
Personalized Federated Learning with Exact Distributed
Stochastic Gradient Descent Updates

Sotirios Nikoloutsopoulos1 Iordanis Koutsopoulos1 Michalis K. Titsias2
1Athens University of Economics and Business

2DeepMind

ABSTRACT
We propose a novel Stochastic Gradient Descent (SGD)-type algo-
rithm for personalized Federated Learning. The model to be trained
includes a set of common weights for all clients, and a set of person-
alized weights that are specific to each client. At each optimization
round, randomly selected clients perform full gradient-descent up-
dates over their client-specific weights towards optimizing the loss
function on their own datasets, without updating the common
weights. At the final update, each client computes the joint gradient
over both the client-specific and the common weights and returns
the gradient of common weights to the server. With this procedure,
which we define as exact distributed SGD, an exact and unbiased
SGD step is performed over the full set of weights in a distributed
manner, i.e. the updates of the personalized weights are performed
by the clients and those of the common ones by the server. For
this optimization scheme we rigorously prove convergence in non-
convex settings such as for training neural networks. Our obtained
theoretical guarantees translate to superior performance in prac-
tice against baselines such as FedAvg and FedPer. We demonstrate
this in several multi-class classification datasets, such as in Om-
niglot, CIFAR-10, MNIST, Fashion-MNIST, and EMNIST. Further,
we show that our optimization scheme has low computational cost
per iteration round.

KEYWORDS
Federated Learning, Distributed Learning, Personalization

1 INTRODUCTION
Federated learning (FL) aims at training a global Machine Learning
(ML) model out of distributed datasets that reside in different clients.
One of its basic assets is that datasets do not need to be transferred
to a central location, and thus FL overcomes data privacy concerns
during model training [33]. Chronologically, the first FL algorithm
is FedAvg [25]. In FedAvg, at each round, the server selects a subset
of clients and sends to them the current model parameters (weights).
The clients update model parameters locally by performing a num-
ber 𝐸 of local gradient update steps towards optimizing their loss
function, and they return the locally optimized parameters to the
server. The server then averages model parameters and sends them
back to the clients. For 𝐸 = 1, FedAvg is called Federated Stochastic
Gradient Descent [14]. FedAvg notoriously suffers from data het-
erogeneity, when each client has to solve its own personalized task,
i.e. when the clients’ datasets are drawn from different distributions.
In such cases, a shared global model and an naive aggregation of its
parameters could lead to convergence to a stationary point which
is far from optimal [22, 35].
Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

Several extensions of FedAvg have been proposed, see e.g. [20, 21,
24, 28, 35, 39], which try to improve the behaviour of the algorithm
in heterogeneous data settings. While such methods can improve
convergence, they still try to learn a fully shared/global ML model
across heterogeneous clients. From a modelling perspective, this
may not be the best choice since it ignores client personalization.

Personalized Federated Learning arises often in real-life applica-
tions, such as next word prediction [12], emoji prediction [18, 27],
health monitoring [37], and personalized healthcare via wearable
devices [6]. If local client datasets are drawn from different data
distributions [15], then the prevalent way in which FL is done is
not suitable for producing a global model that will perform well at
the specific ML task of each client. As a result, the training process
can be slow or even diverge.

One important class of personalized FL methods dictates clients
to share some common weights anyway, since clients cannot pro-
duce a good model on their own due to insufficient amount of
data. However, there also exist some client-specific (personalized)
weights for each client as well that are trained on their own datasets
[2, 15]. In this work, we consider this approach to address data het-
erogeneity in personalized FL. Along with the global (shared) model
parameters, obtained by a set of backbone neural network layers,
for each client there exists an additional set of client-specific output
layers with client-specific parameters. Each such parameter set is
exclusive to the client, and its purpose is to allow for more flexible
modelling of the client-specific data distribution or task. Such a
multi-task setting was also used by [2, 34], from which our work
differs significantly in the way we train the FL system. A taxonomy
of related work is presented in Section 2.

We propose a novel approach for personalized FL, which we
call Personalized Federated Learning with Exact Gradient-based
Optimization (PFLEGO) 1. Its main asset is that the updates are
engineered so that the overall algorithm achieves exact stochastic
gradient descent (SGD) [3, 30] minimization of the training loss
function, which is the exact equivalent of training with all data
concentrated in one place. Our starting point is the FedPer neural
network (NN) architecture for personalization [2] (see also [34]),
whereby the NN has two types of layers: the first ones are common
layers, while the few last ones are the client-specific ones used for
personalization.

At each optimization round, our algorithm performs the follow-
ing steps: (a) The server sends to a randomly selected subset of
clients the updated weights corresponding to common layers; (b)
Given the common weights, each client performs a number of lo-
cal gradient descent updates of its client-specific weights on its
own local dataset, towards optimizing its loss function, without
updating the common weights; (c) Contrary to other methods that

1We make our source code available at https://github.com/sotirisnik/PFLEGO.

https://alaworkshop2023.github.io/
https://github.com/sotirisnik/PFLEGO

we compare against i.e. FedPer, FedAvg, in our approach, at its
final optimization step, each client computes the joint gradient over
both the client-specific and the common weights and sends to the
server the gradient of the common weights, rather than the raw
weights themselves; (d) Finally the server aggregates the gradients
of common weights. The process continues until convergence. The
sequence of the last two steps (c),(d) turns out to be the precise
equivalent of an SGD update over the full set of parameters that is
effectively performed by the clients and the server in a distributed
manner.

We validate the superiority of our method over FedAvg, Fed-
Per and other state-of-the-art methods on benchmark datasets in
multi-class classification such as MNIST, CIFAR-10, Fashion-MNIST,
EMNIST and Omniglot. The experimental study shows that our
algorithm leads to lower training loss, and thus much more effec-
tive learning especially in cases where personalization is needed
most, i.e. when the data distribution differ most. Further, our algo-
rithm has much lower, 𝑂 (1) computational complexity per round
compared to the 𝑂 (𝜏) one of baselines, leading to less energy con-
sumption. Finally, the convergence of the proposed method is en-
sured through a rigorous proof in non-convex settings e.g. neural
networks.

2 RELATEDWORK
Personalized FL by fine tuning a global model. One approach to

deal with personalization in FL is to allow clients to fine tune the
shared global model using local adaptation [36, 41], or techniques
inspired by meta-learning [5, 8, 9, 14]. These methods differ signifi-
cantly from ours since they require to communicate the full set of
parameters of a shared global model (i.e. there is no client-specific
model part) between the server and the clients. Note also that fine
tuning can be expensive since it requires the individual clients to
adapt the full parameter vector of a deep NN.

