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ABSTRACT
Multi-agent Reinforcement Learning (MARL) extends single-agent
RL, studying multiple agents operating in a shared environment.
One classi�cation of MARL systems relates to whether the agents
are controlled centrally or in a decentralised manner. Decentralised
MARL algorithmswith networked agents can exchange information
with their neighbouring agents, to facilitate convergence. While
these approaches can signi�cantly outperform independent agents,
they may learn slowly in the beginning. We propose the QD(_)
learning algorithm, a novel value-based MARL algorithm that lever-
ages networked agents. It incorporates the advantages of transfer
learning from the MARL QD learning algorithm and faster learning
when rewards are delayed from the RL Q(_) learning algorithm.
The empirical results support the hypothesis that the QD(_) learn-
ing algorithm can learn faster than three other RL algorithms for
environments where the agent must transition through many states
before it receives a reward. Thus, QD(_) learning is suited to multi-
agent systems learning a communication protocol, an emerging
research area that has seen signi�cant activity in the last few years.

KEYWORDS
Multi-agent systems, Transfer Learning, Multi-Agent Reinforce-
ment Learning

1 INTRODUCTION
Reinforcement learning (RL) is a single-agent learning framework,
where with no prior knowledge, the agent aims to learn what action
to take next, given the state of the environment at that time, to
achieve its goal [1]. It tries di�erent actions, assesses their outcome,
and learns the best actions to take. Typically, the agent meets its
goal and realises the award at the end of a series of actions. Multi-
agent Reinforcement Learning (MARL) extends single-agent RL,
studying multiple agents operating in a shared environment [2, 3].

One classi�cation of MARL systems relates to whether the agents
are controlled centrally or in a decentralisedmanner. Figure 1 shows
three multi-agent system learning schemes: centralised controller,
fully decentralised and decentralised with networked agents [4].

With the centrally controlled scheme, the central controller re-
ceives the observations from all the agents and decides the actions
to be taken by each agent, and receives a joint reward. It follows
the centralised-learning-decentralised-execution paradigm and has
recently been widely adopted with multi-agent deep reinforcement
learning research [5]. However, this scheme is only possible when
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a central controller can exist, which is often not the case. A further
challenge is that the state space expands with the number of agents.

A MARL system is said to be “fully decentralised” when the
agents are fully autonomous, have no central controller and do not
coordinate with one another. In the fully decentralised learning
scheme, each agent individually makes observations, takes actions
and receives rewards. The agents learn independently. Several fully
decentralised schemes exist. Examples include classical Q-learning
[6], Distributed Q Learning [7], Hysteretic Q learning [8] and two
approaches proposed by Zeng, which combine Q-learning and actor-
critic methods [9]. A shortcoming of this scheme is that it su�ers
from non-convergence [10].

Transfer learning is a machine learning technique which lever-
ages previous knowledge to improve learning speed or performance
[11]. When applied to MARL, this knowledge can come from an-
other agent. Thus, a powerful extension to the fully decentralised
learning scheme is where agents can communicate over a network.
They exchange information with their neighbouring agents. This
scheme facilitates convergence to an optimal decision policy where
the performance of the multi-agent system stabilises.

However, research on MARL contends that while “agents engag-
ing in partnership can signi�cantly outperform independent agents
. . . they may learn slowly in the beginning” [10]. Our research
aims to develop a MARL algorithm that overcomes this limitation.
Additionally, it aspires to design a MARL algorithm suited to a
sizeable multi-agent system learning a communication protocol.
Research into MARL systems learning communication protocols is
an emerging area that has seen signi�cant activity in recent years
[12–18]. As such, the main contribution of this research is the QD(_)
learning algorithm, a value-based MARL algorithm that leverages
networked agents.

