
Continuous Communication with Factorized Policy Gradients in
Multi-agent Deep Reinforcement Learning

Changxi Zhu
Utrecht University
Utrecht, Netherlands

c.zhu@uu.nl

Mehdi Dastani
Utrecht University
Utrecht, Netherlands
m.m.dastani@uu.nl

Shihan Wang
Utrecht University
Utrecht, Netherlands

s.wang2@uu.nl

ABSTRACT
In multi-agent deep reinforcement learning (MADRL), agents can
learn to communicate to broaden their view and understanding
of the environment and their teammates. Previous works on com-
munication in MADRL mainly rely on centralized or independent
value functions for the learning to communicate. In this paper, we
propose to employ value decomposition methods, which provide
centralized but factorized value functions for learning communica-
tion. The decomposed value functions utilize global information
and help each agent differentiate how their decisions and associated
communication contribute to the learning. Therefore, we propose
a new policy gradient method called continuous communication
with factorized policy gradients (CCFPG). The proposedmethod em-
ploys a dedicated factorized critic based on communication and an
attention mechanism to aggregate messages. The results on contin-
uous predator-prey and a new platform Multi-agent MuJoCo show
that CCFPG can improve the performance or accelerate learning
compared to other learning with communication methods.

KEYWORDS
Communication, Multi-agent Reinforcement Learning, Continuous
Multi-agent Environments

1 INTRODUCTION
Multi-agent deep reinforcement learning (MADRL) holds consider-
able promise to help address a variety of multi-agent problems, such
as autonomous driving [19], sensor networks [28], robotics [10],
and game-playing [1, 20]. In many such settings, communication
has shown great benefits to improve the performance of MADRL,
where agents communicate their local observations, goals, or inten-
tions to provide a better view of the environment and themselves for
other agents [2, 4, 8, 23, 35]. Previous works on communication in
multi-agent deep reinforcement learning (Comm-MADRL) mostly
investigate learnable communication in domains with discrete ac-
tion space. However, many tasks of interest, most notably physical
control tasks, have continuous (real valued) and high dimensional
action spaces. Whether communication can improve the learning
of agents in continuous control, is underexplored.

In many multi-agent tasks, agents cooperate with each other to
achieve a final goal. Centralized training and decentralized execution
(CTDE) is one of the most popular training paradigms in MADRL
and also Comm-MADRL [4, 5, 12, 17]. Many CTDE algorithms are
based on actor-critic, where a value (or an action-value) function
serves as a critic to guide learning optimal policies (i.e., actors)
[5, 12]. In CTDE with actor-critic methods, the critic is usually

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

centralized which gathers information from all agents and provides
global feedback to decentralized actors (i.e., policies). However, the
centralized critic can easily suffer from high dimensional input,
which becomes even worse when agents view received messages
as additional input. Moreover, training the fully centralized critic
becomes impractical with the increasing number of agents, as more
samples regarding agents’ combinatorial behaviors and communi-
cation are required.

Previous works on Comm-MADRL do not fully address the two
issues introduced above. Existing learning with communication
methods are mainly developed for domain tasks with discrete action
space, using either centralized or independent value functions to
learn communication. At the same time, value decomposition meth-
ods, such as VDN [25] and QMIX [17] have gained performance
improvements in many benchmark environments. The value de-
composition methods decompose centralized value functions via a
linear or non-linear combination of local Q-functions, which help
agents differentiate their contributions to the learning. Inspired by
this, we propose a new policy gradient method called continuous
communication with factorized policy gradients (CCFPG) that en-
able continuous communication in MADRL tasks with continuous
control. The CCFPG decomposes centralized value functions based
on communication, which helps agents differentiate how their de-
cisions and associated communication contribute to learning. In
CCFPG, each agent employs a dedicated message encoder to gener-
ate real-valued messages. Then, the messages will be broadcast. In
order to maintain a fixed size of the input, we employ an attention
mechanism to aggregate received messages and agents will select
actions based on aggregated messages. Each agent then simultane-
ously computes their local Q-functions, which will be combined
through value decomposition methods like QMIX. By using deter-
ministic actors andmessage encoders, gradients are backpropagated
from factorized critics to associated communication. We evaluate
CCFPG on one popular game Continuous Predator-Prey and the
HalfCheetah task with continuous control in a new multi-agent
platform Multi-Agent MuJoCo [16]. The results show that com-
munication methods using value decomposition and the attention
mechanism can significantly accelerate learning.

Our main contributions are:

• We propose a novel policy gradient method that employs
centralized but factorized critics for the learning of commu-
nication in MADRL.
• By using deterministic actors and message encoders, the
training is end-to-end, which efficiently backpropagates gra-
dients from factorized critics to communication.
• We concentrate on the rarely studied multi-agent tasks with
continuous control. The experiments on two different tasks

https://alaworkshop2023.github.io/


demonstrate that our proposed approach improves perfor-
mance and/or accelerate learning.

2 RELATEDWORK
Recent works on MARL have enabled agents to communicate and
exchange messages during execution. Most research works on
MARL with communication are built based on multi-agent tasks
with continuous state and discrete action spaces. Two seminal
works, DIAL [4] and CommNet [24] utilize the training of neural
networks to allow backpropagation through the model of commu-
nication while having discrete action spaces in the design. Many
communication methods are tested on the open-source platform
StarCraft [18, 26], which provides a series of maps with different
difficulty levels for continuous states and a large range of discrete
actions. Due to the property of the underlying platform, those com-
munication methods do not take policies on continuous actions into
account [29, 30, 32–34]. Other communication methods are evalu-
ated based on grid world games, such as Predator-prey and Traffic
Junction, with discrete state and action spaces [2, 3, 7, 9, 14, 21].
To the best of our knowledge, there are only two research works,
ATOC [8] and G2ANet [11], which are evaluated with a domain
task with continuous state and action spaces. In ATOC, agents en-
code intended actions and communicate with nearby agents. In
G2ANet, agents learn not only whether to communicate with other
agents but also how to aggregate messages by weightings. Since
both existing works target on a simple particle environment, it is
essential to develop new learning with communication methods for
a more rigorous comparison in complex environments to show gen-
eralization ability and scalability. This may require more efficient
and effective usage of communication.

Centralized training and decentralized execution (CTDE) be-
comes popular in recent research works in multi-agent deep rein-
forcement learning and the field of communication. Most research
works on MARL with communication utilize a centralized value
(or action-value) function to guide the learning of decentralized
policies [2, 3, 9, 14, 29]. However, agents can also learn a value
decomposition from the shared reward signal into the individual
component value functions [17, 22, 25]. Communicating agents can
benefit from decomposition because individual value functions tell
each agent how their behaviours and associated communication
contribute to the overall learning. There is no previous work to
employ factorized value functions for the learning of decentralized
policies with the presence of communication among agents. Pop-
ular value decomposition methods are VDN [25], QMIX [17], and
QTRAN [22]. In VDN, the value decomposition is linear and the
state information is ignored during training. QMIX presents an im-
provement by conditioning a hypernetwork on the global state for
a non-linear mixing of the individual action-values, but it is still lim-
ited by the monotonicity constraint of its mixing weights. QTRAN
attempts to address these limitations with a provably more gen-
eral value factorization, but it imposes computationally intractable
constraints that can lead to poor empirical performance. These
factorization methods are value-based, which acquire policies from
learned value functions. Agents can also utilize factorized value
functions to facilitate the learning of decentralized policies. DOP
[31] and Facmac [16] are two policy gradient methods to employ

centralized but factorized Q-functions to train stochastic and de-
terministic policies. DOP employs two replay buffers, an on-policy
buffer and an off-policy buffer to efficiently utilize samples and
reduce the variance of factorized Q-functions. Facmac is a fully
differentiable method where deterministic policies receive gradi-
ent backpropagation from factorized Q-functions. Our proposed
method extends Facmac to include communication and makes a
few adaptions to efficiently utilize communication and accelerate
learning.