In other works [19–21], the local objective of the clients incor-
porates a regularization term to keep the local model close to the
optimal global model. These methods differs from ours since our
approach does not incorporate any regularization term. FedDane
[20] has an additional computational step that requires to com-
municate with two different subset of clients. In Ditto [19] each
client has two separate model parameters of the same dimension
of the global model. In the first model, the client copies the global
parameters from the server and executes a number of optimization
steps to the received parameters. Then the client performs a num-
ber of optimization step to the second model parameters and uses
a regularization term to keep the second model close to the first
model.

Personalized FL by feature transfer. Our approach mostly relates
to methods that achieve personalization in FL by using a multi-task
of feature transfer model, similarly to traditional non-distributed
multi-task architectures [4, 31]. This aims to learn a NN whose
parameters consist of a common part (also called global or shared
parameters) for all clients, and a client-specific part (also called
personalized parameters). This approach was followed by [2]. How-
ever, the optimization algorithm in [2] differs from our method, as
it is based on the standard FedAvg scheme. Specifically, the clients

update both the global and the personalized parameters by execut-
ing joint gradient descent steps. Then, each client sends back to the
server the locally updated global parameters and the server updates
the global parameters through averaging. Their method reduces to
standard FedAvg when there are no client-specific parameters. In
contrast, in our method the clients return gradients over the global
parameters, in a way that our FL algorithm performs exact SGD
steps.

In another related work FedRecon [34], similarly to FedPer [2], a
set of global and client-specific parameters are learned, but at each
round their optimization algorithm does not update simultaneously
the global and personalized parameters, and therefore their method
can be considered as performing block coordinate optimization. In
contrast, our distributed optimization algorithm incorporates exact
SGD steps where the full set of model parameters are simultane-
ously updated. This latter property means that our method enjoys
theoretical convergence guarantees similar to SGD schemes [3, 30].

Another work FedBaBu [26] and FedRep [7], similarly to FedPer,
decouples the model parameters to a set of global and client-specific
parameters. However at FedBabu the client-specific parameters
have an orthogonal weight initialization at the server side, and
the client-specific weights are never trained. FedBabu differs from
our method, since the client-specific parameters are initialized at
the server-side, and they remain fixed across all rounds. The or-
thogonal initialization is essential to achieve desirable personalized
performance. At FedRep each client performs a number of updates
steps to their client-specific parameters, and then the clients pro-
ceeds to perform a number of updates to their global parameters.
While our method uses a weighted unbiased gradient scheme on
the global parameters of the clients, FedRep employs a weighted
averaging scheme on the global parameters. Another difference
between our method and FedRep is that the final gradient update
for client-specific parameters in our method is unbiased. Our dis-
tributed unbiased scheme produces estimates that are on average
equal to the true value of the parameter being estimated, without
over or underestimating the true value, therefore, we expect our
method to outperform FedRep.

FL with gradient return. Finally, there exist non-personalized FL
algorithms optimizing a set of global parameters, where gradients
are returned to the server [29, 38]. In [38], each client performs
many training steps over local copies of the global parameters and
returns to the server the final gradient (after the final iteration)
of these parameters, which then aggregates them by performing
a gradient step. However, convergence is guaranteed only in the
special case that the client performs a single iteration so that their
algorithm reduces to SGD optimization. The work by [29] tries to
accelerate training by optimizing batch size. Specifically, clients
sample a batch over their private datasets and perform a single
gradient step to update their local copies of global parameters, and
then they return the gradient to the server. This work differs from
our method, since it does not deal with personalized settings. In our
scheme, the clients may perform multiple gradient steps over the
client-specific parameters before returning the gradient of global
parameters to the server.

Data

Common
weights

Pers
weights

Data

Common
weights

Data

Common
weights

Pers
weights

Pers
weights

client 1 client 2 client

server

Figure 1: Training process of the PFLEGO algorithm with 𝐼 clients and a single server for one communication round. The
numbers in the arcs display the sequence of the execution steps.

3 PROPOSED FRAMEWORK
3.1 Personalized FL Setting
We consider a supervised FL setting in which there is a server and
𝐼 clients. Each client has a locally stored dataset D𝑖 = (𝑋𝑖 , 𝑌𝑖),
where 𝑋𝑖 = {𝑥𝑖, 𝑗 }𝑁𝑖𝑗=1 are the input data samples (e.g. images) and
𝑌𝑖 = {𝑦𝑖, 𝑗 }𝑁𝑖𝑗=1 are the corresponding target outputs (e.g. class la-
bels). The objective of FL is to optimize a shared or global model,
together with personalized or client-specific parameters, by utilis-
ing all client datasets. As a shared backbone model, we assume a
deep neural network that consists of a number of common layers
with overall parameter vector 𝜃 . The number of outputs of the com-
mon layers, i.e. the size of the feature vector, is𝑀 . More precisely,
the shared model receives an input 𝑥 and constructs in its final
output a representation or feature vector 𝜙 (𝑥 ;𝜃) ∈ R𝑀 . Each client
has a copy of the same network architecture corresponding to this
shared representation. Each client 𝑖 also has an additional set of
personalized layers attached as a head to 𝜙 (𝑥 ;𝜃). For simplicity, we
assume that personalized layers consist of a single linear output
layer with weights𝑊𝑖 ; see Figure 1 for a pictorial description.

Training Objective for Classification. The learning objective is to
train the neural network model by adapting the global parameters 𝜃
and the personalized parameters {𝑊𝑖 }𝐼𝑖=1. The full set of parameters
is denoted by𝜓 = {𝜃,𝑊1, . . . ,𝑊𝐼 }. Learning requires the minimiza-
tion of the following training loss function that aggregates all client
datasets:

L(𝜓) =
𝐼∑︁

𝑖=1
𝛼𝑖 ℓ𝑖 (𝑊𝑖 , 𝜃), (1)

where scalar 𝛼𝑖 =
𝑁𝑖∑
𝑗=1 𝑁 𝑗

quantifies the data proportionality of
different clients, and ℓ𝑖 (𝑊𝑖 , 𝜃) is the client-specific loss,

ℓ𝑖 (𝑊𝑖 , 𝜃) =
1
𝑁𝑖

𝑁𝑖∑︁
𝑗=1

ℓ (𝑦𝑖, 𝑗 , 𝑥𝑖, 𝑗 ;𝑊𝑖 , 𝜃) . (2)

The form of each data-individual loss ℓ (𝑦𝑖, 𝑗 , 𝑥𝑖, 𝑗 ;𝑊𝑖 , 𝜃) depends
on the application, e.g. on whether the task is a regression or a

classification one. The case of multi-class classification, that we
consider in our experiments, is detailed below while other cases
can be dealt with similarly.