This paper is structured as follows. The next section presents the
foundational research for this novel MARL algorithm. In Section
3.1, we describe the QD(_) learning algorithm. Section 3.2 presents
the test reinforcement learning environments designed to emulate
agents learning communication protocols. The experiments pre-
sented in Section 4 compare the QD(_) learning algorithm against
two other RL algorithms and one MARL algorithm assessing its
convergence speed and quality. In Section 5, we propose the general
hypothesis that the QD(_) learning algorithm learns faster than
the other RL algorithms for the environments and present several
limitations of the algorithm and research. Finally, in the last section,
Section 6, we consider the impact of the algorithm and research
�ndings and propose future work.
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Figure 1: Three multi-agent system learning schemes: centralised controller, fully decentralised and decentralised with
networked agents [4]

2 RELATEDWORK
This section describes the foundational research for the QD(_) learn-
ing algorithm. First, it covers the Watkins Q(_) learning algorithm
[19] on which QD(_) builds. Then, it critiques other MARL algo-
rithms that use networked agents, describing the QD learning al-
gorithm [20] in detail, as it heavily inspires the QD(_) learning
algorithm.

2.1 Watkins Q(_) Learning
Watkins Q(_) Learning is an extension to his earlier Q Learning
algorithm that incorporates the concept of eligibility traces [19]. An
eligibility trace is a temporal record of taking an action in a state, or
“passing through” a state-action. In Q(_) Learning, when we update
a state-action’s Q value, we also update other recently visited state-
actions. As a result, Q(_) Learning may learn more e�ciently. A
parameter to the Q(_) learning algorithm, the eligibility decay, _,
controls how quickly the update of the visited state-actions decays.
The lower the eligibility decay, the faster the update diminishes.

Several variants of Q(_) learning di�er in how they accumulate
the eligibility traces, though similar in how they decay the eligibility.
Accumulating traces increments the state-action visited by one. This
cause the eligibility trace for a repeatedly visited state-action to
grow considerably over time. This is especially true for continuing
tasks, where the agent will learn to constantly take action to remain
in or return quickly to a state with a high reward. A preferred
approach for this case is replacing traces, which resets the visited
eligibility trace to one, as shown in Equation 1.

4 (B,0) = 1 (1)

A third approach is dutch traces, where the original trace value is
scaled by 1 � U before it is incremented by one.

2.2 MARL algorithms with networked agents
The earliest research into MARL with networked agents was con-
ducted by Varshavskaya et al. in 2009 [21]. They developed DGAPS,
an extension of the policy-based stochastic gradient descent algo-
rithm, known as gradient ascent in policy space (GAPS), to the dis-
tributed realm by incorporating agreement algorithms. The agree-
ment algorithm exchanges local rewards and experiences broadcast-
ing to all the agents. One criticism the authors made of their work

was that it sends a large amount of information at each exchange.
A preferred approach is to send only the newly learned information
and use a caching mechanism to record previously sent data.

The �rst value-based MARL algorithm with networked agents
was the QD Learning algorithm [20]. In QD learning, the update
rule for the Q function has two terms, an innovation term and a
consensus term. The innovation term corresponds to the agent’s
local knowledge of the reward and best next state-action value.
The consensus term corresponds to information from the agent’s
neighbours.

Equation 2 shows the Q function update rule for agent 8 , where
B and 0 are the agent’s previous state and action, respectively. ' is
the reward for the transition from state B to the current state, B0,
having taken action 0. The discount factor, W , reduces the relative
importance of future rewards compared to present rewards. The
learning rate or innovation step-size parameter, U , such that U > 0,
weights the newly learned value relative to its original value. The
consensus term has a second learning rate, V , where V > 0. # is
the set of agents in the agent 8’s neighbourhood. Given certain
conditions on the step sizes, U and V , the algorithm is guaranteed
to converge to the optimum Q-function.

&8 (B,0)  &8 (B,0) + U


'8 + W max

1
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⇥
&8 (B,0) �& 9 (B,0)

⇤
|                              {z                              }

consensus term

(2)

In 2016, Mathkar et al. proposed another value-based distributed
reinforcement learning algorithm [22]. It builds on the classical
TD(0) algorithm where the networked agents incorporate updates
they received from their neighbouring agents using a gossip-like
mechanism, the simple averaging scheme from gossip. They proved
that convergence is guaranteed.