3 PRELIMINARIES
We consider a fully cooperative multi-agent task in which a team
of agents interacts within the same environment to achieve some
common goals. The task can be modeled as a decentralized par-
tially observable Markov decision process (Dec-POMDP) [15]. A
Dec-POMDP is defined by a tuple ⟨I,S, {A𝑖 } ,P, {O𝑖 } , {R𝑖 } , 𝛾⟩,
where I is a set of (finite) agents indexed as {1, ..., 𝑁 }, S is a set
of environment states, A𝑖 is a set of actions available to agent 𝑖 ,
and O𝑖 is a set of observations of agent 𝑖 . We can denote a joint
action space as A = ×𝑖∈IA𝑖 and a joint observation space as
O = ×𝑖∈IO𝑖 . In the current environment state 𝑠 ∈ S, the joint
action 𝒂 = ⟨𝑎1, ..., 𝑎𝑁 ⟩ of agents, where 𝒂 ∈ A, causes the envi-
ronment to move to the next state 𝑠′ ∈ S and to emit a new joint
observation 𝒐′ = ⟨𝑜′1, ..., 𝑜

′
𝑁
⟩ for all agents, where 𝒐′ ∈ O, accord-

ing to the transition and observation probabilities P(𝑠′, 𝒐′ | 𝑠, 𝒂).
Each agent then receives an immediate reward according to their
own reward functions R𝑖 : S × A × S → R. Similar to the joint
action and observation, we denote 𝒓 = ⟨𝑟1, ..., 𝑟𝑁 ⟩ as a joint re-
ward. In Dec-POMDP, agents’ reward functions are the same, i.e.,
they have identical goals, then 𝑟1 = 𝑟2 = ... = 𝑟𝑁 holds for every
time step. The rewards are discounted by the discount factor 𝛾 .
The joint policy of agents induces a joint action-value function:
𝑄 𝑗𝑜𝑖𝑛𝑡 (𝑠, 𝒂) = E𝐷 [

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 |𝑠, 𝒂]. Whenever the true state 𝑠 is not
accessible, we use the joint trajectory 𝝉 = {𝜏1, ..., 𝜏𝑁 } instead, where
𝜏𝑖 = (𝑜𝑖0, 𝑎

𝑖
0, ..., 𝑜

𝑖
𝑡 ) is the observation-action history up to the current

time step 𝑡 .
Value Decompositions. Value decomposition methods, such as

VDN [25] and QMIX [17], aim to learn centralized but factorized Q-
functions. VDN factorizes 𝑄 𝑗𝑜𝑖𝑛𝑡 into a sum of the per-agent local
Q-functions: 𝑄 𝑗𝑜𝑖𝑛𝑡 (𝑠, 𝒂) = ∑𝑁

𝑖=1𝑄
𝑖 (𝑠, 𝑎𝑖 ), whereas QMIX combines

the local Q-functions of every agent via a continuous monotonic
function that is state-dependent: 𝑓𝑠 (𝑄1(𝜏1, 𝑎1), ..., 𝑄𝑁 (𝜏𝑁 , 𝑎𝑁 )) =
𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝒂), where 𝜕𝑓𝑠

𝜕𝑄𝑖 ≥ 0, ∀𝑖 ∈ I. A common expression of
QMIX is as follows,

𝑓𝑠 (𝑄1(𝜏1, 𝑎1), ..., 𝑄𝑁 (𝜏𝑁 , 𝑎𝑁 )) =𝑊2 × 𝐸𝐿𝑈 (𝑊1 × 𝑸(𝝉, 𝒂) + 𝑏1) + 𝑏2

where𝑊1 and𝑊1 are weights produced by separate hypernetworks,
𝐸𝐿𝑈 (·) is the ELU function, 𝑸(𝝉, 𝒂) = (𝑄1(𝜏1, 𝑎1), ..., 𝑄𝑁 (𝜏𝑁 , 𝑎𝑁 )),
𝑏1 and 𝑏2 are bias. By adopting neural networks as Q-functions,
QMIX is trained in a DQN way. The squared temporal difference
error L is minimized by using a minibatch of 𝑏 samples from a
replay buffer:

L =
1
𝑏

𝑏∑︁
𝑘=1

(𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝒂;𝝀) − 𝑦𝑘 ) (1)



where 𝝀 is the parameters, 𝑦𝑘 = 𝑟 +𝛾 max𝒂′ 𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 ′, 𝒂′;𝝀− ) is the
target values and𝝀− is the target parameters. The target parameters
𝝀− will be periodically synchronized with the parameters 𝝀: 𝝀− =
(1 − 𝜏) ∗ 𝝀− + 𝜏 ∗ 𝝀, where 𝜏 ∈ [0, 1] is a hyperparameter.

4 METHOD
Previous works on MARL with communication either consider a
centralized Q-function or decentralized Q-functions. Our proposed
method employs a centralized but factorized Q-function, which
enjoys the benefit of credit assignment to each agent and their
communication. In order to derive the factorized policy gradients
with communication step-by-step, we start with presenting the
centralized policy gradients and combine it with communication.
Based on the centralized policy gradients with communication,
we further derive the proposed centralized but factorized policy
gradients with communication (i.e., CCFPG). Later, we illustrate
the forward pass of CCFPG in Figure 1 and essential updates of
CCFPG in Algorithm 1.

Centralized Policy Gradients with Communication. Cen-
tralized Policy Gradients learn a joint policy with a centralized
critic, such as the joint Q-function 𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝒂) or the joint value
function 𝑉 𝑗𝑜𝑖𝑛𝑡 (𝝉 ), where 𝝉 and 𝒂 are the joint trajectory and the
joint action of 𝑁 agents. In this paper, we consider the joint Q-
function to facilitate the factorization among actions. Then, a big
Q-function is learned through Q-learning and enables gradient
backpropagation for the joint action policy 𝝁(𝝉 ;𝜽𝝁 ), parameter-
ized with 𝜽𝝁 = {\`1 , ..., \

`

𝑁
}. The centralized policy gradients with

deterministic policies are therefore defined as follows,

𝑔 = ED[∇𝜽𝝁 𝝁(𝝉 ;𝜽𝝁 )∇𝒂𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝒂)|𝒂=𝝁(𝝉 ;𝜽𝝁 )]
where 𝐷 is the replay buffer. The gradient 𝑔 is used to update the
joint policy so as to maximize the corresponding Q-values. In CTDE,
agents aim at learning decentralized policies. With communication,
they can share information among individual policies to promote
learning. We define a deterministic message encoder for each agent
𝑖 as 𝑓 (𝜏𝑖 ;\𝑒𝑛𝑐𝑖