Multi-class classification. A standard task that each client may
need to solve is multi-class classification, where the input 𝑥 is as-
signed a class label𝑦 ∈ {1, . . . , 𝐾𝑖 }. In our personalized setting, each
client 𝑖 can tackle a separate classification problem with 𝐾𝑖 classes,
where classes across clients can be mutually exclusive or partially
overlap. The set of personalized weights𝑊𝑖 becomes a 𝐾𝑖 ×𝑀 ma-
trix that allows to compute the logits in the standard cross entropy
loss, ℓ (𝑦𝑖, 𝑗 , 𝑥𝑖, 𝑗 ;𝑊𝑖 , 𝜃) = − log

{
𝑃𝑟 (𝑦𝑖, 𝑗 |𝑥𝑖, 𝑗 ;𝑊𝑖 , 𝜃)

}
. The class prob-

ability is modeled by the Softmax function, i.e. Pr(𝑦𝑖, 𝑗 |𝑥𝑖, 𝑗 ;𝑊𝑖 , 𝜃) =
𝑒
𝛼𝑦𝑖,𝑗∑𝐾𝑖
𝑘=1 𝑒

𝛼𝑘
where the 𝐾𝑖 -dimensional vector of logits is 𝛼 = 𝑊𝑖 ×

𝜙 (𝑥𝑖, 𝑗 ;𝜃) and 𝜙 (𝑥𝑖, 𝑗 ;𝜃) is a𝑀 × 1 vector.

3.2 The Proposed Algorithm
The objective of personalized FL is to minimize the global training
loss in (1) over the full set of parameters 𝜓 . To this end, we pro-
pose a distributed optimization algorithm that incorporates exact
Stochastic Gradient Descent (SGD) steps over 𝜓 . The stochastic-
ity arises due to a random client participation or selection process
defined in the sequel, in Section 3.2.1. Without stochasticity, i.e. if
all clients participate at every round, these previous steps become
exact gradient descent (GD) steps. This means that the proposed
algorithm (detailed in Section 3.2.2) converges similarly to standard
GD or SGDmethods respectively; see subsection 3.3, and subsection
3.4.

3.2.1 Client Participation Process . We assume that the optimiza-
tion of the global loss in (1) is performed in different rounds, where
each round involves a communication of the server with some of
the clients. Specifically, at the beginning of each optimization round
𝑡 , a subset of clients I𝑡 ⊂ {1, . . . , 𝐼 } is selected uniformly at random
to participate. For instance, two sensible options are: (a) the number
of clients 𝑟𝑡 := |I𝑡 | follows a Binomial distribution B(𝐼 , 𝜌), i.e. each
client participates independently with probability 𝜌 , or (b) a fixed

number 0 < 𝑟 ≤ 𝐼 of clients are always selected, i.e. |I𝑡 | = 𝑟 for
any 𝑡 . For both cases an arbitrary client 𝑖 ∈ {1, . . . , 𝐼 } participates
in each round with probability Pr(𝑖 ∈ I𝑡) = 𝑟

𝐼
, where for case (a)

𝑟 = 𝐼 𝜌 can be a float number, while for (b), 𝑟 is strictly an integer.

3.2.2 Client and Server Updates .

Client side. Having selected the subset of clients I𝑡 to participate
in round 𝑡 , the server sends the global model parameters 𝜃 to these
clients. Then, each client 𝑖 ∈ I𝑡 trains locally the task specific
parameters𝑊𝑖 by performing a total number of 𝜏 gradient descent
steps. For the first 𝜏 − 1 steps, the global parameter 𝜃 is “ignored”
(i.e. it remains fixed to the value sent by the server), and only
the gradient ∇𝑊𝑖

ℓ𝑖 (𝑊𝑖 , 𝜃) over the client-specific parameters𝑊𝑖 is
computed. The gradient steps of these 𝜏 − 1 steps have the form

𝑊𝑖 ←𝑊𝑖 − 𝛽∇𝑊𝑖
ℓ𝑖 (𝑊𝑖 , 𝜃),

where 𝛽 is the learning rate. In fact, these 𝜏 − 1 updates could be re-
placed by any other optimization procedure, as long as the final loss
value ℓ𝑖 (𝑊𝑖 , 𝜃), i.e. after these 𝜏 − 1 steps, is smaller or equal to the
corresponding initial value. In contrast, for the final (𝜏-th) iteration,
the client simultaneously computes the joint gradient (∇𝑊𝑖

ℓ𝑖 ,∇𝜃 ℓ𝑖)
of both𝑊𝑖 and the shared parameters 𝜃 , and it performs the final
(𝜏-th) gradient step for𝑊𝑖 using the rule

𝑊𝑖 ←𝑊𝑖 − 𝜌𝑡
𝐼

𝑟
∇𝑊𝑖

ℓ𝑖 (𝑊𝑖 , 𝜃), (3)

where 𝜌𝑡 is the learning rate at round 𝑡 , and the multiplicative scalar
1

Pr(𝑖∈I𝑡) =
𝐼
𝑟 ensures unbiasedness of the full gradient update over

all parameters𝜓 ; For more details about that important property
of our proposed algorithm, please see subsection 3.3.

Server side. The server gathers all gradients from the participat-
ing clients, and then it performs a gradient update to the parameters
𝜃 by taking into account also the data proportionality weight of
each client. Specifically, the update it performs takes the form

𝜃 ← 𝜃 − 𝜌𝑡
𝐼

𝑟

∑︁
𝑖∈I𝑡

𝛼𝑖∇𝜃 ℓ𝑖 (𝑊𝑖 , 𝜃), (4)

where again the term 𝐼
𝑟 is included to ensure unbiasedness as de-

tailed next. The whole optimization procedure across rounds is
described by Algorithm 1.

