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ABSTRACT
In real-world problems, decision makers often have to balance mul-
tiple objectives, which can result in trade-offs. One approach to
finding a compromise is to use a multi-objective approach, which
builds a set of all optimal trade-offs called a Pareto front. Learning
the Pareto front requires exploring many different parts of the state-
space, which can be time-consuming and increase the chances of
encountering undesired or dangerous parts of the state-space. In
this preliminary work, we propose a method that combines two
frameworks, Pareto Conditioned Networks (PCN) and Wasserstein
auto-encoded MDPs (WAE-MDPs), to efficiently learn all possible
trade-offs while providing formal guarantees on the learned poli-
cies. The proposed method learns the Pareto-optimal policies while
providing safety and performance guarantees, especially towards
unexpected events, in the multi-objective setting.

1 INTRODUCTION
Decision makers acting in real-world problems often have to take
into account multiple objectives. When maximizing one objective
comes at the cost of another, the objectives are in conflict, and the
decisionmaker must find a compromise between them. For example,
maximizing the electricity output of a hydroelectric power plant
comes at the expense of increased flooding risks downstream as
well as irrigation deficits [1].

We can directly learn the best compromises by using an explicitly
multi-objective approach. Assuming that improving an objective
is always preferable, we can build a set of all optimal trade-offs
called a Pareto front. The decision maker can then use the Pareto
front to review all available policies, and use this knowledge to
select their preferred one [15]. However, learning the Pareto front
means exploring many different parts of the state-space, which
requires to accumulate more experience than when optimizing a
single objective. This also increases the chances of encountering
undesired or dangerous parts of the state-space.

In this preliminary work, we propose to learn all possible trade-
offs efficiently, while at the same time providing formal guarantees
(e.g., performance, safety) on the learned policies. To do so, we
build upon two successful frameworks for respectively learning
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the policies of such a Pareto front, and providing such guaran-
tees: Pareto Conditioned Networks (PCN) [14] and Wasserstein auto-
encoded MDPs (WAE-MDPs) [2]. The former is a goal-conditioned
reinforcement learning (RL) algorithm which learns the set of Pareto-
optimal policies. While PCN has proven to be effective in various
environments, it struggles to cope with unexpected events. WAE-
MDPs allows to distill single-objective RL policies, learn a latent
space model, and enable their formal verification via model check-
ing tools as well as bisimulation guarantees between the original
and latent environments (in a nutshell, an agent executing a policy
in the two models is guaranteed to behave the same way). However,
those guarantees have only be proven to hold in single-objective
settings. Moreover, they assume a fixed policy from which behavior
is distilled. We propose to combine the strengths of both approaches
to provide an algorithm that not only naively combines the two
methods but also mutually assist each other to overcome their re-
spective challenges. This results in a method that learns the Pareto
front, while providing safety and performance guarantees, e.g.,
towards unexpected events and the multi-objective setting.

2 BACKGROUND
In the following, we write Δ(X) for the set of measures over (com-
plete, separable metric space) X and [𝑁 ] for {𝑛 ∈ N | 1 ≤ 𝑛 ≤ 𝑁 }.

2.1 Multi-Objective Decision Making
Markov Decision Processes. In scenarios where the agent must
achieve multiple, potentially conflicting goals while interacting
with an unpredictable, unknown environment,multi-objectiveMarkov
decision processes (MOMDPs) provide a valuable tool for making de-
cisions under uncertainty. AnMOMDP is a tupleM = ⟨S,A,T ,ℛ,
𝑠I , 𝑁 ,𝛾⟩ where: S is a set of states;A, a set of actions; T : S×A →
Δ(S), a probability transition function that maps the current state
and action to a distribution over the next states; ℛ : S × A → R𝑁 ,
amulti-dimensional reward function; 𝑠I ∈ S, the initial state; 𝑁 ∈ N,
the number of agent’s objectives; and 𝛾 ∈ [0, 1), a discount factor.
An agent interacting inM produces trajectories, i.e., sequences of
states, actions, and rewards 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 −1, 𝒓 0:𝑇 −1⟩ where 𝑠0 = 𝑠I ,
𝑠𝑡+1 ∼ T (· | 𝑠𝑡 , 𝑎𝑡 ), and 𝒓𝑡+1 = ℛ(𝑠, 𝑎) for 𝑡 < 𝑇 . The set of infinite
trajectories ofM is TrajM .
Policies. A (stationary) policy 𝜋 : S → Δ(A) prescribes which
action to choose at each step of the interaction. The set of station-
ary policies ofM is Π. The MOMDPM and 𝜋 induce a unique
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𝑠I𝑠1 𝑠2
ℛ(𝑠I , 𝑎1 ) = (10, 0) ℛ(𝑠I , 𝑎2 ) = (−5, 3)

ℛ(𝑠I , 𝑎3 ) = (5, 0)