), parameterized with \𝑒𝑛𝑐
𝑖

(abbreviated as 𝑓 𝑒𝑛𝑐
𝑖

(𝜏𝑖 )).
The message encoder produces real-valued messages𝑚𝑖 = 𝑓 𝑒𝑛𝑐

𝑖
(𝜏𝑖 )

based on agent 𝑖’s own trajectory, where𝑚𝑖 ∈ R𝐷 and 𝐷 is the de-
gree of freedom. Then we can denote the messages sent from other
agents (except agent 𝑖) as𝒎−𝑖 = {...,𝑚𝑖−1,𝑚𝑖+1, ...}. Each agent will
select an action based on received messages: 𝑎𝑖 = 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 ;\𝜋𝑖 ),
parameterized with \𝜋𝑖 . Note that we omit the parameters \𝜋𝑖 in
policy 𝜋𝑖 for the sake of convenience. Therefore, in CTDE, the cen-
tralized policy gradients with communication for each agent 𝑖 is
defined as follows,

𝑔𝑖 = ED[∇\𝜋𝑖 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )∇𝑎𝑖𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝒂)|𝑎𝑖=𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )]
The gradient 𝑔𝑖 is used to update the policy of agent 𝑖 . Compare
to the centralized policy gradients without communication, each
agent individually performs the above gradient update and assumes
other agents to be fixed. At the same time, there is a dedicated
communication part to coordinate the action selection of agents
before making decisions in the environment. The centralized critic
is known to be unbiased but has high variance when performing
policy gradients [13], which can get worse in high stochasticity
environments. We propose to factorize the centralized critic to
neglect the effect of other agents’ behaviours when updating each

policy and associated communication, therefore, achieving more
stable policy updates.

Continuous Communication with Factorized Policy Gra-
dients. In the following section, we present a new policy gradient
method called Continuous Communication with Factorized Policy
Gradients (CCFPG) that aims to learn deterministic policies and
communication in fully cooperative environments. Our key moti-
vation is that the action policies and associated communication of
agents can be factorized to differentiate their contribution to the
overall learning. We propose to decompose the joint Q-function
and therefore decentralized action policies and communication can
benefit from gradient backpropagation from local Q-functions. In
practice, we follow QMIX for the value decomposition in the critics.
Instead of changing the Q-function unilaterally as in the central-
ized policy gradients, we allow all agents to change the Q-functions
simultaneously to optimize the entire joint action space based on
communication. Then, a deterministic action policy takes as input
individual observations and continuous messages from other agents
to select (continuous) actions. As the input messages from other
agents can be large when the number of agents and the dimension
of messages grows, we further utilize an attention mechanism to
aggregate received messages. The attention mechanism provides a
weighted combination of messages, which can help receiver agents
differentiate the individual contribution of each received message.

We illustrate CCFPG in Figure 1. As shown in the figure, in
a multi-agent system with 𝑁 agents, individual trajectories 𝜏𝑖 of
each agent 𝑖 are first encoded as messages (denoted as𝑚𝑖 ). Then,
all agents broadcast their messages to other agents. Each agent
will aggregate received messages and compute an action 𝑎𝑖 based
on aggregated messages (denoted as𝑚𝑎𝑔𝑔

𝑖
) and its own observed

trajectories. With the chosen actions, agents combine their local
Q-values by a mixing network, followed by QMIX. Finally, the
combined (joint) Q-values will be trained in a DQN way, as defined
in Equation 1.

We derive the policy gradient for each agent 𝑖 according to
factorized Q-functions as in the following equations. Note that we
first do not consider the presence of an aggregator and later we
show how to utilize the attentionmechanism to aggregate messages.
Then, agents update their policies according to the gradient 𝑔 as
follows,

𝑔 = ED
[
∇𝜽𝝅 𝝅∇𝝅𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , 𝜋1(𝜏1,𝒎−1), ..., 𝜋𝑁 (𝜏𝑁 ,𝒎−𝑁 ))

]
(2)

where 𝝅 = {𝜋1(𝜏1,𝒎−1;\𝜋1 ), ..., 𝜋𝑁 (𝜏𝑁 ,𝒎−𝑁 ;\𝜋𝑁 )} and 𝜽𝝅 =
{\𝜋1 , ..., \𝜋𝑁 }. By factorizing the joint Q-function, we can obtain
the gradient 𝑔𝑖 for updating each agent 𝑖’s policy as follows,

𝑔𝑖 = ED
[
∇\𝜋𝑖 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )∇𝜋𝑖𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , ..., 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 ), ...)

]
= ED

[
∇\𝜋𝑖 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )∇𝜋𝑖 𝑓𝑠

(
..., 𝑄𝑖 (𝜏𝑖 , 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )), ...

)]
= ED

[
∇\𝜋𝑖 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 )∇𝜋𝑖𝑄𝑖 (𝜏𝑖 , 𝜋𝑖 (𝜏𝑖 ,𝒎−𝑖 ))∇𝑄𝑖 𝑓𝑠

] (3)

where 𝑄 𝑗𝑜𝑖𝑛𝑡 and 𝑓𝑠 take all agent’s actions and Q-values into ac-
count. In line 2, we replace the joint Q-function with factorized Q-
functions by QMIX based on communication. Line 3 is according to
the Chain rule. In line 3, ∇𝑄𝑖 𝑓𝑠 is always non-negative by the defini-
tion of QMIX, which can scale the gradient with respect to the local



Aggregator
N

Aggregator
1

(m2,...,mN)

...

Actor 1 Actor N

(𝜏1, m1agg) (𝜏N, mNagg)

(m1,...,mN-1)

a1 aN

Encoder 1 Encoder N

m1 mN

...

...

(𝜏1) (𝜏N)
Br

oa
dc

as
t C

om
m

un
ic

at
io

n

Q1(𝜏1,a1) QN(𝜏N,aN)

Critic 1 Critic N...

(𝜏1,a1) (𝜏N,aN)

Mixing Network

Qjoint(𝝉, a)

W1

Q1(𝜏1,a1) QN(𝜏N,aN)...

W2

MLP

MLP

MLP

MLP

b1

b2

ELU(·)

Qjoint(𝝉, a)

s

(a) (b) (c) (d)

Figure 1: Overview of CCFPG. (a) Architecture for the message encoders. (b) Architecture for the decentralized policy networks.
(c) Architecture for the centralized but factorized critic. (d) Architecture for the centralized mixing network.

Q-function𝑄𝑖 . Then, each agent simultaneously uses the above gra-
dient to update their policies. Similarly, for other agents’ message
encoders, we can continue to perform gradient backpropagation
to update their parameters 𝜽𝑒𝑛𝑐−𝑖 = {\𝑒𝑛𝑐1 , ..., \𝑒𝑛𝑐

𝑖−1, \
𝑒𝑛𝑐
𝑖+1 , ..., \

𝑒𝑛𝑐
𝑁
}.

