average reward per episode was averaged over a set of transactions that were introduced
randomly during training. These results were averaged over 6 agents we trained on their neighborhoods separately. The results
for each agent are an average over 𝐿 runs. The shaded area under the curves represents the 95% confidence intervals for the
average value.

Figure 4: Pathfinding performance estimates per transaction, [sec]. The average runtime of the algorithms that were executed
on sets of transactions over all chosen neighborhoods. The RLA represents average results of 6 agents we trained on their
neighborhoods separately. The results for each agent are an average over 𝐿 runs.

different amounts of𝐶𝑂2 pollution accordingly, see Figure 7. There
is a fairly strong correlation between execution time and the total
𝐶𝑂2 emission that can be produced, thus RLA also achieves good
performance.

5.2 Sensitivity and robustness
In practice, when the environment changes significantly, the agent
becomes confused and predicts the path with less confidence. To
test the sensitivity of RLA to a certain number of changes in the
graph, we randomly remove a certain number of edges from the
graph and estimate the loss of the success rate and the need for
additional training at a time (Figure 8). The success rate shows the
relative number of transactions that were successfully routed by
the agent in their neighborhood. In our implementation, the agent
is able to achieve a 96% success rate if there is no significant change
in its neighborhood.

Since most significant changes in LN do not practically exceed
10% (see § 1.2), we believe that rapid additional training is an ap-
propriate solution. We did some light training with average epoch
duration 11.2 sec, average emissions per epoch of 5.84 ·10−6 kg𝐶𝑂2
eq. and this seems to be enough to practically overcome the changes
in the neighborhood. It can be seen that with small changes, an
agent can return over 90% of its success rate after 100 epochs of ad-
ditional training (Figure 8). Note that Dijkstra’s routing algorithms
can find a route for 98% of transactions, based on our tests, but
the percentage of successful payments in LN cannot be accurately
estimated [38].

6 CONCLUSION AND FUTUREWORK
In this paper we present a one-shot path prediction and propose an
RL solution for a pathfinding agent in LN that is able to converge

Figure 5: Pathfinding performance estimates by path-length, [sec]. The average runtime of the algorithms that were executed
on sets of transactions over all chosen neighborhoods. The RLA represents average results of 6 agents we trained on their
neighborhoods separately. The results for each agent are an average over 𝐿 runs. The shaded area under the curves represents
the 95% confidence intervals for the average value.

Figure 6: Average path-length. Averaged over the algorithms that were executed on sets of transactions over all chosen
neighborhoods. The RLA represents average results of 6 agents we trained on their neighborhoods separately. The results for
each agent are an average over 𝐿 runs.

and learn its neighborhood. In our experiments, we have empirically
shown that RLA:

(1) achieves good performance in terms of energy consumption
at each pathfinding step;

(2) can outperform Dijkstra’s routing algorithms in the case
of an increasing number of transactions in relatively small
neighborhoods, which is sufficient for the case of LN;

(3) can update the heuristic with less execution cost and 𝐶𝑂2
emissions in case of limited neighborhood change compared
to full retraining from scratch.

Since the learning time and associated 𝐶𝑂2 emissions depend on
the size of the state and the available maximum neighborhood size,
a sparse state representation based on binary encoding can lead to
a potential scalability limitation. This does not affect the idea of our
approach or its practical implications, and we believe that using
some fast graph embeddings will overcome this, allow one to handle

larger LN-graphs and representations with larger neighborhood
size more efficiently.

For futurework, we also consider looking at this problem through
the lens of multi-objective optimization: designing path planners
that can balance several tradeoffs such as lock times, low fees, high
probability of successful payments, and low energy consumption.

ACKNOWLEDGMENTS
The authors would like to thank Dr.-Ing. Manfred Veenker and the
Veenker Foundation for its support, and Ildar Baimuratov, Kon-
stantin Glonin, and Yuan Xue for their constructive and valuable
discussions and guidance during the planning and development of
this research.

Figure 7: Average total emissions per transaction, [kg𝐶𝑂2 eq.]. The average total emissions of the algorithms that were executed
on sets of transactions over all chosen neighborhoods. The RLA represents average results of 6 agents we trained on their
neighborhoods separately. The results for each agent are an average over 𝐿 runs.