Zhang et al. proposed decentralised actor-critic algorithms with
value function approximation in 2018. Each agent carried out its
actor step, while for the critic step, the agents shared information
over the network to reach a consensus. They evaluated a large
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number of agents, 20, and a large number of states, 20, with two
possible actions [23]. In a follow-up publication later that year,
they proposed a multi-agent version of expected policy gradient
method, which they applied to continuous spaces [24]. They proved
that convergence is guaranteed if linear functions are used for
value function approximation. But actor-critic algorithms have
drawbacks; they tend to be more complicated, both conceptually
and computationally, and have a lower sample e�ciency.

In summary, MARL algorithms with networked agents use trans-
fer learning, exchanging informationwith their neighbouring agents,
to facilitate convergence. These approaches “can signi�cantly out-
perform independent agents . . . they may learn slowly in the begin-
ning” [10]. Several referenced MARL algorithms with networked
agents leverage policy gradient or actor-critic algorithm approaches
[21, 23, 24]; these approaches have a lower sample e�ciency and are
conceptually, and computationally more complicated. Additionally,
research into MARL systems learning communication protocols is
an emerging area that has seen signi�cant activity in recent years
[12–18].

Our research aims to address these gaps by developing a value-
based MARL algorithm that leverages networked agents. It should
be suitable for a sizeable multi-agent system to learn a communi-
cation protocol, and it should overcome the initial slow learning
limitation reported by Tan.

3 METHODOLOGY
3.1 QD(_) Learning
The QD(_) learning algorithm is a hybrid of the RL Q(_) learning
[19] and the MARL QD learning [20] algorithms. It combines the
eligibility traces of the Q(_) learning algorithm with the consensus
term — information from the agents’ neighbourhoods — from QD
learning, as shown in Figure 2.

Q(λ) Learning QD Learning

QD(λ) Learning

Single Agent Multi-agent

Transfer Learning
Eligibility Traces

Transfer LearningEligibility Traces

Figure 2: The relationship between the Q(_) learning, QD
learning and QD(_) learning algorithms.

The parameters in QD(_) learning, described in Table 1, are
a combination of those from the Q(_) learning and QD learning
algorithms.

The QD(_) learning algorithm is shown in Algorithm 1. At the
initialisation of the learning process, the algorithm sets the AVF,
& (B,0), and the eligibility traces, 4 (B,0), to zero and randomly ini-
tialises the n-greedy policy, c . Next, it sets the initial state, B , and
the initial action, 0. Then, it randomly connects each agent to #

Table 1: The parameters of QD(_) learning algorithms.

Parameter Description

Discount factor W Present value of future reward
Eligibility decay _ Relative updates to recently

visited state actions
Innovation step size U Rate at which an algorithm

converges to a solution
Consensus step size V Weight of learning information

received from the agent’s
neighbourhood

Number of neighbours # Number of neighbours from
whom the agent receives
learning information

other agents. The agents use this network to transfer learning infor-
mation, speci�cally the & (B,0) values that comprise the consensus
term of the update rule. The body of the algorithm is repeated for
each learning step.

First, the algorithm takes action 0 and transitions to state B0.
It gets the reward, ', for the transition (B,0, B0). Then, it chooses
the next action, 00, from the policy, where the set of all possible
actions for the state is�(B0). The algorithm will di�er when it takes
a non-optimal action — an exploratory action with a lower value
in the AVF than the policy’s greedy action. It records the policy’s
greedy action, 0⇤, to ascertain this later. However, when 00 has the
same values in the AVF as 0⇤, it sets 0⇤ as the action to be taken.