Therefore, we define the gradients of all agents’ message encoders
except for agent 𝑖 as follows,

𝑔𝑒𝑛𝑐−𝑖 = ED[∇𝜽𝑒𝑛𝑐
−𝑖

𝒇𝒆𝒏𝒄−𝒊 ∇𝒇 𝒆𝒏𝒄−𝒊
𝜋𝑖 (𝜏𝑖 ,𝒇𝒆𝒏𝒄−𝒊 )

∇𝜋𝑖𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , ..., 𝜋𝑖 (𝜏𝑖 ,𝒇𝒆𝒏𝒄−𝒊 ), ...)] (4)

where 𝒇𝒆𝒏𝒄
−𝒊 = {𝑓 𝑒𝑛𝑐1 (𝜏1), ..., 𝑓 𝑒𝑛𝑐𝑖−1 (𝜏𝑖−1), 𝑓

𝑒𝑛𝑐
𝑖+1 (𝜏𝑖+1), ..., 𝑓 𝑒𝑛𝑐𝑁

(𝜏𝑁 )}, in-
cluding all senders’ messages. The gradient 𝑔𝑒𝑛𝑐−𝑖 is used to update
the message encoders of all the agents except for agent 𝑖 . Due to
the value decomposition, the gradient is also scaled by the non-
negative term ∇𝑄𝑖 𝑓𝑠 . The gradient update will be performed for
every receiver agent.

Attentional Continuous Communication. The action policy
requires messages from all the other agents, which may introduce
high dimensional input with the growing number of agents. More-
over, during learning, some agents may be more important than
the others, for example, agents who are closer to the goal. There-
fore, agents should impose importance on received messages and
maintain a fixed size of the input of receivers’ action policies. In
CCFPG, we utilize an attention mechanism to combine received
messages by learnable weights. We adopt the form of Dot-Product
Attention [27]. Then, for agent 𝑖 , message aggregation function
𝑓
𝑎𝑔𝑔

𝑖
is defined as follows,

𝑓
𝑎𝑔𝑔

𝑖
(𝒎−𝑖 ) =𝑊𝑃

(
𝑁∑︁
𝑗 ̸=𝑖

𝛼𝑖 𝑗𝑅𝑒𝐿𝑈 (𝑊𝑉𝑚 𝑗 )

)
where𝑊𝑉 ∈ R𝐷

′×𝐷 is a (learnable) weight matrix to project mes-
sages to a value matrix, 𝑅𝑒𝐿𝑈 (·) is the ReLU function, 𝛼𝑖 𝑗 ∈ R𝐷

′
is

a (learnable) weighting vector to combine values from the value
matrix, and𝑊𝑃 ∈ R𝐷×𝐷

′
is used to project from the value matrix

back to message space, where 𝐷′ refers to the dimension of val-
ues and weighting vector and 𝐷 refers to message cardinality. The
weighting vector 𝛼𝑖 𝑗 is defined as follows,

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑄𝑚
𝑖 ⊗𝑊𝐾𝑚

𝑗 )

where 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(·) is the softmax function, 𝑊𝑄 ∈ R𝐷
′×𝐷 is the

weight matrix to project messages from agent 𝑖 to a query matrix,
𝑊𝐾 ∈ R𝐷

′×𝐷 is the weight matrix to project messages from other
agent 𝑗 to a key matrix, and ⊗ is an element-wise multiplication
operator. Therefore, we denote the set of parameters of aggrega-
tion function 𝑓

𝑎𝑔𝑔

𝑖
as \𝑎𝑔𝑔

𝑖
= {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ,𝑊𝑃 }, which is learned

through backpropagation. By aggregating messages, for any other
agent 𝑗 who sent messages to agent 𝑖 , we can rewrite the gradient
update of sender agent 𝑗 ’s message encoder as follows,

𝑔𝑒𝑛𝑐𝑖,𝑗 = ED[∇\𝑒𝑛𝑐
𝑗

𝑓 𝑒𝑛𝑐𝑗 (𝜏 𝑗 )∇𝑓 𝑒𝑛𝑐
𝑗

𝑓
𝑎𝑔𝑔

𝑖
(𝒇𝒆𝒏𝒄−𝒊 )∇𝑓 𝑎𝑔𝑔

𝑖
𝜋𝑖 (𝜏𝑖 , 𝑓

𝑎𝑔𝑔

𝑖
(𝒇𝒆𝒏𝒄−𝒊 ))

∇𝜋𝑖𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 , ..., 𝜋𝑖 (𝜏𝑖 , 𝑓
𝑎𝑔𝑔

𝑖
(𝒇𝒆𝒏𝒄−𝒊 )), ...)] (5)

The gradient 𝑔𝑒𝑛𝑐
𝑖,𝑗

is computed for each pair of receiver-sender
agents (𝑖, 𝑗 ), where 𝑖 ̸= 𝑗 . Compare to Equation 4, Equation 5 utilizes
the attention mechanism as an aggregation function, which exerts
importance on each received message and scales the gradients
through weighting vector 𝛼𝑖 𝑗 . Therefore, gradients in Equation 5
are firstly scaled by the term ∇𝑄𝑖 𝑓𝑠 from the value decomposition
and then the attention mechanism, leading to more fine-grained
feedback for each pair of sender and receiver agents. Because of
the usage of the aggregation function, the policy in Equation 3 will
take aggregated messages into account instead of all the received
messages. Equations 3 and 5 constitute the final update rules of
action policy and communication, which will update the Encoder
and Actor in Figure 1.

Algorithm 1 describes the learning procedures of our proposed
method CCFPG. First, agents interact with the environment and
obtain experience. They use random noises to allow exploration
for message encoders and action policies, i.e., generated by random
processes N𝑎 and N𝑚 . Whenever training is enabled, each agent
will sample a minibatch from the replay buffer and update the
critic’s parameters𝝀 with learning rate𝛼𝑐𝑟𝑖𝑡𝑖𝑐 . Agents then perform
gradient updates according to Equations 3 and 5 simultaneously.
The parameters of the actors and the message encoder (i.e., 𝜽𝒆𝒏𝒄
and 𝜽𝝅 ) are updated sequentially (with learning rates 𝛼𝑎𝑐𝑡𝑜𝑟 and
𝛼𝑐𝑜𝑚𝑚). Note that the sampled gradients of actors are calculated
based on aggregated messages and therefore we have to record
aggregated messages in the replay buffer. In practice, agents will use
LSTM neural networks [6] to learn a representation of trajectories



Algorithm 1 Continuous Communication with Factorized Policy
Gradients
1: for episode = 1 to M do
2: Initialize random processes N𝑎 and N𝑚 for action exploration and

message exploration
3: Receive initial observations 𝒐
4: for time step 𝑡 = 1 to max-episode-length do
5: for each agent 𝑖 , select message𝑚𝑖 = 𝑓\𝑒𝑛𝑐

𝑖
(𝜏𝑖 ) + N𝑚

𝑡

6: for each agent 𝑖 , aggregate messages𝑚𝑎𝑔𝑔

𝑖
= 𝑓

\
𝑎𝑔𝑔

𝑖
(𝒎−𝑖 )

