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ABSTRACT
One of the key challenges of Reinforcement Learning (RL) is the abil-
ity of agents to generalise their learned policy to unseen settings.
Moreover, training RL agents requires large numbers of interactions
with the environment. Motivated by the recent success of Offline
RL and Imitation Learning (IL), we conduct a study to investigate
whether agents can leverage offline data in the form of trajectories
to improve the sample-efficiency in procedurally generated envi-
ronments. We consider two settings of using IL from offline data
for RL: (1) pre-training a policy before online RL training and (2)
concurrently training a policy with online RL and IL from offline
data. We analyse the impact of the quality (optimality of trajec-
tories) and diversity (number of trajectories and covered level) of
available offline trajectories on the effectiveness of both approaches.
Across four well-known sparse reward tasks in the MiniGrid envi-
ronment, we find that using IL for pre-training and concurrently
during online RL training both consistently improve the sample-
efficiency while converging to optimal policies. Furthermore, we
show that pre-training a policy from as few as two trajectories can
make the difference between learning an optimal policy at the end
of online training and not learning at all. Our findings motivate
the widespread adoption of IL for pre-training and concurrent IL in
procedurally generated environments whenever offline trajectories
are available or can be generated.

KEYWORDS
Imitation Learning, Reinforcement Learning, Generalisation, Diver-
sity

1 INTRODUCTION
The Reinforcement Learning (RL) paradigm is widely used for se-
quential decisionmaking in various fields, including healthcare [11],
energy [10] and robotics [53]. Traditionally, RL algorithms are
trained and evaluated in the same single task, with the goal of max-
imising the cumulative reward over time. However, the variability
of real-world problems poses a challenge for these agents, as they
may not generalise well to new (unseen) scenarios [41]. To address
this issue, recent research in RL has shifted its focus towards the
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ability of agents to generalise to varying but similar tasks that can
differ in either the state space, dynamics of the environment, agent’s
action space and even the reward function [21]. One way of evalu-
ating the generalisation capability of agents is by training agents
in procedurally-content-generated (PCG) environments. Any PCG
task constitutes a set of levels over which the learned policy has to
generalise. Completing the levels of a single task requires a com-
mon skill, but may, for example, vary in the agent’s initial location,
the layout of its environment, colours and locations of objects the
agent can interact with. Such variability prevents the agent from
memorising specific trajectories (overfitting) [4]; instead, PCG en-
vironments force the agent to learn relevant representations and
policies which effectively generalise across all levels of a task.

However, PCG environments often require large amounts of in-
teractions to train an effective policy [18]. In this work, we propose
to use offline data to speed-up the learning of an agent in PCG
environments. This is motivated by the availability of such data in
real-world settings, where one of the main objectives is to decrease
the number of agent-environment interactions due to economic,
safety and time constraints. The main contribution of our work
is to study the effectiveness of using offline data to improve the
converged performance and sample-efficiency of RL agents in PCG
environments. The contributions of our study are threefold. Firstly,
we analyse how offline data can be used to pre-train a policy to kick-
start the learning of an agent. Secondly, we study how offline data
can be combined with the online collected experiences for online
Imitation Learning (IL) to make the RL agent’s training more sample
efficient. Thirdly, we investigate how the quality and quantity of
the provided offline data affects the learning process.

We collect a dataset of offline trajectories by training an agent
with a self-imitation-learning approach specifically designed for
PCG environments (RAPID [50]) and storing the best trajectories
seen so far during training at three checkpoints during training.
Each of these three datasets contains trajectories of varying quality
as measured by the performance of the policy at that point dur-
ing training. The offline data is used via IL, more concretely with
Behaviour Cloning (BC) before and concurrently to the online RL
training. Finally, we analyse the results in various MultiRoom and
ObstructedMaze scenarios of the PCG MiniGrid [3] benchmark.

Our results show that using offline data in any of the analysed
tasks significantly reduces the amount of interactions required to
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learn an optimal policy. In fact, pre-training provides a good initial-
isation policy to kickstart learning. Moreover, training the agent
with IL concurrently to online RL training further improves ro-
bustness and sample efficiency, obtaining the optimal policy with
substantially less agent-environment interactions. Lastly, we em-
pirically show how these results can be achieved even in a low
data regime while emphasising the importance of the diversity of
selected trajectories over their quality, which poses the potential of
kickstarting an RL agent capable of generalising well with just a
handful of trajectories.