Figure 8: Comparative need for additional training when changing the network. The X-axis shows the relative number of
edges that have been randomly removed/added from/in each neighborhood. The success rate means the relative number of
transactions that were successfully routed by the agent in the neighborhood at a given level of change and after a certain epoch
of additional training. The Y-axis shows the relative change in the success rate at a given level of change. It shows average
results of 6 agents we trained on their neighborhoods separately. The results for each agent are an average over 𝐿 runs. The
shaded area under the curves represents the 95% confidence intervals for the average value.

REFERENCES
[1] [n.d.]. Core Lightning (CLN): A specification compliant Lightning Network

implementation in C. GitHub. Retrieved February 22, 2023 from https://github.
com/ElementsProject/lightning

[2] [n.d.]. Eclair (French for Lightning) is a Scala implementation of the Lightning
Network. GitHub. Retrieved February 22, 2023 from https://github.com/ACINQ/
eclair

[3] [n.d.]. Finding routes in the Lightning Network. Builder’s Guide. Re-
trieved February 22, 2023 from https://docs.lightning.engineering/the-lightning-
network/pathfinding/finding-routes-in-the-lightning-network

[4] [n.d.]. The Lightning Network Daemon. GitHub. Retrieved February 22, 2023
from https://github.com/lightningnetwork/lnd

[5] [n.d.]. Lightning Network In-Progress Specifications. GitHub. Retrieved February
22, 2023 from https://github.com/lightning/bolts

[6] [n.d.]. Real-Time Lightning Network Statistics. JSON. Retrieved February 22,
2023 from https://1ml.com/statistics

[7] [n.d.]. Spoke-hub distribution paradigm. Wikipedia. Retrieved February 22, 2023
from https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm

[8] 2021. The Proximal Policy Optimization algorithm. Stable Baselines3 Library.
Retrieved February 22, 2023 from https://stable-baselines3.readthedocs.io/en/
master/modules/ppo.html

[9] Kiana Asgari, Aida Afshar Mohammadian, and Mojtaba Tefagh. 2022. DyFEn:
Agent-Based Fee Setting in Payment Channel Networks. https://doi.org/10.
48550/ARXIV.2210.08197

[10] Oliver Barratt and Danny Scott. 2021. Comparing Bitcoin Lightning energy usage
to the real world. Retrieved February 22, 2023 from https://blog.coincorner.com/
comparing-bitcoin-lightning-energy-usage-to-the-real-world-2d64c62b1783

[11] Ferenc Beres, Istvan Andras Seres, and Andras A. Benczur. 2019. A Cryptoeco-
nomic Traffic Analysis of Bitcoin’s Lightning Network. https://doi.org/10.48550/
ARXIV.1911.09432

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv:arXiv:1606.01540

[13] Haoran Miao Babar Shah Bashir Hayat Imran Khan Tae-Eung Sung Ki-Il Kim
Daniel Godfrey, Beom-Su Kim. 2021. Q-Learning Based Routing Protocol for
Congestion Avoidance. Computers, Materials & Continua 68, 3 (2021), 3671–3692.
https://doi.org/10.32604/cmc.2021.017475

[14] Christian Decker. [n.d.]. Lightning Network Research ; Topology Datasets. https:
//github.com/lnresearch/topology. https://doi.org/10.5281/zenodo.4088530

[15] Ralf Gitzel. 2022. Software Tools to Determine the Carbon Footprint of AI Code.
Retrieved February 22, 2023 from https://www.linkedin.com/pulse/software-
tools-determine-carbon-footprint-ai-code-ralf-gitzel/

[16] Marek Grzes and Daniel Kudenko. 2008. Plan-based reward shaping for rein-
forcement learning. 2008 4th International IEEE Conference Intelligent Systems 2
(2008), 10–22–10–29.

[17] Anders Helseth. 2021. The State of Lightning. Arcane Research Report. Retrieved
February 22, 2023 from https://arcane.no/research/the-growth-of-the-lightning-
network

[18] Lukas Berg Henrik Müller and Daniel Kudenko. 2023. Using Incomplete and
Incorrect Plans to Shape Reinforcement Learning in Long-Sequence Sparse-
Reward Tasks. In Proc. of the Adaptive and Learning Agents Workshop (ALA 2023)
at AAMAS 2023, May 29-30 (London, UK) (ALA 2023). Cruz, Hayes, Wang, Yates
(eds.), London, UK. https://alaworkshop2023.github.io/

[19] Tomas Kulvicius, Sebastian Herzog, Timo Lüddecke, Minija Tamosiunaite, and
Florentin Wörgötter. 2020. One-shot path planning for multi-agent systems using
fully convolutional neural network. (2020). https://doi.org/10.48550/ARXIV.2004.
00568