7: for each agent 𝑖 , select action 𝑎𝑖 = 𝜋𝑖 (𝜏𝑖 ,𝑚
𝑎𝑔𝑔

𝑖
;\𝜋𝑖 ) + N𝑎

𝑡

8: Execute action 𝒂, observe reward 𝑟 and new observations 𝒐′
9: Store (𝒐,𝒎𝒂𝒈𝒈 , 𝒂, 𝒓, 𝒐′) in replay buffer D
10: Move to the next state
11: end for
12: Sample a random minibatch of 𝑏 samples from D
13: Set 𝑦𝑘 = 𝑟𝑘 + 𝛾 max𝒂′ 𝑄 𝑗𝑜𝑖𝑛𝑡 (𝝉 ′𝑘 , 𝒂′𝑘 ;𝝀− ) for the 𝑘-th sample
14: Calculate sampled gradients by the loss in Equation 1 w.r.t. the

critic’s parameters 𝝀
15: Update 𝝀 ← 𝝀 − 𝛼𝑐𝑟𝑖𝑡𝑖𝑐∇𝝀L
16: for agent 𝑖 = 1 to 𝑁 do
17: Calculate sampled gradient 𝑔𝑖 by Equation 3 w.r.t. the actor’s

parameters \𝜋𝑖 .
18: end for
19: for each agent 𝑖: update \𝜋𝑖 ← \𝜋𝑖 + 𝛼𝑎𝑐𝑡𝑜𝑟𝑔𝑖
20: for each pair of sender and receiver (𝑖, 𝑗 ) do
21: Calculate sampled gradient 𝑔𝑒𝑛𝑐

𝑖,𝑗
by Equation 5 w.r.t. each en-

coder’s parameters \𝑒𝑛𝑐
𝑗

.
22: end for
23: Update the attention mechanism along with encoders.
24: for each receiver agent 𝑖 do
25: for each sender agent 𝑗 : update \𝑒𝑛𝑐

𝑗
← \𝑒𝑛𝑐

𝑗
+ 𝛼𝑐𝑜𝑚𝑚𝑔

𝑒𝑛𝑐
𝑖,𝑗

26: end for
27: Update target critic’s parameters: 𝝀− ← (1 − 𝜏 ) ∗ 𝝀− + 𝜏 ∗ 𝝀
28: end for

which only require recording observations and actions at every
time step.

5 EXPERIMENTS
We present our experimental results on two practical domains, Con-
tinuous Predator-Prey and Multi-Agent MuJoCo (MAMuJoCo) [16].
Continuous Predator-Prey can be customized with different sizes
of environments with various numbers of learning agents. MAMu-
JoCo has a variety of tasks with different agent partitionings. Both
platforms are popular in multi-agent reinforcement learning with
continuous state and action spaces. In order to show the advantage
of our proposed methods, we compare with several MARL baseline
models as follows,

• Facmac [16]. This is a fully factorized method which factor-
izes both critic and actor. There is no communication among
agents.
• G2ANet [11]. G2ANet is a baseline method with commu-
nication that is tested on continuous environments (with
continuous actions). The critics of agents are communicated
through a graph neural network, where agents have to decide
when to communicate and employ an attention mechanism
to aggregate messages.

• FCMNet [32]. FCMNet is one of the state-of-the-art com-
munication methods, which is developed for discrete envi-
ronments. We adapt this method to our continuous environ-
ments by using a Gaussian policy.
• CCFPG. This is our proposed method which is equipped
with an attention mechanism. We also compare the method
CCFPG w/o attention, where the attention mechanism
is removed, to show the strength of aggregating messages
through a weighted combination 1.

We evaluate the performance of each method using the follow-
ing procedure: for each run of a method, we pause training every
fixed number of timesteps (2000 timesteps for Continuous Predator-
Prey and 4000 timesteps for MAMuJoCo) and run a fixed number
of evaluation episodes (10 independent episodes for Continuous
Predator-Prey and MAMuJoCo) with each agent performing action
selection greedily in a decentralized fashion. On both Continuous
Predator-Prey and MAMuJoCo, the mean value of these episode
returns is used to evaluate the performance of the learned policies.
All results are averaged over 9 independent runs. The independent
runs use the same hyperparameter configuration, only varying the
random seed. During training and testing, we restrict each episode
to have a length of 25 time steps for Continuous Predator-Prey and
1000 time steps for MAMuJoCo. In total, we run 3 million training
steps for Continuous Predator-Prey and 1.5 million training steps
for MAMuJoCo.

Facmac, CCFPG, and CCFPG w/o attention share the same critic,
which has 64 hidden units in Continuous Predator-Prey and 400
hidden units in MAMuJoCo. For all tasks, a mixing network with 64
hidden units is used for the value decomposition. Facmac, CCFPG,
and CCFPG w/o attention have the same number of hidden units
in the actor while CCFPG and CCFPG w/o attention have an ad-
ditional input for messages. We use an attention mechanism with
32 hidden units for CCFPG, i.e., 𝐷′ = 32. For the dimension of
messages, we choose 𝐷 = 2 in Predator-Prey with 6 and 9 agents,
𝐷 = 6 for Predator-Prey with 12 agents, and 𝐷 = 3 in MAMuJoCo
tasks, which are fine-tuned. Gaussian noises with mean ` = 0 and
standard deviation 𝜎 = 0.1 are added to actions and messages dur-
ing execution to allow exploration. In G2ANet, we use a similar
size of neural networks as in Facmac. Facmac, G2ANet, CCFPG,
and CCFPG w/o attention are trained by the Adam optimizer. The
learning rate and number of updates per epoch are chosen either
empirically or fine-tuned. Then, we choose a learning rate of 0.001
for the learning of critics, actors, and communication. FCMNet is
trained by using the parameters introduced in the original paper.
For the soft target network updates we use 𝜏 = 0.001. During learn-
ing, a minibatch of 32 for Predator-Prey and 100 for MAMuJoCo
are used to train the parameters. We summarize critical hyperpa-
rameters of our proposed method CCFPG in Table 1. CCFPG w/o
attention removes the attention mechanism from CCFPG while
keeping other networks and parameters unchanged.

5.1 Continuous Predator-Prey
Continuous Predator-Prey is a variant of the classic predator-prey
game. We employ the same implementation developed by Peng et
al. [16]. In the environment, several slower cooperating circular
1The code is available at https://github.com/chauncyzhu/CADDPG



0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

0

50

100

150

200

250

300

Av
er

ag
ed

 R
et

ur
n

Predator-Prey with 6 Agents
Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

0

50

100

150

200

250

300

Av
er

ag
ed

 R
et

ur
n

Predator-Prey with 9 Agents
Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

25

50

75

100

125

150

175

Av
er

ag
ed

 R
et

ur
n

Predator-Prey with 12 Agents
Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

Figure 2: Averaged return of algorithms in Predator-Prey with 6 (left), 9 (medium), and 12 (right) agents.

Table 1: Important hyperparameters of CCFPG. 𝑁𝑁 (𝑥) indi-
cates the size (i.e., 𝑥) of hidden layers in the corresponding
neural networks (𝑁𝑁 ).