Algorithm 1 PFLEGO
Input: 𝑇 rounds, 𝜏 local gradient updates, 𝐼 clients, 𝑟 ≪ 𝐼 (average) sam-

pled clients per round, 𝑁𝑖 data samples at the 𝑖-th client
Server:

Initialize global parameters 𝜃1
for round 𝑡 = 1, 2, ...,𝑇 do
I𝑡 ← (Select a random subset of clients)
Receive g𝑖 from each client i ∈ 𝐼𝑡
Aggregate: 𝜃𝑡+1 ← 𝜃𝑡 − 𝜌𝑡

𝐼
𝑟

∑
𝑖∈𝐼𝑡 𝑎𝑖g𝑖

end for

ClientI_Update(𝜃𝑡):#runs on client 𝑖
Initialize𝑊𝑖 , the first time client 𝑖 is visited
for local gradient update = 1, 2, ..., 𝜏 − 1 do

𝑊𝑖 ←𝑊𝑖 − 𝛽 ∇𝑊𝑖 ℓ𝑖 (𝑊𝑖 , 𝜃𝑡)
end for
Compute joint grad (∇𝑊𝑖 ℓ𝑖 (𝑊𝑖 , 𝜃𝑡), ∇𝜃𝑡 ℓ𝑖 (𝑊𝑖 , 𝜃𝑡))
𝑊𝑖 ←𝑊𝑖 − 𝜌𝑡

𝐼
𝑟
∇𝑊𝑖 ℓ𝑖 (𝑊𝑖 , 𝜃𝑡)

Return g𝑖 := ∇𝜃𝑡 ℓ𝑖 (𝑊𝑖 , 𝜃𝑡) to server

3.3 Exact Stochastic Gradient Descent
Optimization Convergence

An important property of our proposed algorithm is that the final
iteration 𝜏 over𝑊𝑖 ’s at the selected set of clients I𝑡 , combined with
the update over the global parameter 𝜃 at the server results in an
unbiased SGD step over all parameters 𝜓 = {𝜃,𝑊1, . . . ,𝑊𝐼 }. To
prove this rigorously, we introduce the stochastic gradient vector
∇𝑠
𝜓
L = {∇𝑠

𝜃
L,∇𝑠

𝑊1
L, . . . ,∇𝑠

𝑊𝐼
L} where we use the symbol 𝑠 in ∇𝑠

to indicate that these gradient vectors are stochastic. For any client
𝑖 = 1, . . . , 𝐼 the vector ∇𝑠

𝑊𝑖
L is defined as

∇𝑠𝑊𝑖
L = 1(𝑖 ∈ I𝑡)

𝐼

𝑟
∇𝑊𝑖
L(𝜓)

= 1(𝑖 ∈ I𝑡)
𝐼

𝑟
𝛼𝑖∇𝑊𝑖

ℓ𝑖 (𝑊𝑖 , 𝜃). (5)

Here, 1(𝑖 ∈ I𝑡) is an indicator function that equals one if 𝑖 ∈ I𝑡 ,
i.e. if client 𝑖 was selected in round 𝑡 , and zero otherwise. We also
used the fact that ∇𝑊𝑖

L(𝜓) = 𝛼𝑖∇𝑊𝑖
ℓ𝑖 (𝑊𝑖 , 𝜃) .Note that for selected

clients in setI𝑡 , the corresponding vector, ∇𝑠𝑊𝑖
L = 𝐼

𝑟 𝛼𝑖∇𝑊𝑖
ℓ𝑖 (𝑊𝑖 , 𝜃)

is precisely the gradient used in the client update in (3), while for
the remaining clients 𝑖 ∉ I𝑡 , ∇𝑠𝑊𝑖

L = 0. The stochastic gradient
∇𝑠
𝜃
L is defined as

∇𝑠
𝜃
L =

𝐼

𝑟

𝐼∑︁
𝑖=1

1(𝑖 ∈ I𝑡)𝛼𝑖∇𝜃 ℓ𝑖 (𝑊𝑖 , 𝜃) . (6)

We can see that in Algorithm 1, the final client update together
with the server update can be compactly written as the following
gradient update over all parameters𝜓 :

𝜓 ← 𝜓 − 𝜌𝑡∇𝑠𝜓L .

This is now a proper SGD step as long as the stochastic gradient
∇𝑠
𝜓
L is unbiased, as we state next.

Proposition 1. The stochastic gradient ∇𝑠
𝜓
L is unbiased, i.e. it

holds E[∇𝑠
𝜓
L] = ∇𝜓L(𝜓) where ∇𝜓L(𝜓) denotes the exact gradient

and the expectation is taken under the client participation process
(either case i or ii) defined in Section 3.2.1.

Proof. By taking the expectation E[∇𝑠
𝑊𝑖
L] for any 𝑖 , and the

expectation E[∇𝑠
𝜃
L], the indicator function 1(𝑖 ∈ I𝑡) is replaced by

its expected value Pr(𝑖 ∈ I𝑡) = 𝑟
𝐼
(this value is the same for cases i

and ii), which gives the exact gradient. □

As a consequence of Proposition 1, when the number of client
updates is 𝜏 = 1, Algorithm 1 is precisely an SGD algorithm with
the standard convergence guarantees, as long as

∑∞
𝑡=1 𝜌𝑡 = ∞ and∑∞

𝑡=1 𝜌
2
𝑡 < ∞ [3, 30]. When the selected clients at each round

perform more than one gradient steps, i.e. 𝜏 > 1, convergence can
speed up since the first 𝜏 − 1 GD steps in these clients can result in
a systematic/deterministic improvement of the global loss in (1), i.e.
L(𝜓 after 𝜏−1 steps) ≤ L(𝜓 init). Indeed, in practice we observe that
convergence gets faster as 𝜏 increases, please see Figure 4

Since during the first 𝜏 − 1 client updates the global parameters
𝜃 are fixed, we can pass the data from the NN only twice for any
value of 𝜏 . At the beginning of each round, we pass once the data
from the NN, store all feature vectors and then carry out 𝜏 − 1 GD
steps to update only the client-specific parameters. For the final
𝜏-th iteration, we need to pass the data for a second time from the
NN to compute the joint gradient. This is a great computational
advantage of PFLEGO against FedAvg and FedPer, since PFLEGO
roughly runs 𝜏

2 times faster. Concretely, given that the complexity
per round is dominated by the NN evaluations, then PFLEGO is
𝑂 (1) while others are𝑂 (𝜏), consequently the clients consumemuch
less energy per round. The minimization of energy consumption is
important when the size of the model parameter vector gets large,
i.e. the NN has a large number of layers.

3.4 Convergence Rate
In Proposition 2 we state the results from our detailed proof in non-
convex settings [40]. We provide the convergence rate, and how to
set the values for 𝜌 , and 𝛽 at the server-side and at the client-side
respectively to ensure convergence guarantees. We follow the same
convention as in [1, 11, 23, 40] where the average expected squared
gradient norm is used to characterize the convergence rate. We
show that our proposed method is able to achieve linear-speedup
[13, 40], which is desired in distributed training across multiple
clients [13].