Then, the algorithm sets the eligibility trace for the previous
state action, 4 (B,0), to one. The AVF update is a combination of the
innovation term, U

⇥
' +W& (B0,0⇤) �& (B,0)

⇤
and the consensus term,

V
Õ

9=#
⇥
& (B,0) �& 9 (B,0)

⇤
. For every state action in the AVF with

an eligibility trace greater than zero, the value is updated with the
eligibility trace for the state actions scaling the update. Equation 3
shows the full update rule.
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After the algorithm updates the AVF, it updates the eligibilities.
When it takes an exploratory step, it resets all the eligibility traces to
zero. Otherwise, when 00 = 0⇤, it decays the eligibilities for all state
actions. It does this, as with the Q(_) learning algorithm, because
steps before the exploratory steps no longer have the required
relationship to the greedy policy. Finally, the algorithm improves
the greedy policy using the newly-updated action-value function.
It sets the state-action, (B,0), to the new state-action, (B0,00), and
continues to the next learning step.
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Algorithm 1: QD(_) learning

Algorithm Parameter: discount W 2 [0, 1]
Algorithm Parameter: innovation step size U > 0
Algorithm Parameter: consensus step size V > 0
Algorithm Parameter: eligibity trace decay rate _ 2 [0, 1]

Initialise: & (B,0) = 0, 4 (B,0) = 0 for all B 2 (+, 0 2 �(B)
Initialise: n-greedy policy c randomly
Initialise: B to initial state
Initialise: 0 to initial action
Initialise: connect each agent to # other agents randomly

foreach learning step do
Take action 0 and transition to state B0

' := get reward for transition (B,0, B0)
Choose 00 from �(B0) using c
0⇤ := 0A6<0G1 & (B0,1) if 00 ties for max then 0⇤  00

X8 := U
⇥
' + W& (B0,0⇤) �& (B,0)

⇤
// Innovation Term

X2 := V
Õ

9=#
⇥
& (B,0) �& 9 (B,0)

⇤
// Consensus Term

4 (B,0) := 1
for all (B,0) where 4 (B,0) > 0 do

& (B,0) := & (B,0) + 4 (B,0)
⇥
X8 � X2

⇤
end
for all (B,0) do

if 00 = 0⇤ then
4 (B,0) := W_4 (B,0) // Decay eligibilities

else
4 (B,0) := 0 // Took exploratory action

end
end
Improve c greedily with respect to &
B := B0 and 0 := 00

end

3.2 Reinforcement learning Test Environments
The experiments use randomly generated reinforcement learning
environments to evaluate the QD(_) learning algorithm. They were
specially-designed environments that mimic a multi-agent system
learning a communication protocol. In them, the agents must tran-
sition through many states before they receive a reward. This is
equivalent to an environment with sparse rewards [25] and lim-
ited routes through the state space. These transitions emulate an
agent sending and receiving messages as part of a protocol. These
test environments are more complex than those used in the other
cited research into MARL algorithms with networked agents. Kar
evaluated the QD learning algorithm with a simple binary-valued
state-action space and a randomly sampled transition function [20].
Zhang used a more complex environment with 20 states; again, it
had only two actions. They did not describe how they developed
the transition functions [23].

The experiments use three sets of environments that vary in the
number of states; they have 8, 16 and 32 states, each having two
actions. There are no terminal states, so the experiments are contin-
uing tasks. The reward for all states is zero, except for one, selected
randomly, which returns a reward of one. From any state action,
the probability of transitioning to any other state is non-zero. These
state transitions are generated randomly, but the transition probabil-
ity is increased �fty-fold for one state, and then the probabilities are
normalised. This �fty-fold increase creates an environment where
the agent has to pass through a series of states to get a reward.

1

2

3

Figure 3: Heatmap of the transition function probabilities
for the environment with eight states and seed set to zero.

Figure 3 illustrates this process. It shows a heatmap of the tran-
sition probabilities for an environment with eight states and two
actions in each state. It is the transition function generated for
B443 = 0. The reward state was State 8, as indicated with the green
star. Overlaid on the heatmap is an example of a route from the
starting state, State 5. The agent takes Action A, which transitions
the environment to State 3. Then, the agent retakes Action A, which
transitions the environment to State 6. Lastly, the agent takes Ac-
tion A for a third time, and the environment transitions to State 8,
and the agent receives the reward. As this is a continuous task, as
opposed to an episodic task, the agent is never reset to an initial
state. After receiving the reward, it takes actions, either Action A
or Action B, until the experiment ends. It receives the reward every
time it transitions to State 8.