Hyperparameters Predator-Prey MAMujoco
Actor 𝑅𝑁𝑁 (64) 𝑀𝐿𝑃 (400)
Critic 𝑀𝐿𝑃 (64) 𝑀𝐿𝑃 (400)
Mixing 𝐻𝑦𝑝𝑒𝑟𝑁𝑒𝑡 (64) 𝐻𝑦𝑝𝑒𝑟𝑁𝑒𝑡 (64)
Encoder 𝑀𝐿𝑃 (32) 𝑀𝐿𝑃 (100)

Aggregator 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(32) 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(32)
𝛼𝑎𝑐𝑡𝑜𝑟 0.01 0.001
𝛼𝑐𝑟𝑖𝑡𝑖𝑐 0.01 0.001
𝛼𝑐𝑜𝑚𝑚 0.01 0.001

𝛾 0.85 0.99
𝜏 0.001 0.001

Exploration Noise N (0, 0.1) N (0, 0.1)
Batch Size 32 100
Buffer Size 5000 1000000

agents, each with continuous movement action spaces, must catch
a faster circular prey on a randomly generated two-dimensional
toroidal plane with large landmarks blocking the way. An example
with 6 (learning) predators is shown in Figure 3. The prey’s policy
is a hard-coded heuristic, which moves the prey to the position
with the largest distance to the closest predator. The predators
are reinforcement learning agents, learning and/or communicating
in order to catch the prey to get higher rewards. If one of the
cooperative agents collides with the prey, a team reward of +10
is emitted; otherwise, no reward is given. Each agent has a view
radius, which restricts the agents from receiving information about
other entities (including landmarks, other predators, and the prey)
that are out of range.

We explore Continuous Predator-Prey with a varying number of
agents to show the generalization ability of our proposed methods.
The results are shown in Figure 22. As we can see, in all settings,
our proposed methods surpass the fully factorized method Facmac,
which shows the benefit of adding a communication mechanism

2The shadow area in a figure is the min-max range of performance across 9 runs for a
particular method. We only show half of the range to see a clear difference between
methods.

predator 1 predator 2

predator 3
predator 4

predator 5

predator 6

Figure 3: Continuous Predator-Prey. Top-down view of
toroidal plane, with predators (red), prey (green), and ob-
stacles (grey).

to accelerate learning. As the number of agents grows, our meth-
ods can achieve more competitive performance than Facmac. In
all cases, our proposed methods are significantly better than the
two communication baselines, G2ANet and FCMNet. This indicates
the benefit of factorization in MADRL with communication. When
the number of learning predators is 6 and 9, CCFPG outperforms
CCFPG w/o attention, which shows the strength of using the at-
tention mechanism to aggregate messages. When the number of
agents grows further (i.e., 12 agents), we can see that CCFPG w/o
attention is slightly better than CCFPG. We think this is because
the attention mechanism has additional parameters to train which
slows down learning in complex settings. Nevertheless, CCFPG
still obtains higher (average) returns than G2ANet and FCMNet.
We report the mean and variance of the average return of the last
1000 evaluation episodes in predator-prey in Table 2. As we can
see, in predator-prey with 6 and 9 agents, CCFPG achieves a higher
mean and lower variance compared to Facmac. In the 12-agent case,
Facmac has a lower variance while achieving a much lower mean
return than our proposed methods.

5.2 Multi-Agent MuJoCo
Multi-Agent MuJoCo (MAMuJoCo) is a novel benchmark for contin-
uous cooperative multi-agent robotic control. MAMuJoCo extends
from the popular fully observable single-agent robotic MuJoCo by
creating a wide variety of novel scenarios in which multiple agents



Table 2: Results for algorithms across different settings in
Predator-Prey. Final average ± standard error across 9 trials
of returns across the last 1000 evaluation trajectories. We
highlight the maximum mean value for each setting in bold.

Algorithm PP 6 Agents PP 9 Agents PP 12 Agents
Facmac 211.58±40.79 201.6±83.67 67.98±52.27
FCMNet 9.4±0.65 21.69±1.27 41.38±2.97
G2ANet 7.27±2.64 21.48±5.8 42.48±5.17
CCFPG

w/o attention 241.56±46.47 190.54±104.62 131.47±65.72

CCFPG 256.17±40.29 225.17±64.87 117.15±67.69

Figure 4: Agent partitionings for HalfCheetah tasks. Colors
indicate agent partitionings. Each index corresponds to a
single controllable joint. Left: 2-Agent HalfCheetah, where
each agent controls 3 joints. Right: 6-Agent HalfCheetah,
where each agent controls 1 joint.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time steps 1e6

1000

0

1000

2000

3000

4000

Av
era

ge
d R

etu
rn Facmac

FCMNet
G2ANet
CCFPG w/o attention
CCFPG

Figure 5: The testing return of 2-Agent HalfCheetah.

within a single robot have to solve a task cooperatively. We test all
methods on HalfCheetah tasks with 2- and 6-Agent partitionings.
The configurations are shown in Figure 4. In HalfCheetah tasks,
each agent can observe only the positions of its own body parts.
The rewards of agents depending on the speed of the robot and
the contact forces of the body. The faster the cheetah, the more
rewards the agents can get. Without access to the exact full state,
each agent has to develop local decision rules for the corresponding
physical components of the robot. With communication, agents
can more easily coordinate their behaviours to avoid failures as
well as achieve better movements.

We test all methods on 2-AgentHalfCheetah and 6-AgentHalfChee-
tah. As we can see in Figure 5, CCFPG learnsmuch faster than all the
other methods before 1 million time steps and then achieves similar
performance as Facmac and CCFPG w/o attention. In Figure 6 6-
Agent HalfCheetah task, Facmac converges very fast while CCFPG
achieves significantly higher returns than other methods. Com-
pared to CCFPG w/o attention, CCFPG benefits from the attention
mechanism and obtain better performance. The communication

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time steps 1e6

1000

500

0

500

1000

Av
era

ge
d R

etu
rn

Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

Figure 6: The testing return of 6-Agent HalfCheetah.

methods, G2ANet and FCMNet can not utilize communication effec-
tively and are even worse than Facmac. The results of HalfCheetah
tasks show that communication is essential for learning and our
proposed method can efficiently and effectively use communication.
We report the mean and variance of the average return of the last
1000 evaluation episodes in HalfCheetah in Table 3. As we can see,
in 2-Agent HalfCheetah, CCFPG achieves a higher mean and lower
variance compared to Facmac. In the 6-Agent HalfCheetah, CCFPG
and CCFPG w/o attention have a much higher mean return than
other methods while the variance is high.

Table 3: Results for algorithms across different settings in
HalfCheetah. Final average ± standard error across 9 trials
of returns across the last 1000 evaluation trajectories. We
highlight the maximum mean value for each setting in bold.