Proposition 2. The convergence rate of PLEGO is able to achieve
linear-speedup [13, 40] with respect to the number of rounds 𝑇 and of

the clients I. If we set 𝜌 =

√
𝑟

𝐿
√
𝑇
and 0 < 𝛽 < 2

𝐿
then the algorithm is

guaranteed to converge and the convergence rate is

O(
√︂
I
𝑇
).

Proof. We provide only a summary of the proof. We assume
that the clients perform a number of steps until they find the opti-
mal client-specific parameters. Furthermore we use the following
assumptions for overall loss L.
• Lipschitz continuity of ∇L w.r.t. to the ℓ2 norm, where 𝐿
denotes the Lipschitz constant.
| |∇L𝜃𝑡 − ∇L𝜃𝑡−1 | | ≤ 𝐿 | |𝜃𝑡 − 𝜃𝑡−1 | |

• The ℓ2 norm of gradients are bounded by a constant 𝐺 .
| |∇𝜃𝑡−1 ℓ𝑖 (., 𝜃𝑡−1) | | ≤ 𝐺

• The computed gradients are unbiased gradients.

E[∇𝜃𝑡−1 ℓ𝑖 (., 𝜃𝑡−1) − ∇L𝜃𝑡−1] = 0
Then for each optimization round 𝑡 ∈ [1,𝑇] by the Lipschitz

smoothness we have

E[L𝜃𝑡] ≤ E[L𝜃𝑡−1] +E[⟨∇L𝜃𝑡−1 , 𝜃𝑡 − 𝜃𝑡−1︸ ︷︷ ︸
stochastic

⟩] + 𝐿2 𝐸 [| | 𝜃𝑡 − 𝜃𝑡−1︸ ︷︷ ︸
stochastic

| |2]

1
𝑇

𝑇∑︁
𝑡=1
E[| |∇L𝜃𝑡−1 | |

2] ≤ 1
𝜌𝑇
(L𝜃0−L𝜃 ∗)+

𝐿𝜌𝐺2

2
I∑I

𝑖=1 𝑎
2
𝑖
+ 𝑟 ∑I

𝑖≠𝑗
𝑎𝑖𝑎 𝑗

𝑟

If we choose 𝜌 =

√
𝑟

𝐿
√
𝑇
, and 𝑟 = I then we have

1
𝑇

𝑇∑︁
𝑡=1
E[| |∇L𝜃𝑡−1 | |

2] ≤ 𝐿
√
𝐼𝑇
(L𝜃0 − L𝜃 ∗) +

I𝐺2
√
𝐼𝑇

= O(1
√
I𝑇
+ I
√
I𝑇
) = O(

√︂
I
𝑇
).

□

4 EXPERIMENTS
In order to validate the performance benefits of the proposed PFLEGO
algorithm, we compare it against state-of-the-art algorithms such
as FedPer [2], FedAvg [25], FedRecon [34], FedRep[7], FedBabu[26],
FedProx[21], and Ditto[19]. We experiment with the Omniglot,
CIFAR-10, MNIST, Fashion-MNIST and EMNIST datasets.

We report training loss (given by (1)) and test accuracy for the
compared methods. Training loss allows to visualize how fast each
FL algorithm optimizes the model, i.e. how many rounds are re-
quired, while test accuracy quantifies predictive classification per-
formance. Results are averages over all clients.

4.1 Dataset description
Omniglot. This dataset was introduced by [17] and consists of 1623
105x105 handwritten characters from 50 different alphabets, and
20 samples per handwritten character. Omniglot can be a natural
choice for personalized learning due to its small number of samples
per character and large number of different handwritten characters
per alphabet. Each alphabet can be considered as a classification
problem with a certain number of classes, e.g. the English alphabet
has 24 classes. We use 4 convolutional layers, each layer is followed
by one max pooling layer, the architecture we use is the same as
the one from [10].

CIFAR-10. It consists of 32×32 RGB images of 10 different classes
of visual categories [16]. We use the same architecture as in [38]. It
includes two convolutional layers of 64 filters each, and a kernel of
size 5. Each layer is followed by a max pooling layer of size 3 × 3
with stride 2. The output of convolutional layers passes through two
additional fully connected layers of size 384 and 192. The activation
function for the convolutional and fully connected layers is ReLU.

MNIST. It consists of 28 × 28 handwritten grayscale images
of single digits from classes 0 to 9. For MNIST, we use an MLP
architecture that consists of one fully connected layer of 200 units
with a ReLU activation function.

Table 1: Test accuracy for MNIST, CIFAR-10, EMNIST and Fashion-MNIST datasets on different degrees of personalization.

MNIST CIFAR-10

Method / Deg of Pers. High-Pers Medium-Pers No-Pers High-Pers Medium-Pers No-Pers
FedPer 97.88 ± 0.25 92.83 ± 0.46 87.23 ± 0.33 85.15 ± 1.08 61.01 ± 0.84 37.88 ± 0.59
FedAvg 97.54 ± 0.25 92.83 ± 0.52 93.12 ± 0.24 85.18 ± 0.96 64.53 ± 0.75 61.33 ± 0.52
PFLEGO 98.43 ± 0.21 94.22 ± 0.43 90.68 ± 0.17 87.81 ± 0.94 74.83 ± 0.66 58.98 ± 0.81

EMNIST Fashion-MNIST

Method / Deg of Pers. High-Pers Medium-Pers No-Pers High-Pers Medium-Pers No-Pers
FedPer 97.78 ± 0.51 74.19 ± 0.36 48.12 ± 0.23 96.14 ± 0.35 88.22 ± 0.64 77.44 ± 0.59
FedAvg 97.29 ± 0.54 68.82 ± 0.29 69.4 ± 0.10 96.35 ± 0.47 87.51 ± 0.73 83.59 ± 0.35
PFLEGO 98.49 ± 0.43 74.43 ± 0.40 55.42 ± 0.19 96.34 ± 0.43 89.84 ± 0.52 81.49 ± 0.51

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.025

0.050

0.075

0.100

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

90

92

94

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

80

85

90

0 50 100 150 200
Rounds

0.5

1.0

1.5

PFLEGO
FedAvg
FedPer

High-pers Medium-pers No-pers

Figure 2: Training loss (top row) and test accuracy (bottom row) for MNIST dataset for PFLEGO, FedAvg and FedPer over𝑇 = 200
rounds, 𝐼 = 100 clients, 𝑟 = 20% client participation per round. Each column corresponds to a degree of personalization (high,
medium, no personalization).
Table 2: Test accuracy for Omniglot dataset on high degree of
personalization. The average is measured by averaging the
last 10 global rounds of the first 1000 global rounds.