Figure 1: Simple MOMDP with two states, three actions. All
transitions (depicted by edges) have probability one.

probability measure PM𝜋 on the Borel 𝜎-algebra over (measurable)
infinite trajectories [13]. We write P𝜋 (· | 𝑠I = 𝑠) for the probabil-
ity measure over events of the MDP M with 𝑠 ∈ S as initial
state. The unique stationary distribution b𝜋 ∈ Δ(S) is the dis-
tribution over states assigning to each state the probability of
encountering that state when the agent follows 𝜋 , at the limit:
b𝜋 (𝑠) = lim𝑡→∞ P𝜋 ({𝑠0:∞, 𝑎0:∞, 𝒓 0:∞ | 𝑠𝑡 = 𝑠}). Such a unique station-
ary distribution is guaranteed to exist in episodic RL processes [10].
Value functions.We formalize the agent’s behavior through value
functions: given a policy 𝜋 , the value of a state 𝑠 is the expected value
of a random variable obtained by running 𝜋 from 𝑠 . We consider
the following value functions.

(i) Discounted return: we write𝑉 𝜋 (𝑠) = E𝜋
[∑∞

𝑡=0 𝛾
𝑡 𝒓𝑡 | 𝑠I = 𝑠

]
for the expected discounted rewards accumulated along tra-
jectories and V𝜋 for the vector resulting of 𝑉 𝜋 (𝑠I ). When
the context is clear, we may omit the superscript;

(ii) Reachability: we define the reachability to a goal state as the
discounted probability of visiting this state for the first time.
This is done by defining a binary reward signal capturing
this event and computing the return of this reward signal.
Let G ⊆ S be the set of goal states, the reachability event
is ♢G = { 𝑠0:∞, 𝑎0:∞, 𝒓 0:∞ | ∃𝑖 ∈ N, 𝑠𝑖 ∈ G } ⊆ TrajM . We write
𝑉 𝜋
♢G (𝑠) = E𝜋

[
𝛾𝑡

★
1𝜏 ∈ ♢G | 𝑠I = 𝑠

]
for the discounted reach-

ability to G, where 𝑡★ is the length of the shortest trajec-
tory prefix hitting G. Notice that 𝑉 𝜋

♢G (𝑠) = P𝜋 (♢G | 𝑠I = 𝑠)
for 𝛾 = 1.

Pareto-optimality.When 𝑁 = 1, the typical goal of an RL agent
is to learn a policy 𝜋★ that maximizes the single-objective value
𝑉 𝜋★ by interacting withM. In contrast, when 𝑁 > 1, there is no
optimal policy as such, the multidimensional rewards may lead to
trade-offs between the different objectives formalized through the
𝑁 dimensions of the value function.

For instance, take the MDP of Fig. 1 and consider two policies,
𝜋1 and 𝜋2, so that 𝜋1 (𝑎1 | 𝑠I ) = 𝜋2 (𝑎2 | 𝑠I ) = 1, the returns yielded
by the two policies are respectively V𝜋1 = (10, 0) and V𝜋2 = (−5, 3);
so there is not clearly one policy better than the other.

A policy 𝜋 is dominated by another policy 𝜋 ′ if its value from the
initial state is lower on all the dimensions than those of the other.
Formally, for two policies 𝜋, 𝜋 ′, we write V𝜋 ≺ V𝜋

′ iff V𝜋𝑖 ≤ V𝜋
′

𝑖 for
all 𝑖 ∈ [𝑁 ] and V𝜋𝑗 < V𝜋

′
𝑗 for some 𝑗 ∈ [𝑁 ], where ≺ is the Parero-

dominance operator. For instance, take 𝜋3 so that 𝜋3 (𝑎3 | 𝑠I ) = 1,
then 𝜋3 is dominated by 𝜋1 since V𝜋3 = (5, 0) ≺ V𝜋1 with 5 < 10.

Therefore, the typical goal of a multi-objective RL agent is to find
the set of Pareto-optimal policies, i.e., those that are not dominated
by any other policies: Π★ =

{
𝜋 ∈ Π | �𝜋 ′ such that V𝜋 ′ ≺ V𝜋

}
.

There is a surjective mapping from Π★ to the Pareto front F ={
V𝜋 | 𝜋 ∈ Π★

}
.

Learning the full set of Pareto-efficient policies Π★ requires that
the policies 𝜋★ ∈ Π★ are deterministic stationary policies [15]. This
is useful in settings where stochastic policies are not desired, such
as the management of a hydroelectric power plant. In that scenario,
the decision maker does not want to be presented with a policy that
has a probability of completely draining the water reservoir even if
that policy is optimal, as it would have catastrophic consequences
for nearby towns [9].