Algorithm 2-Agent HalfCheetah 6-Agent HalfCheetah
Facmac 3049.05±728.11 72.37±129.53
FCMNet -630.77±87.24 -681.02±171.68
G2ANet 831.64±536.04 -73.65±79.58
CCFPG

w/o attention 3122.09±186.62 275.97±228.49

CCFPG 3147.42±313.99 486.46±558.32

5.3 The Effect of Dimensionality
The dimensionality of messages may affect the learning of agents.
Higher dimensionality brings difficulties to learning as agents have
to search in a larger message space. Thus, we investigate the effect
of different dimensionalities of messages on our proposed methods
in Predator-prey with 6 agents and 2-Agent HalfCheetah. The learn-
ing curves are shown in Figures 7 and 8. As we can see, CCFPG w/o
attention can achieve better performance in a high dimension of
messages in Predator-prey, as shown in Figure 7. However, CCFPG
can obtain similar performance using a relatively low dimension of
messages. This is especially useful when the size of messages is con-
sidered as a cost. In HalfCheetah (Figure 8), CCFPG w/o attention
achieves lower and unstable performance with a large dimension of
messages. This is similar in CCFPG with attention. We think this is
because the observations have low dimensionality in the HalfChee-
tah task (3 dimensions in 2-Agent HalfCheetah and 1 dimension in
6-Agent HalfCheetah). Projecting low-dimension observations into
high-dimension messages can be redundant and not necessary. In
summary, for both CCPFG and CCFPG w/o attention, a reasonable



Table 4: Bootstrap mean and 95% confidence bounds in predator-prey and 90% confidence bounds in HalfCheetah. (𝑎, 𝑏) is the
upper and lower bounds.

Algorithm PP 6 Agents PP 9 Agents PP 12 Agents 2-Agent HalfCheetah 6-Agent HalfCheetah
Facmac 140 (136, 144) 101 (98, 104) 53 (53, 53) 2274 (2203, 2346) 45 (39, 52)
FCMNet 9 (9, 9) 21 (21, 21) 40 (40, 40) -605 (-609, -602) -611 (-614, -608)
G2ANet 11 (11, 11) 23 (23, 23) 43 (43, 43) 749 (725, 774) -64 (-66, -62)
CCFPG

w/o attention 160 (156, 164) 95 (92, 98) 86 (84, 87) 2082 (2007, 2158) 135 (125, 146)

CCFPG 176 (172, 181) 129 (125, 132) 76 (75, 78) 2433 (2361, 2505) 281 (265, 298)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

0

50

100

150

200

250

300

Av
er

ag
ed

 R
et

ur
n

CCFPG w/o attention M2
CCFPG w/o attention M4
CCFPG w/o attention M6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

0

50

100

150

200

250

300

Av
er

ag
ed

 R
et

ur
n

CCFPG M2
CCFPG M4
CCFPG M6

Figure 7: The learning curves of our methods in Predator-
prey with 6 agents with different dimensionalities of mes-
sages (M). Left: CCFPG w/o attention. Right: CCFPG.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
time steps 1e6

0

1000

2000

3000

4000

Av
er

ag
ed

 R
et

ur
n

CCFPG w/o attention M1
CCFPG w/o attention M2
CCFPG w/o attention M3
CCFPG w/o attention M6

0.00 0.25 0.50 0.75 1.00 1.25 1.50
time steps 1e6

0

1000

2000

3000

Av
er

ag
ed

 R
et

ur
n

CCFPG M1
CCFPG M2
CCFPG M3
CCFPG M6

Figure 8: The learning curves of our methods in 2-Agent
HalfCheetah with different dimensionalities of messages
(M). Left: CCFPG w/o attention. Right: CCFPG.

number of dimensions of messages can lead to a stable and better
improvement.

5.4 Discussion
To answer whether the performance improvement of our proposed
methods is indeed significant, we conduct statistical tests for all
methods. Table 4 shows the bootstrap mean and confidence bounds
in predator-prey and HalfCheetah. Confidence bounds can vary
wildly between algorithms and environments. We find that in
predator-prey CCFPG surpasses Facmac and other baseline com-
munication methods with 95% confidence. In HalfCheetah, CCFPG
surpasses Facmac and other baseline communication methods with
90% confidence.

We also investigate how comparing methods behave in a longer
time step. Due to the time limit, we only run predator-prey with 6
agents and 2-Agent HalfCheetah tasks, as shown in Figure 9. As

0 1 2 3 4
time steps 1e6

0

50

100

150

200

250

300

Av
er

ag
ed

 R
et

ur
n

Predator-Prey with 6 Agents

Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e6

1000

0

1000

2000

3000

4000

5000

Av
er

ag
ed

 R
et

ur
n

2-Agent HalfCheetah

Facmac
FCMNet
G2ANet
CCFPG w/o attention
CCFPG

Figure 9: The learning curves of all methods with extended
time steps in Predator-Prey with 6 agents (left) and 2-Agent
HalfCheetah (right).

we can see, in predator-prey with 6 agents, CCFPG and CCFPG
w/o attention gradually achieve similar performance while the
average return of other methods are still much lower. In 2-Agent
HalfCheetah tasks, Facmac is slightly better than CCFPG between
1.8 million and 2.5 million time steps. After 2.5 million time steps,
CCFPG and CCFPG w/o attention achieve a (slightly) higher return
than Facmac.

6 CONCLUSION
This paper presents a new policy gradient MADRL algorithm, Con-
tinuous Communication with Factorized Policy Gradients (CCFPG),
which utilizes a centralized but factorized Q-function for the learn-
ing of communication. Due to the deterministic design of actors
and communication, agents and their dedicated communication
architecture can be trained in an end-to-end fashion. We show the
advantage of using such a factorized critic and the attention mech-
anism to aggregate real-valued messages in two multi-agent tasks
with continuous control. Our results demonstrate CCFPG’s supe-
rior performance over existing learning with communication meth-
ods. Future works will explore more forms of value decomposition
methods and the effect of communication graphs on performance.
Surprisingly, CCFPG does not suffer from vanishing gradient prob-
lems in predator-prey and HalfCheetah. In the future, we could
investigate how CFFPG performs in high complex and stochastic
environments.

ACKNOWLEDGEMENT
This work made use of the Dutch national e-infrastructure with
the support of the SURF Cooperative.



REFERENCES
[1] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multiplayer

poker. Science 365, 6456 (2019), 885–890.
[2] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike

Rabbat, and Joelle Pineau. 2019. TarMAC: Targeted Multi-Agent Communication.
In Proceedings of the 36th International Conference on Machine Learning (ICML).
1538–1546.

[3] Ziluo Ding, Tiejun Huang, and Zongqing Lu. 2020. Learning Individually Inferred
Communication for Multi-Agent Cooperation. In Advances in Neural Information
Processing Systems 33 (NeurIPS), Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.
neurips.cc/paper/2020/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html

[4] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
2016. Learning to Communicate with Deep Multi-Agent Reinforcement Learning.
In Advances in Neural Information Processing Systems 29 (NIPS). 2137–2145.

[5] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. [n.d.]. Counterfactual Multi-Agent Policy Gradients. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q.
Weinberger (Eds.). 2974–2982.

[6] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[7] Guangzheng Hu, Yuanheng Zhu, Dongbin Zhao, Mengchen Zhao, and Jianye
Hao. 2020. Event-Triggered Multi-agent Reinforcement Learning with Com-
munication under Limited-bandwidth Constraint. CoRR abs/2010.04978 (2020).
arXiv:2010.04978 https://arxiv.org/abs/2010.04978

[8] Jiechuan Jiang and Zongqing Lu. 2018. Learning Attentional Communication for
Multi-Agent Cooperation. In Advances in Neural Information Processing Systems
31 (NIPS). 7265–7275.

[9] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee,
Kyunghwan Son, and Yung Yi. [n.d.]. Learning to Schedule Communication in
Multi-agent Reinforcement Learning. In 7th International Conference on Learning
Representations (ICLR).