Dynamic programming (DP) can generate estimates of the true
AVF when an environment’s state transition function and reward
function are known. The DP algorithm has two parameters: a dis-
count factor, W , and an allowed di�erence threshold, \ . Figure 4
shows the AVF calculated using DP for an environment with eight
states and B443 = 0. The experiments set these to 0.9 and 0.001,
respectively. The evaluation of an RL algorithm compares the algo-
rithm’s AVF with the estimate of the AVF generated using DP.

The root-mean-squared error (RMSE) is the root of the mean of
the squared errors of each state-action value for each agent. A sec-
ond measure, the accumulative root-mean-squared error (ARMSE),
measures the convergence speed of an RL algorithm. It is the accu-
mulation of the RMSE at each episode.
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Figure 4: Heatmap of the action value function calculated
using dynamic programming for the environment with eight
states and seed set to zero.

Table 2: The parameters used for each learning algorithm.

Algorithm Parameter Values
Discount factor, W 0.9

Q Learning Step size, U 0.05, 0.025, 0.01, 0.005

Q(_) Learning Step size, U 0.05, 0.025, 0.01, 0.005
Eligibility decay, _ 0.3, 0.6, 0.9

QD Learning Innovation step size, U 0.05, 0.025, 0.01, 0.005
Consensus step size, V 0.005, 0.0025, 0.00125

QD(_) Learning Innovation step size, U 0.05, 0.025, 0.01, 0.005
Consensus step size, V 0.005, 0.0025, 0.00125
Eligibility decay, _ 0.3, 0.6, 0.9

4 EXPERIMENTAL RESULTS
The experiments evaluate the performance of the QD(_) learning al-
gorithm against three well-known value-based learning algorithms.
Two of these algorithms, Q learning and Q(_) learning, employ
the fully decentralised scheme, while one, QD learning, uses the
networked agent’s scheme.

One or more parameters con�gure the RL algorithms. Changes
to the parameters will impact the performance of a learning algo-
rithm in an environment. There is no correct con�guration of these
parameters. However, there is an optimal con�guration of the pa-
rameters for a given environment. Thus, the experiments evaluated
the RL algorithms across several di�erent con�gurations, as shown
in Table 2. Note that every combination of the parameters listed is
evaluated when there is more than one parameter. For example, for
the Q(_) learning, there were 12 di�erent parameter combinations
evaluated.

The experiments had 50 agents in the multi-agent system. The
agents had a soft policy with the probability of taking a random,
rather than greedy, action, n , set to 0.1. Each agent takes an action
once per cycle. For every episode, 10,000 cycles, the experiments
recorded the state action values and their error from the estimated
AVF. Note the problem was not reset to an initial state at the start
of an episode; hence these experiments represent continuing tasks.

Each experiment comprised 200 episodes. Table 3 summarises this
experimental con�guration.

Table 3: The con�guration used for the experiments.

Parameter Value

Number of Agents, # 50
Probability of taking a random action, n 0.1
Learning cycles per episode 10,000
Number of episodes 200

The experiments use three di�erent environment types with 8,
16 and 32 states. Each was repeated 40 times with di�erent random
seeds. A Shapiro–Wilk test of normality [26] showed that the results
did not follow a normal distribution; thus, non-parametric statistical
measures are used. For example, the results of two di�erent RL
algorithms were compared using a two-sample Wilcoxon Signed
test [27].

Figure 5 shows the AVF RMSE and ARMSE for the best con-
�gurations of each of the four learning algorithms for the three
di�erent types of environments. Table 4 shows the AVF median
RMSE and ARMSE across 40 random seeds for episodes 50 and
200 for the best con�gurations of the four learning algorithms for
three di�erent types of environments. The p-values indicate the
statistical signi�cance of the di�erence between an algorithm and
the best algorithm.

The results show that QD learning has the lowest AVF median
RMSE across all the environments in the 200th episode. However,
QD(_) learning has the lowest RMSE across all environments in
the 50th episode. Furthermore, QD(_) learning has the lowest AVF
median ARMSE across all the environments in the 200th episode. All
these di�erences are statistically signi�cant. These results support
the hypothesis that the QD(_) learning algorithm learns faster than
the other three RL algorithms.