FedRep FedBabu FedProx Ditto FedPer FedAvg FedRecon PFLEGO
69.65 ± 2.47 68.45 ± 1.53 48.41 ± 1.83 50.88 ± 1.72 68.02 ± 1.74 49.65 ± 1.74 74.06 ± 1.19 75.85 ± 1.21

Fashion-MNIST. It is similar to MNIST but more challenging
and consists of 28 × 28 grayscale images of 10 different classes of
clothing. We use the same MLP architecture as the one in MNIST.

EMNIST. It extends the MNIST dataset with grayscale handwrit-
ten digits. In total there are 62 different classes of handwritten
letters and digits. We use the same MLP architecture as the one in
MNIST.

4.2 Experimental Setup
For Omniglot, we assume that a single alphabet is stored in each
client. Due to the fact that each handwritten system of each alphabet
is unique, there is no class label set overlap among the clients,
which makes Omniglot the hardest and highly personalized FL
problem in our experiments. At each alphabet, data of each class
are split into 75% for training and 25% for testing. Also standard
data augmentation is used by including rotated image samples of
multiples of 90° [10]. The setup we follow is based on [32] that
uses 𝐼 = 50 clients, 𝜏 = 50 inner steps per client, and 𝑇 = 5, 000
communication rounds, and each client has an unique alphabet. For
the FedAvg algorithm, the final layer of the common weights is set

0 2000 4000
Rounds

0

1

2

Tr
ai

n
Lo

ss

0 2000 4000
Rounds

60

80

100

Tr
ai

n
Ac

cu
ra

cy
(%

)

PFLEGO
FedAvg
FedPer
FedRecon
FedRep
FedProx
FedBABU
Ditto

0 2000 4000
Rounds

40

60

80

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

0

1

2

Tr
ai

n
Lo

ss

0 2000 4000
Rounds

60

80

100

Tr
ai

n
Ac

cu
ra

cy
(%

)

PFLEGO
FedAvg
FedPer
FedRecon
FedRep
FedProx
FedBABU
Ditto

0 2000 4000
Rounds

40

60

80

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

0

1

2
Tr

ai
n

Lo
ss

0 2000 4000
Rounds

60

80

100

Tr
ai

n
Ac

cu
ra

cy
(%

)

PFLEGO
FedAvg
FedPer
FedRecon
FedRep
FedProx
FedBABU
Ditto

0 2000 4000
Rounds

40

60

80

Te
st

 A
cc

ur
ac

y(
%

)

Figure 3: Training loss (left), training accuracy (middle) and test accuracy (right) for the Omniglot dataset. All FL methods were
run for 5, 000 rounds, with 50 inner client steps and 𝑟 = 20% client participation per round.

0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

𝜏 = 5(a) 𝜏 = 10(b)

0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)
0 2000 4000

Rounds
75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

𝜏 = 25(c) 𝜏 = 50(d)0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

0 2000 4000
Rounds

40

45

50

55

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

55

60

65

70

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

70

72

74

76

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y(
%

)

0 2000 4000
Rounds

80

82

84

86

88

Te
st

 A
cc

ur
ac

y(
%

)

PFLEGO
FedRecon

𝜏 = 75(e) 𝜏 = 100(f)

Figure 4: PFLEGO vs the block coordinate descent FedRecon
algorithm. Settings: 50 clients, 5000 rounds, r ∼ [4,28], 𝜌 =

0.001, 𝛽 = 0.007 and Inner Steps 𝜏 : 5 (a), 10 (b) 25 (c), 50 (d), 75
(e), and 100 (f) for the Omniglot dataset.

to 55 outputs, which is equal to the maximum number of classes
among all 50 alphabets.

For MNIST, Fashion-MNIST, EMNIST and CIFAR-10, we use
𝐼 = 100 clients, 𝜏 = 50 inner steps per client, and 𝑇 = 200 commu-
nication rounds. MNIST, Fashion-MNIST and CIFAR-10 are well-
balanced datasets and contain 10 classes. EMNIST is more chal-
lenging since it has 62 classes and varying number of examples
per class. We simulate several FL scenarios by varying the amount
of task-personalization among clients. This involves varying the
degree of class label set overlap among clients, so that different
clients can have different classes in their private datasets.

Flatten 784

Dense(classifier) 10

Dense 200

ReLU

Input
28x28x1

Block

Flatten 64

Dense(classifier) 55

Input
28x28x1

Block

Block

ReLU

MaxPool 2x2, stride=2

Conv64, 3x3, stride 1

Block

ReLU

MaxPool 3x3, stride=2

Conv64, 5x5, stride 1

ReLU

MaxPool 3x3, stride=2

Conv64, 5x5, stride 1

Flatten 4096

Dense 384

ReLU

Dense 192

ReLU

Dense(classifier) 10

Input
32x32x3

MNIST Omniglot CIFAR-10

Figure 5: Model architectures. Left: MLP architecture
for MNIST, Fashion-MNIST and EMNIST; Middle: 4-
convolutional layer architecture for Omniglot; Right: 2-
convolutional layer architecture for CIFAR-10.

4.3 Degree of personalization
For all datasets except Omniglot which is personalized by design,
i.e. for MNIST, CIFAR-10, Fashion-Mnist and EMNIST, we artifi-
cially simulate personalized FL problems by varying the degree of
personalization. This is quantified by the size 𝐾 of classes randomly
assigned to each client from the total set of classes, so that the
smaller the 𝐾 is, the higher the degree of personalization is, since
the probability of class overlap among clients reduces with smaller
𝐾 values.

We consider three degrees of personalization. (i) “high-pers”
where each client has 𝐾 = 2 randomly chosen classes from the
total set of 𝐶 classes (𝐶 = 10 for MNIST, CIFAR-10, Fashion-MNIST
and 𝐶 = 62 for EMNIST), (ii) “medium-pers” where 𝐶/2 classes
are randomly assigned to each client, and (iii) “no-pers” where all
clients have data points from all 𝐶 classes, i.e. all clients solve the
same task.