[10] Jens Kober, J. Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning
in robotics: A survey. Int. J. Robotics Res. 32, 11 (2013), 1238–1274. https:
//doi.org/10.1177/0278364913495721

[11] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao.
2020. Multi-Agent Game Abstraction via Graph Attention Neural Network. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI). 7211–7218.

[12] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, HannaM.Wallach, Rob Fergus,
S. V. N. Vishwanathan, and RomanGarnett (Eds.). 6379–6390. https://proceedings.
neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html

[13] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. 2021. Con-
trasting Centralized and Decentralized Critics in Multi-Agent Reinforcement
Learning. In AAMAS ’21: 20th International Conference on Autonomous Agents
and Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, Frank
Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé (Eds.). ACM, 844–852.
https://doi.org/10.5555/3463952.3464053

[14] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. [n.d.].
Learning Agent Communication under Limited Bandwidth by Message Pruning.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence. 5142–5149.

[15] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer. https://doi.org/10.1007/978-3-319-28929-8

[16] Bei Peng, Tabish Rashid, Christian Schröder de Witt, Pierre-Alexandre Kamienny,
Philip H. S. Torr, Wendelin Boehmer, and Shimon Whiteson. 2021. FACMAC:
Factored Multi-Agent Centralised Policy Gradients. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (Eds.). 12208–12221. https://proceedings.neurips.cc/paper/2021/
hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract.html

[17] Tabish Rashid, Mikayel Samvelyan, Christian Schröder deWitt, Gregory Farquhar,
Jakob N. Foerster, and ShimonWhiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research,
Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 4292–4301. http:
//proceedings.mlr.press/v80/rashid18a.html

[18] Mikayel Samvelyan, Tabish Rashid, Christian Schröder deWitt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N.
Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge.

In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, Edith
Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor (Eds.). International
Foundation for Autonomous Agents and Multiagent Systems, 2186–2188. http:
//dl.acm.org/citation.cfm?id=3332052

[19] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, Multi-
Agent, Reinforcement Learning for Autonomous Driving. CoRR abs/1610.03295
(2016). arXiv:1610.03295 http://arxiv.org/abs/1610.03295

[20] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game
of Go without human knowledge. Nat. 550, 7676 (2017), 354–359. https:
//doi.org/10.1038/nature24270

[21] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. 2019. Learning when
to Communicate at Scale in Multiagent Cooperative and Competitive Tasks. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. https://openreview.net/forum?id=rye7knCqK7

[22] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi.
2019. QTRAN: Learning to Factorize with Transformation for Cooperative Multi-
Agent Reinforcement Learning. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 5887–5896. http://proceedings.mlr.press/
v97/son19a.html

[23] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multia-
gent Communication with Backpropagation. In Advances in Neural Information
Processing Systems 29 (NIPS). 2244–2252.

[24] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Mul-
tiagent Communication with Backpropagation. In Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, Daniel D.
Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett (Eds.). 2244–2252. https://proceedings.neurips.cc/paper/2016/hash/
55b1927fdafef39c48e5b73b5d61ea60-Abstract.html

[25] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For
Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, Elisabeth André, Sven Koenig,
Mehdi Dastani, and Gita Sukthankar (Eds.). International Foundation for Au-
tonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2085–2087.
http://dl.acm.org/citation.cfm?id=3238080

[26] Gabriel Synnaeve, Nantas Nardelli, Alex Auvolat, Soumith Chintala, Timothée
Lacroix, Zeming Lin, Florian Richoux, and Nicolas Usunier. 2016. TorchCraft:
a Library for Machine Learning Research on Real-Time Strategy Games. CoRR
abs/1611.00625 (2016). arXiv:1611.00625 http://arxiv.org/abs/1611.00625

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[28] Meritxell Vinyals, Juan A. Rodríguez-Aguilar, and Jesús Cerquides. 2011. A
Survey on Sensor Networks from a Multiagent Perspective. Comput. J. 54, 3
(2011), 455–470. https://doi.org/10.1093/comjnl/bxq018

[29] Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich.
[n.d.]. Learning EfficientMulti-agent Communication: An Information Bottleneck
Approach. In Proceedings of the 37th International Conference on Machine Learning
(ICML) (Proceedings of Machine Learning Research, Vol. 119). 9908–9918.

[30] Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. [n.d.].
Learning Nearly Decomposable Value Functions Via Communication Minimiza-
tion. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020.

[31] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang.
2021. DOP: Off-Policy Multi-Agent Decomposed Policy Gradients. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=6FqKiVAdI3Y

[32] Yutong Wang and Guillaume Sartoretti. 2022. FCMNet: Full Communica-
tion Memory Net for Team-Level Cooperation in Multi-Agent Systems. CoRR
abs/2201.11994 (2022). arXiv:2201.11994 https://arxiv.org/abs/2201.11994

[33] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. 2019. Efficient Communication in
Multi-Agent Reinforcement Learning via Variance Based Control. In Advances
in Neural Information Processing Systems 32 (NeurIPS), Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman

https://proceedings.neurips.cc/paper/2020/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://arxiv.org/abs/2010.04978
https://arxiv.org/abs/2010.04978
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://doi.org/10.5555/3463952.3464053
https://doi.org/10.1007/978-3-319-28929-8
https://proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract.html
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html
http://dl.acm.org/citation.cfm?id=3332052
http://dl.acm.org/citation.cfm?id=3332052
https://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://openreview.net/forum?id=rye7knCqK7
http://proceedings.mlr.press/v97/son19a.html
http://proceedings.mlr.press/v97/son19a.html
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
http://dl.acm.org/citation.cfm?id=3238080
https://arxiv.org/abs/1611.00625
http://arxiv.org/abs/1611.00625
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1093/comjnl/bxq018
https://openreview.net/forum?id=6FqKiVAdI3Y
https://arxiv.org/abs/2201.11994
https://arxiv.org/abs/2201.11994


Garnett (Eds.). 3230–3239. https://proceedings.neurips.cc/paper/2019/hash/
14cfdb59b5bda1fc245aadae15b1984a-Abstract.html

[34] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. 2020. Succinct and Ro-
bust Multi-Agent Communication With Temporal Message Control.
In Advances in Neural Information Processing Systems 33 (NIPS), Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and

Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
c82b013313066e0702d58dc70db033ca-Abstract.html

[35] Changxi Zhu, Mehdi Dastani, and Shihan Wang. 2022. A Survey of Multi-Agent
Reinforcement Learning with Communication. CoRR abs/2203.08975 (2022).
https://doi.org/10.48550/arXiv.2203.08975 arXiv:2203.08975

https://proceedings.neurips.cc/paper/2019/hash/14cfdb59b5bda1fc245aadae15b1984a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/14cfdb59b5bda1fc245aadae15b1984a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c82b013313066e0702d58dc70db033ca-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c82b013313066e0702d58dc70db033ca-Abstract.html
https://doi.org/10.48550/arXiv.2203.08975
https://arxiv.org/abs/2203.08975

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	5 Experiments
	5.1 Continuous Predator-Prey
	5.2 Multi-Agent MuJoCo
	5.3 The Effect of Dimensionality
	5.4 Discussion

	6 Conclusion
	References