5 DISCUSSION
The main contribution of this research is the design of a new value-
based MARL algorithm that leverages networked agents, the QD(_)
learning algorithm. The experiments did not show that the QD(_)
learning algorithm has the lowest overall median AVF root-mean-
squared error (RMSE). Indeed, they showed that QD learning has
a lower RMSE and that the di�erence is statistically signi�cant.
However, the results did show that the QD(_) learning algorithm
gets the lowest median AVF accumulative root-mean-squared error
(ARMSE).

Based on this experimental evidence, we propose a general hy-
pothesis that the QD(_) learning algorithm can learn faster than
the other RL algorithms for environments where the agent must
transition through many states before it receives a reward. While
the experimentation supports the theory, it has not been proven.
A mathematical proof of the hypothesis is outside the scope of
this research. Although there is no extra network tra�c for the
QD(_) algorithm over the QD learning algorithm, it does require
additional computation. It does learn faster than the other RL al-
gorithms for the test environments, but the di�erence is slight. Is

https://alaworkshop2023.github.io/


QD(_) Learning: Towards Multi-agent Reinforcement Learning for Learning Communication ProtocolsALA ’23, May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/

(a) RMSE Number of states = 8 (b) ARMSE Number of states = 8

(c) RMSE Number of states = 16 (d) ARMSE Number of states = 16

(e) RMSE Number of states = 32 (f) ARMSE Number of states = 32

Figure 5: The action-value function root-mean-squared error (RMSE) and accumulative root-mean-squared error (ARMSE) for
the best con�gurations of each of the four learning algorithms for four di�erent types of environments.

the extra computation worth the e�ort for a minor improvement
in learning speed?

This research and experimentation focused on developing a
MARL algorithm to facilitate communication protocol learning.
The approach assumes the agents in the MAS are identical and
their learned behaviour is interchangeable. However, the agents’
incentives are not aligned in many decentralised systems. For these
cases, the transfer learning within QD(_) would be prohibitive
rather than bene�cial to the learning process.

The experiments used parameter sweeps to evaluate the model
across di�erent con�gurations. In total, the evaluations used 64

con�gurations across the four RL algorithms. The best con�guration
for QD(_) learning was U = 0.005, V = 0.005 and _ = 0.3. However,
we should not extrapolate this �nding to other environments with
di�erent transition functions, rewards or discounts (W ).

Ideally, the parameter sweep would ensure that the parameter
values of the best con�gurations were not at the limits of the sweep.
For example, the parameter sweep of step size, U , ranges from 0.05
to 0.005, with the best con�guration for all four RL algorithms
being U = 0.005; this is at the limit of the parameter sweep. Would
U = 0.0025 have gotten better results for any RL algorithm? While
this is likely the case, as a smaller step size results in a lower RMSE,
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Table 4: The action-value functionmedian root-mean-squared error (RMSE) and accumulated root-mean-squared error (ARMSE)
across 40 random seeds for episodes 50 and 200 for the best con�gurations of the four learning algorithms for three di�erent
types of environments.

Episode = 50 Episode = 200 Episode = 50 Episode = 200
Number of states = 8 Con�guration RMSE p-value RMSE p-value ARMSE p-value ARMSE p-value

QD(_) Learning U=0.005 V=0.005 _=0.3 0.0446 < 10�4 0.0074 0.0139 19.9183 - 22.3943 -
QD Learning U=0.005 V=0.005 0.0461 - 0.0070 - 20.3954 < 10�4 23.6829 0.0001
Q(_) Learning U=0.005 _=0.3 0.0534 < 10�4 0.0173 < 10�4 20.9529 0.0201 25.5197 0.0075
Q Learning U=0.005 0.0524 < 10�4 0.0159 < 10�4 21.8806 0.0738 26.5480 0.0007
Number of states = 16 Con�guration RMSE p-value RMSE p-value ARMSE p-value ARMSE p-value