4.4 Results and discussion
Table 1 reports test accuracy scores for FedPer, FedAvg and our
approach PFLEGO for all datasets, except Omniglot, and degrees of
personalization (high/medium/no personalization). The degree of
personalization is quantified by the size of classes that are randomly
assigned to each client from the total set of classes, so that the

smaller the size is, the higher the degree of personalization is, since
the probability of class overlap among clients reduces when the
clients have fewer classes. Table 2 reports the test accuracy for
Omniglot. Each reported accuracy value and confidence interval is
the mean of the corresponding values at the final 10 global rounds.
We observe that our algorithm has significantly higher accuracy
from the other baselines for high degree of personalization; see
High-Pers columns in Table 1 and Omniglot results in Table 2. In the
case of Medium-Pers, our algorithm has better performance than
the baselines in all datasets as well. Note the significant difference
in performance in CIFAR-10, where our method has achieved 10%
higher accuracy than the baselines. Finally, as expected, in the case
of low personalization, FedAvg outperforms all methods.

To visualize optimization and learning speed, Figure 2 shows
training loss and test accuracy with respect to the number of rounds
forMNIST and for different degrees of personalization.Figure 3 plots
the same quantities for the Omniglot dataset. These plots clearly
indicate that PFLEGO achieves high classification accuracy faster in
the high-personalized regime and it requires fewer communication
rounds to minimize the overall training loss.

Further, for the most challenging Omniglot benchmark dataset,
we also compare our approach to other recently proposed per-
sonalized algorithms: (i) FedRep and FedBabu[26] which have the
FedPer[2] NN architecture, (ii) personalized variants of FedAvg: one
that uses a regularization term such as FedProx[21], and Ditto[19]
which trains 2 NN per client, and (iii) FedRecon [34], which follows
a stochastic block coordinate descent scheme, as opposed to our
SGD approach.

In Table 2, we include the test accuracy of block coordinate
descent algorithm FedRecon, from which we observe that our ap-
proach outperforms this baseline as well. We perform an additional
ablation study between our method PFLEGO and the block coordi-
nate descent algorithm FedRecon [34] at the Omniglot dataset. At
the client side we test various values on the number of the inner
steps 𝜏 . At the server side, at the beginning of each round the server
randomly selects at least 4 participants up to 28 participants. We
observe that in each case PFLEGO has higher test accuracy than
FedRecon regardless of the number of inner steps 𝜏 . In Figure 3, we
observe that FedBabu[26] minimizes the training loss faster than
PFLEGO, but PFLEGO achieves higher accuracy. That is because the
client-specific parameters in FedBabu have an orthogonal weight
initialization at the server side, and the client-specific weights are
never trained.

5 ADDITIONAL EXPERIMENTS
5.1 Effect of participation rate 𝑟

Effect of participation rate 𝑟 . We examine the effect of clients
participation rate 𝑟 in each optimization round, i.e. the average
percentage 𝑟 of clients participating in each round where a single
server update is performed over 𝜃 . We consider 𝑟 ∈ {40, 100}. We
use the CIFAR-10 dataset, with 𝑇 = 200 rounds and 𝜏 = 50 inner
client GD steps per round. The client learning rate for all algorithms
is 𝛽 = 0.001 while for PFLEGO the learning rate of the server is
𝜌 = 0.001. From Figure 6 we observe that for FedAvg and FedPer,
the convergence speed does not vary with 𝑟 , while for PFLEGO the
optimization algorithm converges faster as 𝑟 increases. The more

we increase the number of participation, the more gradients will
be sent back to the server for aggregation. Then the server can
perform an SGD step to the common weights that minimizes the
total loss. (1).

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

Te
st

 A
cc

ur
ac

y(
%

)

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6
Tr

ai
n

Lo
ss

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

60

80
Te

st
 A

cc
ur

ac
y

0 50 100 150 200
Rounds

0.2

0.4

0.6

Tr
ai

n
Lo

ss

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

0 50 100 150 200
Rounds

60

80

PFLEGO
FedAvg
FedPer

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

PFLEGO
FedAvg
FedPer

𝑟 = 40% 𝑟 = 100%

Figure 6: Ablation study of client participation using the
CIFAR-10 for the High-pers case. PFLEGO is compared
against FedAvg and FedPer in terms of the ability to mini-
mize the train loss(top row) across rounds. The panel in each
column corresponds to a different participation percentage
𝑟 . Test accuracy is is given in the bottom row.

6 CONCLUSION
We propose PFLEGO, a new algorithm for personalized FL with
the unique, and novel to the best of our knowledge, property that
it achieves exact SGD minimization of the total training loss. We
use a NN architecture that includes shared and client-specific lay-
ers. We show rigorously that PFLEGO performs exact SGD-based
optimization, where the stochasticity arises due to randomness in
client participation, and therefore it achieves faster convergence
and lower training loss than state-of-the-art alternatives such as Fe-
dAvg, FedPer and others. Importantly, PFLEGO’s advantage arises
in regimes where a high degree of personalization is needed.

In this work, the degree of personalization i.e. the overlap be-
tween the subsets of classes available to each client was assumed
to be known a priori. If this were not known, a learning algorithm
would need to be devised, which gradually learns the degree of
personalization needed e.g through estimating similarity of tasks
of different clients, so as to decide whether a personalization al-
gorithm (e.g. PFLEGO) would be needed or not. In this work, we
aimed at optimizing total training loss over clients. Another issue
would be to elaborate on fairness aspects by ensuring similar loss
across clients, through a carefully selected objective function and
subsequent decentralized FL process.

ACKNOWLEDGMENTS
This work was supported by the CHIST-ERA grant CHIST-ERA-18-
SDCDN-004 (project LeadingEdge, grant number T11EPA4- 00056)
through the General Secretariat for Research and Innovation (GSRI).

REFERENCES
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.

2017. QSGD: Communication-Efficient SGD via Gradient Quantization and
Encoding. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
6c340f25839e6acdc73414517203f5f0-Paper.pdf

[2] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. 2019. Federated Learning with Personalization Layers.
arXiv:1912.00818 [cs.LG]

[3] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010. Springer, 177–186.