[20] Satwik Prabhu Kumble, Dick Epema, and Stefanie Roos. 2021. How Lightning’s
Routing Diminishes Its Anonymity. In Proceedings of the 16th International Con-
ference on Availability, Reliability and Security (Vienna, Austria) (ARES 21). As-
sociation for Computing Machinery, New York, NY, USA, Article 13, 10 pages.
https://doi.org/10.1145/3465481.3465761

[21] Satwik Prabhu Kumble and Stefanie Roos. 2021. Comparative Analysis of
Lightning’s Routing Clients. In 2021 IEEE International Conference on Decen-
tralized Applications and Infrastructures (DAPPS). 79–84. https://doi.org/10.1109/
DAPPS52256.2021.00014

[22] Jure Leskovec and Christos Faloutsos. 2006. Sampling from Large Graphs. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06). Association for
Computing Machinery, New York, NY, USA, 631–636. https://doi.org/10.1145/
1150402.1150479

[23] Jian-Hong Lin, Emiliano Marchese, Claudio J. Tessone, and Tiziano Squartini.
2022. The weighted Bitcoin Lightning Network. Chaos, Solitons & Fractals
164 (nov 2022), 112620. https://doi.org/10.1016/j.chaos.2022.112620

[24] Jian-Hong Lin, Kevin Primicerio, Tiziano Squartini, Christian Decker, and Clau-
dio J Tessone. 2020. Lightning network: a second path towards centralisa-
tion of the Bitcoin economy. New Journal of Physics 22, 8 (aug 2020), 083022.

https://doi.org/10.1088/1367-2630/aba062
[25] Kadan Lottick, Silvia Susai, Sorelle A. Friedler, and Jonathan P. Wilson. 2019.

Energy Usage Reports: Environmental awareness as part of algorithmic account-
ability. https://doi.org/10.48550/ARXIV.1911.08354

[26] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2016.
SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Networks.
Cryptology ePrint Archive, Paper 2016/1054. https://eprint.iacr.org/2016/1054
https://eprint.iacr.org/2016/1054.

[27] Zoubir Mammeri. 2019. Reinforcement Learning Based Routing in Networks:
Review and Classification of Approaches. IEEE Access 7 (2019), 55916–55950.
https://doi.org/10.1109/ACCESS.2019.2913776

[28] A. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping. In International
Conference on Machine Learning.

[29] Chris Pacia. 2015. Lightning Network skepticism. Retrieved February
22, 2023 from https://chrispacia.wordpress.com/2015/12/23/lightning-network-
skepticism

[30] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. https://doi.org/10.48550/ARXIV.2104.10350

[31] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. Retrieved February 22, 2023 from https://lightning.
network/lightning-network-paper.pdf

[32] Pavel Prihodko, S. N. Zhigulin, Mykola Sahno, A B Ostrovskiy, and
Olaoluwa Osuntokun. 2016. Flare : An Approach to Routing in
Lightning Network White Paper. Retrieved February 22, 2023
from https://bitfury.com/content/downloads/whitepaper_flare_an_approach_
to_routing_in_lightning_network_7_7_2016.pdf

[33] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged Payment
Channels: Quantifying the Lightning Network’s Resilience to Topology-Based
Attacks. https://doi.org/10.48550/ARXIV.1904.10253

[34] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2017.
Settling Payments Fast and Private: Efficient Decentralized Routing for Path-
Based Transactions. https://doi.org/10.48550/ARXIV.1709.05748

[35] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Little Ball of Fur: A
Python Library for Graph Sampling. In Proceedings of the 29th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’20). ACM,
3133–3140.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. https://doi.org/10.48550/ARXIV.
1707.06347

[37] István András Seres, László Gulyás, Dániel A. Nagy, and Péter Burcsi. 2019.
Topological Analysis of Bitcoin’s Lightning Network. https://doi.org/10.48550/
ARXIV.1901.04972

[38] Bobby Shell. 2022. How many transactions can the Lightning Network handle?
Retrieved February 22, 2023 from https://voltage.cloud/blog/bitcoin-education/
how-many-transactions-can-the-lightning-network-handle

[39] Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, and Aleksandr Panov.
2022. Pathfinding in stochastic environments: learning vs planning. PeerJ
Computer Science 8 (2022), e1056.