As concrete example, the set of non-dominated policies from the
MDP of Fig. 1 is Π★ =

{
𝜋1, 𝜋2

}
, for which the corresponding Pareto

front is F =
{(10, 0), (−5, 3)}.

In general, we call the images of any surjective mapping from
Π to values a solution set, and any solution set mapped from non-
dominated policies a coverage set. The Pareto front is thus the opti-
mal coverage set of the problem.

2.2 Pareto Conditioned Networks
Using neural networks as function approximators in RL comes with
challenges. One is that the target (e.g., the policy’s optimal action) is
not known in advance — as opposed to classical supervised learning
where the ground-truth target is provided. As the behavior of the
agent improves over time, the action used as target can change,
often leading to hard-to-tune and brittle learners [6, 12].

The key idea behind Pareto Conditioned Networks (PCN) [14]
is to use supervised learning techniques to improve the policy
instead of resorting to temporal-difference learning. This is done by
conditioning the policy on a desired return that should be achieved.
Since we know the return — be it high or low — achieved by a
trajectory, we know the sequence of optimal actions needed to
reach said return. We can thus train a policy that, conditioned on
a desired return, provides the optimal action to reach said return.
By leveraging the generalization properties of neural networks, we
can accumulate incrementally better experience by conditioning
on increasingly higher reward-goals.

Architecture. PCN uses a single neural network that takes a tuple
⟨𝑠, ℎ̂, R̂⟩ as input. They represent, for state 𝑠 , the return R̂ that PCN
should reach at the end of the episode, i.e. the desired return. The
desired horizon ℎ̂ says how many timesteps should be executed
before reaching R̂. At execution time, both ℎ̂ and R̂ are chosen by the
decision maker for 𝑠I . PCN’s neural network has a separate output
for each action 𝑎𝑖 ∈ A. Each output represents the confidence the
network has that, by taking the corresponding action, the desired
return will be reached in the desired number of timesteps. We can
draw an analogy with a classification problem where the network
should learn to classify ⟨𝑠, ℎ̂, R̂⟩ to its corresponding label 𝑎𝑖 .

Dataset. As for classification, PCN needs a labeled dataset with
training examples to learn a mapping from input to label. PCN
collects data from the trajectories experienced while exploring the
environment. For each timestep 𝑡 of the trajectory, we know the
episode’s horizon ℎ𝑡 = 𝑇 − 𝑡 . We can also compute the cumulative
reward obtained from 𝑡 onward, i.e., R𝑡 =

∑𝑇
𝑖=𝑡 𝒓𝑖 . Since for this

trajectory executing 𝑎𝑡 in 𝑠𝑡 resulted in R𝑡 in ℎ𝑡 timesteps, we add
a datapoint with input ⟨𝑠, ℎ̂, R̂⟩ = ⟨𝑠𝑡 , ℎ𝑡 ,R𝑡 ⟩ and output 𝑎 = 𝑎𝑡 to
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Figure 2: Conversion from a trajectory to labeled datapoints.
For each timestep, we extract a single datapoint. The input
(blue) is composed of the state at that timestep, and total
return and number of timesteps until the end of the episode.
The label (red) is the action taken at that timestep.

the dataset. In other words, when the observed return corresponds
to the desired return in that state, then 𝑎𝑡 is the optimal action to
take. Fig. 2 shows how a trajectory is decomposed into datapoints.

One issue arises with this approach. In MORL, we aim to learn
the set of Pareto dominating policies, expressed in Values. A policy’s
performance is thus measured in expectation. In contrast, PCN op-
timizes its policy on single trajectories, no matter how improbable
the trajectory. For (MO)MDPs with a stochastic transition function,
exploration can lead to high but improbable returns. When these
returns Pareto-dominate other solutions, they are incorporated in
PCN’s solution set and proposed as target to the decision maker.
However, upon selecting this target, the policy executions will, on
average, result in lower returns.

We aim to tackle this issue by learning a model of the MOMDP,
including its transition function. Using this model, we can evaluate
the probability of a trajectory, which can help us determine if it
worth incorporating it in the dataset. More importantly, we can
simulate our policy on the learned model and estimate its value.

To this end, we take inspiration from Wasserstein Autoencoders
(WAE). WAEs learn a latent model of the original MOMDP, con-
ditioned on a policy 𝜋 . This model presents several advantages.
First, it learns a discretization of the original MOMDP. This allows
us to execute Value Iteration (VI) on the model, providing us with
accurate estimates for the policy’s value. Second, WAEs provide the-
oretical bi-similarity guarantees allowing us to estimate the quality
of the learned model and thus the computed values. Finally, we
can apply formal methods on WAEs, providing us with reachability
guarantees on the targets that make up the coverage set, improving
the decision maker’s understanding of the proposed policies.