QD(_) Learning U=0.005 V=0.005 _=0.3 0.0553 < 10�4 0.0064 0.0011 18.2678 - 20.3043 -
QD Learning U=0.005 V=0.005 0.0594 - 0.0059 - 19.2181 < 10�4 20.7923 < 10�4
Q(_) Learning U=0.005 _=0.3 0.0808 < 10�4 0.0151 < 10�4 20.8282 0.0294 23.9693 < 10�4
Q Learning U=0.005 0.0956 < 10�4 0.0135 < 10�4 22.3586 0.5453 25.9672 < 10�4

Number of states = 32 Con�guration RMSE p-value RMSE p-value ARMSE p-value ARMSE p-value

QD(_) Learning U=0.005 V=0.005 _=0.3 0.0996 < 10�4 0.0049 0.0315 15.8704 - 18.9138 -
QD Learning U=0.005 V=0.005 0.1111 - 0.0048 - 16.5807 < 10�4 19.6555 < 10�4
Q(_) Learning U=0.005 _=0.3 0.1398 < 10�4 0.0116 < 10�4 16.4933 < 10�4 21.3227 < 10�4
Q Learning U=0.005 0.1498 < 10�4 0.0110 < 10�4 17.1567 < 10�4 22.3191 < 10�4

it may not have achieved better results within 200 episodes, as
there was insu�cient time for the algorithm to converge. But extra
episodes may result in the con�guration of U = 0.0025 being the
best. As the best step size is again at the limit of the parameter
sweep, the earlier question remains valid — would an even smaller
step size get even better results for one of the RL algorithms? A
similar cyclical argument applies to the eligibility decay parameter,
_ and the consensus step size, V , which are also at the limit of the
parameter sweep.

Two observations from the experimental results are consistent
with previous �ndings in the literature. The �rst concerns Q(_)
learning where Sutton et al. reported “methods using eligibility
traces . . . o�er signi�cantly faster learning, particularly when rewards
are delayed by many steps” [28]. The second concerns Q(_) learning
where Tan stated that “agents engaging in partnership . . . may
learn slowly in the beginning” [10]. Our experimental results are
consistent with Sutton and Tan’s assertions.

6 CONCLUSION & FURTHERWORK
This research aimed to develop aMARL algorithmwhich overcomes
the limitation reported by Tan [10], that MARL algorithms with
networked agents “may learn slowly in the beginning”. Additionally,
we aspire to design a MARL algorithm suited to a sizeable multi-
agent system learning a communication protocol.

The main contribution is the QD(_) learning algorithm — a novel
value-based MARL algorithm that leverages networked agents. It
incorporates the advantages of transfer learning from the MARL
QD learning [20] algorithm and the faster learning when rewards
are delayed from the RL Q(_) Learning algorithm [19]. We evalu-
ated the QD(_) learning algorithm in specially designed RL envi-
ronments that require agents to transition through several states
before receiving a reward. The QD(_) learning algorithm achieved

the lowest accumulative root-mean-squared error, thus overcoming
the �nding by Tan that “agents engaging in partnership . . . may
learn slowly in the beginning” [10].

The empirical results support the hypothesis that the QD(_)
learning algorithm can learn faster than the other RL algorithms
for environments where the agent must transition through many
states before it receives a reward. Thus, QD(_) learning is suited to
a sizeable multi-agent system learning a communication protocol.
This emerging research area has seen signi�cant activity in the last
few years [12–16, 18].

A natural progression of this work is to evaluate the QD(_) learn-
ing algorithm’s e�ectiveness at learning a communication protocol.
In previous research, the authors developed Gossip Contracts, a
communication protocol for networked multi-agent systems to fa-
cilitate decentralised cooperation strategies [29]. The QD(_) learn-
ing algorithm could augment the Gossip Contracts protocol and
continually learn the best protocol to address a speci�c problem.
This use of QD(_) learning is akin to how the Evolved Gossip Con-
tracts framework leverages genetic programming to search for the
implementation of the GC methods to tailor it to a problem [30].
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