[4] Rich Caruana. 1997. Multitask Learning. Mach. Learn. 28, 1 (July 1997), 41–75.
[5] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2019. Fed-

erated Meta-Learning with Fast Convergence and Efficient Communication.
arXiv:1802.07876 [cs.LG]

[6] Yiqiang Chen, Jindong Wang, Chaohui Yu, Wen Gao, and Xin Qin. 2021. Fed-
Health: A Federated Transfer Learning Framework for Wearable Healthcare.
arXiv:1907.09173 [cs.LG]

[7] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai.
2021. Exploiting Shared Representations for Personalized Federated Learning.
arXiv:2102.07078 [cs.LG]

[8] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. 2022. Personalized
Federated Learning with Moreau Envelopes. arXiv:2006.08848 [cs.LG]

[9] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized Fed-
erated Learning: A Meta-Learning Approach. arXiv:2002.07948 [cs.LG]

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs.LG]

[11] Saeed Ghadimi and Guanghui Lan. 2013. Stochastic First- and Zeroth-order
Methods for Nonconvex Stochastic Programming. https://doi.org/10.48550/
ARXIV.1309.5549

[12] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel
Ramage. 2019. Federated Learning for Mobile Keyboard Prediction.
arXiv:1811.03604 [cs.CL]

[13] Peng Jiang and Gagan Agrawal. 2018. A Linear Speedup Analysis of
Distributed Deep Learning with Sparse and Quantized Communication.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
17326d10d511828f6b34fa6d751739e2-Paper.pdf

[14] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2019. Improv-
ing Federated Learning Personalization via Model Agnostic Meta Learning.
arXiv:1909.12488 [cs.LG]

[15] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. arXiv:1610.02527 [cs.LG]

[16] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images,
Technical report.

[17] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 2015. Human-
level concept learning through probabilistic program induction. Science 350 (2015),
1332 – 1338.

[18] Sangsu Lee, Xi Zheng, Jie Hua, Haris Vikalo, and Christine Julien. 2021. Op-
portunistic Federated Learning: An Exploration of Egocentric Collaboration for
Pervasive Computing Applications. arXiv:2103.13266 [cs.LG]

[19] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2020. Ditto: Fair
and Robust Federated Learning Through Personalization.

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. FedDANE: A Federated Newton-Type Method.
arXiv:2001.01920 [cs.LG]

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks.
arXiv:1812.06127 [cs.LG]

[22] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2020.
On the Convergence of FedAvg on Non-IID Data. arXiv:1907.02189 [stat.ML]

[23] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
2017. Can Decentralized Algorithms Outperform Centralized Algorithms?
A Case Study for Decentralized Parallel Stochastic Gradient Descent. In Ad-
vances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
f75526659f31040afeb61cb7133e4e6d-Paper.pdf

[24] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. 2019. Accelerating Federated
Learning via Momentum Gradient Descent. arXiv:1910.03197 [cs.LG]

[25] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. arXiv:1602.05629 [cs.LG]

[26] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. 2021. FedBABU: Towards
Enhanced Representation for Federated Image Classification.

[27] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beau-
fays. 2019. Federated Learning for Emoji Prediction in a Mobile Keyboard.
arXiv:1906.04329 [cs.CL]

[28] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and H. Brendan McMahan. 2021. Adaptive Feder-
ated Optimization. arXiv:2003.00295 [cs.LG]

[29] Jinke Ren, Guanding Yu, and Guangyao Ding. 2020. Accelerating DNN Training
in Wireless Federated Edge Learning Systems. arXiv:1905.09712 [cs.LG]

[30] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method.
The Annals of Mathematical Statistics 22, 3 (1951), 400–407.

[31] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. ArXiv abs/1706.05098 (2017).

[32] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. 2021. Personalized
Federated Learning using Hypernetworks. arXiv preprint arXiv:2103.04628 (2021).

[33] Sheng Shen, Tianqing Zhu, Di Wu, Wei Wang, and Wanlei Zhou. 2020. From
distributed machine learning to federated learning: In the view of data privacy
and security. Concurrency and Computation: Practice and Experience (2020).

[34] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, Keith Rush,
and Sushant Prakash. 2021. Federated Reconstruction: Partially Local Federated
Learning. arXiv:2102.03448 [cs.LG]

[35] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Opti-
mization. arXiv:2007.07481 [cs.LG]

[36] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beau-
fays, and Daniel Ramage. 2019. Federated Evaluation of On-device Personaliza-
tion. arXiv:1910.10252 [cs.LG]

[37] Qiong Wu, Xu Chen, Zhi Zhou, and Junshan Zhang. 2020. FedHome: Cloud-
Edge based Personalized Federated Learning for In-Home Health Monitoring.
arXiv:2012.07450 [cs.NI]

[38] Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. 2020. Fed-
erated Learning with Unbiased Gradient Aggregation and Controllable Meta
Updating. arXiv:1910.08234 [cs.LG]

[39] Hao Yu, Rong Jin, and Sen Yang. 2019. On the Linear Speedup Analysis of Com-
munication Efficient Momentum SGD for Distributed Non-Convex Optimization.
arXiv:1905.03817 [math.OC]

[40] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel Restarted SGD with Faster
Convergence and Less Communication: Demystifying Why Model Averaging
Works for Deep Learning. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence and Thirty-First Innovative Applications of Artificial In-
telligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI
Press, Article 698, 8 pages. https://doi.org/10.1609/aaai.v33i01.33015693

[41] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2021. Salvaging Federated
Learning by Local Adaptation. arXiv:2002.04758 [cs.LG]

https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/1802.07876
https://arxiv.org/abs/1907.09173
https://arxiv.org/abs/2102.07078
https://arxiv.org/abs/2006.08848
https://arxiv.org/abs/2002.07948
https://arxiv.org/abs/1703.03400
https://doi.org/10.48550/ARXIV.1309.5549
https://doi.org/10.48550/ARXIV.1309.5549
https://arxiv.org/abs/1811.03604
https://proceedings.neurips.cc/paper/2018/file/17326d10d511828f6b34fa6d751739e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17326d10d511828f6b34fa6d751739e2-Paper.pdf
https://arxiv.org/abs/1909.12488
https://arxiv.org/abs/1610.02527
https://arxiv.org/abs/2103.13266
https://arxiv.org/abs/2001.01920
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1907.02189
https://proceedings.neurips.cc/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://arxiv.org/abs/1910.03197
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1906.04329
https://arxiv.org/abs/2003.00295
https://arxiv.org/abs/1905.09712
https://arxiv.org/abs/2102.03448
https://arxiv.org/abs/2007.07481
https://arxiv.org/abs/1910.10252
https://arxiv.org/abs/2012.07450
https://arxiv.org/abs/1910.08234
https://arxiv.org/abs/1905.03817
https://doi.org/10.1609/aaai.v33i01.33015693
https://arxiv.org/abs/2002.04758

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Personalized FL Setting
	3.2 The Proposed Algorithm
	3.3 Exact Stochastic Gradient Descent Optimization Convergence
	3.4 Convergence Rate

	4 Experiments
	4.1 Dataset description
	4.2 Experimental Setup
	4.3 Degree of personalization
	4.4 Results and discussion

	5 Additional Experiments
	5.1 Effect of participation rate r

	6 Conclusion
	References