2.3 Latent Space Modeling
Latent MDPs. Given the original (continuous or very large, pos-
sibly unknown) environmentM, a latent space model is another
(tractable, explicit) MDPM = ⟨S,A,T ,ℛ, 𝑠𝐼 , 𝛾⟩ with state space
linked to the original one via a state embedding function: 𝜙 : S → S.
We write𝑉 𝜋 for the value function derived from the execution of a
latent policy 𝜋 : S → Δ(A) inM. Furthermore, such policies can
also be executed in the real modelM via 𝜙 : intuitively, every time

a state 𝑠 ∈ S is visited, it is mapped to the latent space via 𝑠 = 𝜙 (𝑠),
and then 𝜋 prescribes which action to choose via 𝑎 ∼ 𝜋 (· | 𝑠).
Optimal transport. Let 𝑃,𝑄 ∈ Δ(X) be two distributions, their
divergence can be measured according to the solution of the op-
timal transport problem (OT), which is intuitively the minimum
cost of changing 𝑃 into 𝑄 [17]. Formally, the OT is defined as
W𝑐 (𝑃,𝑄) = inf_∈Λ(𝑃,𝑄 ) E𝑥,𝑦∼_ 𝑐 (𝑥,𝑦) where 𝑐 : X × X → [0,∞)
is a cost function and Λ(𝑃,𝑄) is the set of all couplings of 𝑃 and𝑄 . If
𝑐 is equal to a distance metric 𝑑 over X, thenW𝑑 is theWasserstein
distance between the two distributions.
Wasserstein Auto-encoded MDPs (WAE-MDPs) [2] are parame-
terized latent space models that are trained based on the OT from
trajectory distributions resulting from the execution of the RL
agent’s policy in the real environmentM to that reconstructed
from the latent modelM\ . The optimization process relies on a
temperature _ ∈ [0, 1) that controls the continuity of the latent
space learned, the zero-temperature corresponding to a discrete
latent space. This procedure guaranteesM\ to be probably approx-
imately bisimilarly close [3, 8, 11] toM as _ → 0: in a nutshell,
bisimulation metrics imply the closeness of the two models in terms
of probability measures and value functions [4, 5]. In particular, a
WAE-MDP learns the following components:

a state embedding function 𝜙] : S → S,
a latent transition function T\ : S × A → Δ(S), and
a latent reward function ℛ\ : S × A → R𝑁 .

The objective function of WAE-MDPs — derived from the OT —
incorporates local losses [7] that minimize the expected distance
between the original and latent reward and transition functions:

𝐿Dℛ = E
𝑠,𝑎∼D

ℛ(𝑠, 𝑎) −ℛ\ (𝜙] (𝑠), 𝑎)


1
,

𝐿DT = E
𝑠,𝑎∼D

W𝑑

(
𝜙]T (· | 𝑠, 𝑎),T\ (· | 𝜙] (𝑠), 𝑎)

)
(1)

where D ∈ Δ(S × A) is the distribution of experiences gathered
by the RL agent when it interacts withM, 𝜙]T (· | 𝑠, 𝑎) is the dis-
tribution of transitioning to 𝑠′ ∼ T (· | 𝑠, 𝑎), then embedding it to
the latent space 𝑠′ = 𝜙] (𝑠′), and 𝑑 is a metric on S. To obtain the
guarantees, D generally corresponds to the stationary distribution
over states likely to be seen when a latent policy is executed.

3 A JOURNEY INTO THE LATENT SPACE
3.1 Multi-Objective WAE-MDPs
While WAE-MDPs have proven to learn accurate representations of
single-objectiveMDPs, their propertiesmight not hold forMOMDPs.
In this section, we focus on two key questions: “How well can
WAE-MDPs model MDPs with multiple objectives?" and “Does the
WAE-MDP latent space provide an effective representation for multi-
objective RL?". We present theoretical bounds that are directly aimed
at addressing these concerns. First, we show that when the local
losses are minimized, the values of states in the original MDP and
those of their embeddings in the latent MDP are close in average,
demonstrating the quality of the latent model learned: not only the
dynamics of the latent model are close to those of the original one,
but the behaviors of the agent operating under any latent policy are



close (in terms of values) in the two models. Second, we show that
in consequence, states that are mapped to the same latent repre-
sentation have in fact close values. Therefore, the states clustering
resulting from the embedding function is a suitable representation
for optimizing (multi-objective) value functions.

Theorem 3.1 (Latent model qality). LetM be an MO-MDP
with state space S, M\ be a latent space model of M with state
space S and embedding function 𝜙] , as well as 𝜋 be a latent policy
forM\ . Assume that the WAE-MDP is at the zero-temperature limit
(i.e., _ → 0) and let b𝜋 be a stationary distribution ofM as well as
𝐾𝑉 = sup𝑠,𝑎,𝑖

���ℛ(𝑠,𝑎)𝑖 ���/1−𝛾 , then
E

𝑠∼b𝜋

𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝜙] (𝑠))


1
≤
𝐿
b𝜋
ℛ + 𝛾𝑁𝐾𝑉 𝐿

b𝜋
T

1 − 𝛾 . (2)

Notice that this upper bound goes to zero as 𝐿b𝜋ℛ and 𝐿b𝜋T go to zero.