[40] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press. http://incompleteideas.net/book/the-book-
2nd.html

[41] Saar Tochner, Stefan Schmid, and Aviv Zohar. 2019. Hijacking Routes in Payment
Channel Networks: A Predictability Tradeoff. https://doi.org/10.48550/ARXIV.
1909.06890

[42] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: Efficient Dynamic
Routing for Offchain Networks. In Proceedings of the 15th International Confer-
ence on Emerging Networking Experiments And Technologies (Orlando, Florida)
(CoNEXT ’19). Association for Computing Machinery, New York, NY, USA,
370–381. https://doi.org/10.1145/3359989.3365411

[43] Philipp Zabka, Klaus-T. Foerster, Stefan Schmid, and Christian Decker. 2022.
Empirical evaluation of nodes and channels of the lightning network. Pervasive
and Mobile Computing 83 (2022), 101584. https://doi.org/10.1016/j.pmcj.2022.
101584

https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://docs.lightning.engineering/the-lightning-network/pathfinding/finding-routes-in-the-lightning-network
https://docs.lightning.engineering/the-lightning-network/pathfinding/finding-routes-in-the-lightning-network
https://github.com/lightningnetwork/lnd
https://github.com/lightning/bolts
https://1ml.com/statistics
https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://doi.org/10.48550/ARXIV.2210.08197
https://doi.org/10.48550/ARXIV.2210.08197
https://blog.coincorner.com/comparing-bitcoin-lightning-energy-usage-to-the-real-world-2d64c62b1783
https://blog.coincorner.com/comparing-bitcoin-lightning-energy-usage-to-the-real-world-2d64c62b1783
https://doi.org/10.48550/ARXIV.1911.09432
https://doi.org/10.48550/ARXIV.1911.09432
https://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.32604/cmc.2021.017475
https://github.com/lnresearch/topology
https://github.com/lnresearch/topology
https://doi.org/10.5281/zenodo.4088530
https://www.linkedin.com/pulse/software-tools-determine-carbon-footprint-ai-code-ralf-gitzel/
https://www.linkedin.com/pulse/software-tools-determine-carbon-footprint-ai-code-ralf-gitzel/
https://arcane.no/research/the-growth-of-the-lightning-network
https://arcane.no/research/the-growth-of-the-lightning-network
https://alaworkshop2023.github.io/
https://doi.org/10.48550/ARXIV.2004.00568
https://doi.org/10.48550/ARXIV.2004.00568
https://doi.org/10.1145/3465481.3465761
https://doi.org/10.1109/DAPPS52256.2021.00014
https://doi.org/10.1109/DAPPS52256.2021.00014
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1016/j.chaos.2022.112620
https://doi.org/10.1088/1367-2630/aba062
https://doi.org/10.48550/ARXIV.1911.08354
https://eprint.iacr.org/2016/1054
https://eprint.iacr.org/2016/1054
https://doi.org/10.1109/ACCESS.2019.2913776
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism
https://doi.org/10.48550/ARXIV.2104.10350
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://doi.org/10.48550/ARXIV.1904.10253
https://doi.org/10.48550/ARXIV.1709.05748
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1901.04972
https://doi.org/10.48550/ARXIV.1901.04972
https://voltage.cloud/blog/bitcoin-education/how-many-transactions-can-the-lightning-network-handle
https://voltage.cloud/blog/bitcoin-education/how-many-transactions-can-the-lightning-network-handle
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.48550/ARXIV.1909.06890
https://doi.org/10.48550/ARXIV.1909.06890
https://doi.org/10.1145/3359989.3365411
https://doi.org/10.1016/j.pmcj.2022.101584
https://doi.org/10.1016/j.pmcj.2022.101584

	Abstract
	1 INTRODUCTION
	1.1 The pathfinding task in the Lightning Network
	1.2 The Lightning Network topology and dynamic

	2 BACKGROUND AND PREREQUISITES
	2.1 Reinforcement Learning and Plan-Based Reward Shaping
	2.2 Proximal Policy Optimization

	3 RELATED WORK
	4 DATA AND METHOD
	4.1 Environment and reward function
	4.2 Energy consumption and emissions measurement
	4.3 Data and preparation
	4.4 Implementation of native LN pathfinding algorithms
	4.5 Experiment details and hyperparameters

	5 EXPERIMENTS AND RESULTS
	5.1 Performance and emissions
	5.2 Sensitivity and robustness

	6 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