Furthermore, let G ⊆ S and G ⊆ S be measurable sets of goal
states so that, for all 𝑠 ∈ G, 𝜙] (𝑠) = 𝑠 =⇒ 𝑠 ∈ G. Then,

E
𝑠∼b𝜋

���𝑉 𝜋
♢G (𝑠) −𝑉

𝜋
♢G (𝜙] (𝑠))

��� ≤ 𝛾𝐿b𝜋T1 − 𝛾 . (3)

Proof. The second inequality (Eq. 3) is a direct application of
[3, Eq. 3 and Lem. B.3]. Concerning the first inequality (Eq. 2), let
𝐿
b𝜋
ℛ (𝑖) = E𝑠,𝑎∼b𝜋

���ℛ(𝑠, 𝑎)𝑖 −ℛ\ (𝜙] (𝑠), 𝑎)𝑖
��� for all 𝑖 ∈ [𝑁 ]. Then:

E
𝑠∼b𝜋

𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝜙] (𝑠))


1

= E
𝑠∼b𝜋

[
𝑁∑︁
𝑖=1

���𝑉 𝜋 (𝑠)𝑖 −𝑉
𝜋 (𝜙] (𝑠))𝑖

���] (by def. of the 𝐿1 norm)

=
𝑁∑︁
𝑖=1
E

𝑠∼b𝜋

���𝑉 𝜋 (𝑠)𝑖 −𝑉
𝜋 (𝜙] (𝑠))𝑖

���
≤

𝑁∑︁
𝑖=1

𝐿
b𝜋
ℛ (𝑖) + 𝛾𝐾𝑉 𝐿

b𝜋
T

1 − 𝛾 (by [3, Eq. 3 and Lem. B3])

=
𝐿
b𝜋
ℛ + 𝛾𝑁𝐾𝑉 𝐿

b𝜋
T

1 − 𝛾 . (by Eq. 1 and definition of the 𝐿1 norm)

□

Corollary 3.1.1 (Representation qality). For any two states
𝑠1, 𝑠2 ∈ S with 𝜙] (𝑠1) = 𝜙] (𝑠2),𝑉 𝜋 (𝑠1) −𝑉 𝜋 (𝑠2)


1
≤
𝐿
b𝜋
ℛ + 𝛾𝑁𝐾𝑉 𝐿

b𝜋
T

1 − 𝛾
(
b−1
𝜋 (𝑠1) + b−1

𝜋 (𝑠2)
)
,���𝑉 𝜋

♢G (𝑠1) −𝑉 𝜋
♢G (𝑠2)

��� ≤ 𝛾𝐿𝜋T
1 − 𝛾

(
b−1
𝜋 (𝑠1) + b−1

𝜋 (𝑠2)
)
.

This claim can be proven by mimicking the proof for the one
of [3, Eq. 4]. Furthermore, those value difference bounds can be
PAC-learned, in the same fashion as those of [3] to assess the model
quality resulting from the WAE-MDP procedure.

3.2 The Target-Augmented MDP
As explained in Sec. 2.2, PCN conditions its network on a target
return R̂ and target horizon ℎ̂. Implicitly, this network holds infin-
itely many policies, as we can choose any target, and PCN chooses
the action accordingly. In comparison, a WAE-MDP learns a model
based on the traces of a single policy. To reconcile the differences
between these two approaches, i.e., the multiple policies that PCN
learns and the single policy the WAE-MDP depends on, we propose
a mapping of the MOMDP to another MOMDP such that all of
PCN’s different policies of the original MOMDP are encompassed
into a single policy of the transformed MOMDP.

Concretely, we enable optimizing a WAE-MDP through traces
generated via a latent policy, solely conditioned on latent states,
by incorporating the conditioning on target returns and horizons
straight to the latent space. This is done by augmenting the original
MOMDP’s state-space with the target returns and horizons. Finally,
we define a new start-state, 𝑠reset, from which we can transition
to the original MOMDP’s start-state augmented with a ⟨R̂, ℎ̂⟩ pair.
Intuitively, every time the environment is reset, a target is sampled
from some target distribution. Then,M↑ keeps track of the current
target in its state space: it is merely the MDP encoding the process
of Fig. 2. Finally, when the horizon is zero, it means that a terminal
state is reached, and the environment is reset.

Formally, given an MOMDPM = ⟨S,A,T ,ℛ, 𝑠I , 𝑁 ,𝛾⟩ and a
target set T ⊆ N × R𝑁 , we learn the WAE-MDP from the MOMDP
M↑ = ⟨S↑,A,T ↑,ℛ↑, 𝑠reset, 𝑁 ,𝛾⟩ so that the augmented state is
S↑ = (S × N × R𝑁 ) ∪ {𝑠reset}, where a special reset state 𝑠reset is
embedded which indicates that the environment has been reset.
The transitions to that reset state are
T ↑ (𝑠reset | 𝑠↑, 𝑎) = 1 for any 𝑠↑ ∈ {⟨𝑠, ℎ,R⟩ | ℎ = 0} ⊆ S↑,

transitions from the reset state are
T ↑ ({⟨𝑠I , ℎ,R⟩ | ⟨ℎ,R⟩ ∈ T} | 𝑠reset, 𝑎) = 1,

and transitions from one augmented state to another are
T ↑ (〈𝑠′, ℎ − 1,R′

〉 | ⟨𝑠, ℎ,R⟩ , 𝑎)
= E
𝑠I ,ℎ𝐼 ,R𝐼∼T↑ ( · |𝑠reset,𝑎)

[
T (
𝑠′ | 𝑠, 𝑎) · 1= (R′,R − 𝛾ℎ𝐼 −ℎ ·ℛ(𝑠, 𝑎))] .

Finally, the augmented reward function is
ℛ↑ (⟨𝑠, ℎ,R⟩ , 𝑎) = ℛ(𝑠, 𝑎) for all ⟨𝑠, ℎ,R⟩ ∈ S↑, 𝑎 ∈ A .

Playing around value functions. The bounds derived in Sec. 3.1
are also valid forM↑: the embedding function 𝜙] maps states from
S↑ to S whileM\ models the dynamics ofM↑. In particular, Corol-
lary 3.1.1 ensures that the representation obtained by minimizing
the local losses is suited to optimize the multi-objective Values
during any MORL process, and Thm 3.1 enables the computation of
the multi-objective return in the latent space model to check the be-
haviors of the agent operating under the latent policy. In particular,
in the zero-temperature limit, VI can be used to compute the values
of any state ofM\ . Furthermore, the goal set G of interest is the
set of achieved targets, i.e., augmented states of the form ⟨𝑠, ℎ,R⟩
where ℎ = 0 and R = 0: such states indicate that a target has been
achieved inM↑. We reserve a special bit in the latent space S to
enforce 𝜙] to deviate all states from G to a part of the latent space
G ⊆ S dedicated to achieved targets: for any goal state 𝑠 ∈ G, this



ensures that, whenever 𝜙] (𝑠) = 𝑠 , 𝑠 ∈ G. Therefore, for any target
𝑔 = ⟨ℎ̂, R̂⟩ ∈ T, we can check the probability of achieving 𝑔 in the

latent space by computing the value 𝑉 𝜋
♢𝐺

(
𝜙]
(
𝑠I , ℎ̂, R̂

))
.

4 WAE-PCN
We have shown in Sec. 3.1 that the difference between the value
function of the policy 𝜋 that interacts with the original MOMDP
and the value function of the policy 𝜋 that interacts with the latent
model is bounded. In our case, we combine 𝜋 with the encoder as
latent policy, so the bound solely depends on the latent model error.

Thus, the latent model offers representation quality guarantees
on the MOMDP. Combined with the augmented MOMDP described
in Sec. 3.2, we can encode PCN’s non-dominated policies into a
single policy, thus adhering to the assumptions of Thm. 3.1.

Theoretically, we can train a set of Pareto-efficient policies using
PCN, and estimate their Value and the target’s reachability proba-
bility. Policies for which the Value does not match the target (due
to the stochasticity of the transition function) can be filtered out.
However, this does not allow to keep alternative policies, had the
mismatching policies been filtered out during the learning process.

Our goal is thus to combine the learning of the WAE-MDP with
the learning of PCN such that, by using WAE-MDP’s estimated
Values, mismatching policies are pruned out during PCN’s search
for non-dominated policies. We call this novel algorithmWAE-PCN.

The key differences of our algorithm with PCN are in blue.
Learning 𝜋 . To remove potential discrepancies between 𝜋 (learned
by PCN) and its distillation 𝜋 , we directly learn 𝜋 . PCN uses 𝜋 by
first encoding 𝑠 into 𝑠 = 𝜙] (𝑠). When PCN updates 𝜋 , we keep ]
fixed, as to not modify the latent space during policy updates.
Incorporating 𝑠reset.WAE-MDPs assume the original (MO)MDP
is ergodic. We can enforce this property through a special 𝑠reset
state. To include 𝑠reset in the latent space, we artificially add a final
transition at the end of each trajectory from the final state to 𝑠reset.
Keeping separate replay buffers. PCN keeps the best performing
trajectories in its buffer (in terms of Pareto dominance), encountered
by exploring with a stochastic policy and optimistic targets. PCN
learns deterministic policies that should imitate these trajectories.
However, the current 𝜋 might not have converged to this desired
behavior. In contrast, WAE-MDP learns its model based on traces of
the final policy. Moreover, since only the best trajectories are kept,
the transitions in PCN’s buffer do not match the MOMDP’s state-
transition distribution, which is crucial for WAE-MDPs. Finally,
PCN’s buffer relabels the targets so they can be used to improve
the policy. But executing the current policy on these targets might
lead to different trajectories. Thus, WAE-MDP requires the original
labels. Thus, after an exploration phase with optimistic targets
for PCN, we add an exploitation phase where, for each currently
non-dominated target, we execute the deterministic policy. These
trajectories are added to a separate WAE-buffer.

Pruning the buffer with 𝑉 𝜋 . Since we aim to keep the best poli-
cies w.r.t. Values, we change PCN’s pruning mechanism to prioritize
trajectories from policies with non-dominated Values instead of
returns. For this, WAE-PCN estimates the Values of 𝜋 conditioned
on the trajectory’s target and uses it to set the trajectory’s priority.

Algorithm 1 WAE-PCN

Require: WAE-MDPM\ with buffer BWAE , PCN network 𝜋𝜓 with buffer BPCN .
1: for 𝑛 ∈ [𝑁 ] do ⊲ fill buffers with random trajectories
2: sample trajectory 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 −1, 𝒓0:𝑇 −1 ⟩ using random policy 𝜋𝑛
3: 𝜏𝑇+1 ← ⟨𝑠reset, 𝑎𝑇 , 0⟩ ⊲ terminal to reset
4: for 𝜏𝑖 ∈ 𝜏 do
5: ℎ̂, R̂ = 𝑇 − 𝑖,∑𝑇

𝑡=𝑖 𝛾
𝑡−𝑖𝒓𝑡 ⊲ target horizon, return

6: add 𝜏𝑖 , ℎ̂, R̂ to BPCN , BWAE
7: while True do
8: for𝑚 ∈ [𝑀 ] do ⊲ policy and model updates
9: for 𝑤 ∈ [𝑊 ] do
10: updateM\ using BWAE , 𝜋𝜓

11: update 𝜋𝜓 using BPCN
12: for 𝜏𝑖 ∈ BPCN do
13: V𝜋𝑖 ← 𝑉

𝜋𝜓
(
𝜙]

(
𝑠0, ℎ̂0, R̂0

))
14: prune BPCN using V𝜋.

15: select ℎ̂, R̂ based on BPCN ⊲ optimistic targets
16: for 𝑛 ∈ [𝑁 ] do ⊲ exploration
17: sample 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 −1, 𝒓0:𝑇 −1 ⟩ using 𝜋𝜓 with 𝜙] , ℎ̂, R̂
18: 𝜏𝑇+1 ← ⟨𝑠reset, 𝑎𝑇 , 0⟩ ⊲ terminal to reset
19: for 𝜏𝑖 ∈ 𝜏 do
20: add 𝜏𝑖 ,𝑇 ,R0 to BPCN
21: for ℎ̂, R̂ ∈ F do ⊲ exploitation
22: for 𝑛 ∈ [𝑁 ] do
23: sample 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 −1, 𝒓0:𝑇 −1 ⟩ using 𝜋𝜓 with 𝜙] , ℎ̂, R̂
24: 𝜏𝑇+1 ← ⟨𝑠reset, 𝑎𝑇 , 0⟩ ⊲ terminal to reset
25: for 𝜏𝑖 ∈ 𝜏 do
26: add 𝜏𝑖 , ℎ̂, R̂ to BWAE

We depict the algorithm in Algorithm 1. We highlight in blue
the additions to the original PCN algorithm to incorporate the
WAE-MDP. In lines 1-9, the buffers are initialized with random
trajectories. After this initial stage, we enter a loop that repeats
three processes. First, we update the models (lines 11-16). Secondly,
we estimate the Values of the policy responsible for each trajectory
in the replay buffer and prune the buffer based on these Values
(lines 17-20). Thirdly, we select an optimistic target based on the
current Values from the buffer and we execute the updated PCN pol-
icy conditioned on this target (lines 21-28). Finally, we execute each
currently non-dominated policy to fill the WAE-buffer (lines 29-37).

5 EXPERIMENTS
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Figure 3: Modified DST.

To understand the properties of
our proposed algorithm, we de-
vise a simple tabular MOMDP
with a stochastic transition func-
tion, such that we can encounter
trajectories with high returns
with low probability. Trying to
imitate these trajectories results
in a worse expected return. Con-
cretely, we inspire ourselves from
Deep-Sea-Treasure [16], a classic
benchmark MOMDP. In this envi-
ronment, a submarine seeks for treasure at the bottom of the sea.
Each timestep it consumes 1 unit of fuel. Further away treasures
have a higher worth, leading to different fuel/treasure trade-offs.

For this environment, we change the dynamics of a single state.
At one location of the ocean, there is a whirlpool. Entering the
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(a) Estimated V for all the policies across all
the performed experiments.
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(b) Returns obtained by executing each policy,
for each run. Each number denotes the number
of policies reaching the matching point.
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(c) Number of Pareto efficient policies over
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Figure 4: All policies obtained across all experiments. We performed 18 experiments in total. The Pareto front contains 3
solutions, depicted in red, green and blue. The black solutions depict sub-optimal policies. For clarity, we omit the 5 policies
that are unable to discover a return, wandering forever in the environment.

whirlpool results in a 90% of damaging the submarine, forcing
it to return empty handed, and thus ending the episode. How-
ever, with a 10% probability, the submarine is transported to the
most valuable treasure of the environment. The environment is
depicted in Fig. 3. There exist 4 different treasures, leading to 4 differ-
ent trade-offs: (−1, 1), (−3, 2), (−5, 3), (−5, 5), with corresponding
policies 𝜋1, 𝜋2, 𝜋3, 𝜋4 respectively. We note that we can only reach
(−5, 5) through the whirlpool. When only considering the trajec-
tories, the 3 non-dominated trade-offs are (−1, 1), (−3, 2), (−5, 5).
However, due to the whirlpool, V𝜋1 = (−5, 0.5), in which case the
Pareto front is (−1, 1), (−3, 2), (−5, 3). While PCN learns the first
coverage set, we aim for WAE-PCN to learn the second.

5.1 Results
We perform 18 experiments on our modified DST environment. In
Fig. 4, we plot the learned policies for each experiment. On the left,
we plot the latent Values for each learned policy. The center plot
shows the returns obtained after executing the policy. The solutions
that are part of F are plotted in a separate colors, while the other
ones are plotted in black.

First, we see that 8/18 experiments discover the full Pareto front,
since 8 policies reach (−5, 3). However, due to inaccuracies in latent
Value, some of these experiments learn to keep more than 3 non-
dominated policies. For example, 2 experiments learn a fourth policy
that aims for (−5, 5), even though they already have a policy going
to (−5, 3). Still, not a single experiment learns to aim for (−5, 5)
while discarding (−5, 3), which is what vanilla PCN learns.

Next, we analyze the latent Values. We observe that, for (−1, 1)
and (−3, 2), estimates are accurate. For (−5, 3) they are less so: they
correctly estimate the −5 fuel consumption, but are pessimistic
about the treasure value, with estimates in range [2, 2.5]. This is
close to the 2nd treasure but with worse fuel consumption, which
might explain why WAE-PCN has difficulties in keeping 𝜋3.

Finally, Fig. 4c shows the evolution of the learned coverage set
over time. On average, the size of the learned coverage set is higher
than 2, but does not reach 3. This is because, even after learning

F , WAE-PCN forgets policies and has to relearn them. With this
insight, we plot in red the best learned coverage set over time for
each experiment. This curve, which converges to 2.95, shows that
almost all experiments learn the full Pareto front during training.

6 DISCUSSION & CONCLUSION
We show that WAE-PCN can learn the Pareto front and produce
reliable latent Values. However, this currently applies on 8/18 ex-
periments. Many experiments learn a subset of the Pareto front and
consider some sub-optimal policies as optimal, due to distant la-
tent Values. E.g., often the policy that leads to (−2, 1) is considered
non-dominated since it produces Values close to (−1, 1).

Moreover, most of the experiments learn all the Pareto-efficient
policies sometime during the training procedure, but unlearn them
as they are considered sub-optimal. Without this instability, 17/18
experiments would have fully succeeded.

We believe this instability results from the dual dependency be-
tween PCN and WAE-MPDs, which can lead to conflicting learning
behavior. PCN learns 𝜋 in theWAE-MDP’s latent state-space. When
we update the WAE-MDP, the latent representation changes, which
impacts 𝜋 . With a changed policy, the traces that PCN produces
(lines 22-27) might become unreliable. This results in a change in
training data in BWAE, which modifies the learned transition func-
tion. This in turn impacts the estimated Values, which alters the
priorities of trajectories in BPCN and thus its pruning. Finally, this
results in a different set of targets that PCN learns to imitate.

We cope with this instability by intertwining the updates of both
components. Moreover, we keep low learning rates and use decay-
ing learning rate to avoid drastic changes between each update.

The clear future direction of our work is stabilizing the learning
procedure. We foresee three possible avenues of work: (i) we aim to
stabilize the pruning process by including reachability probabilities;
(ii) we take inspiration from adverserial learning; (iii) we cope with
the stabilization problem with RL solutions for the moving target
problem (e.g., Polyak averaging).
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