2 RELATEDWORK
Sample-efficiency in Procedurally Generated Environments.
Off-policy algorithms are naturally suitable to make use of data
collected by an arbitrary behaviour policy, and are more sample ef-
ficient in the number of agent-environment interactions due to the
application of a replay buffer [6]. However, they exhibit larger insta-
bilities and are more sensitive to hyperparameters than on-policy
solutions [12]. These issues are further exacerbated in PCG environ-
ments [7], where comparably little research exists using off-policy
(e.g. DQN [29], SAC [15]) algorithms in comparison with on-policy
algorithms (e.g. PPO [43], IMPALA [8], PPG [5]). In fact, off-policy
algorithms have only been applied to solve tasks that are compa-
rably easily solved by on-policy algorithms [20, 32, 44]. Therefore,
a large amount of algorithmic approaches have been focused on
how to improve the sample-efficiency of on-policy algorithms by
incentivising exploration with either intrinsic rewards that model
the curiosity [9, 39, 42, 52] or using self-imitation-learning tech-
niques [1, 50] which augment online RL training with BC from
previously collected trajectories.

Offline Data for Reinforcement Learning. Offline RL is known
as the paradigm of acquiring an effective policy by utilising only
previously collected data (with no online interaction) [23]. In that
context, the data collection can be supervised by a human in order
to maximise the return [27]; or it can be done without supervision
while trying to maximise the data coverage or the discovery of
skills [25, 26]. However, such data can also be leveraged in the
offline-to-online RL setting [48], in which offline data is used to pre-
train a given policy and then finetune it during the online stage to
reduce the number of required agent-environment interactions [28,
31, 45, 47, 51]. One of the simplest techniques to utilise offline data
is through Imitation Learning (IL) [13, 27, 31, 40] which treats the
learning process of a policy from the given data as a supervised
learning problem. However, IL is sensitive to (1) the quality of
the data as given by its optimality [23], and (2) the distribution
shift between the provided offline data and the data encountered
when deploying the trained policy in the environment [31, 51]. In
particular the latter challenge of distribution shift is particularly
prominent in PCG environments where the agent has to further
generalise over a set of levels. Distribution shift can be minimised
using prioritisation techniques [14, 49] or enforcing constraints on
the learned policy [22, 24, 47] but these aforementioned works rely
on off-policy RL solutions which have been shown to be ineffective
in many PCG environments [4, 7, 30].

Our contribution. Although previous approaches combined Imi-
tation Learning (offline data) with on-policy Reinforcement Learning
(online data), we are not aware of any work that studies these
techniques in PCG environments which require agents to gener-
alise. Herein we empirically study the effectiveness of combining IL
and RL when varying the offline demonstrations’ quality, quantity,
and diversity which are attributes that have strong influence on
the expected benefits when using offline data1, especially in PCG
environments where generalisation is mandatory.

3 BACKGROUND
3.1 Partially Observable Markov Decision

Process
We define a RL problem as a Markov Decision Process (MDP) given
by a tuple {S,A,P,R, 𝛾 }, where S represents the state space, A is
the action space, P : S×A×S → [0, 1] is the state-transition prob-
ability function, R : S×A×S → R represents the reward function,
and 𝛾 ∈ [0, 1) denotes the discount factor. At every time step 𝑡 , the
agent observes a state 𝑠𝑡 ∈ S and selects an action 𝑎𝑡 sampled from
its policy 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ). Given the current state 𝑠𝑡 and selected ac-
tion 𝑎𝑡 the environment transitions to a new state 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡 )
and the agent receives a reward 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). In partially
observable environments where the agent might only observe a
part of the state, the environment can be formalised as a Partially
Observable Markov Decision Process (POMPD) [19]. A POMDP
extends the MPD formalism to a 7-tuple {S,A,P,R, 𝛾,O,Ω} where
Ω represents the observation space and O : S × A × Ω → [0, 1]
represents the observation function that maps a state and action
to a distribution over observations. In a POMDP, the agent only
receives observations 𝑜𝑡 ∼ O(𝑠𝑡 , 𝑎𝑡 ) based on the current state and
selected action, and conditions its policy on the episodic history of
observations.

3.2 Procedural Content Generation
In this work, we focus on procedurally generated environments
which require agents to learn policies which generalise across a
collection of levels that maximise (minimise) a given objective.

Formally, a task 𝑇 is composed of a collection of different levels
𝑙 ∈ L(𝑇 ), where each level is considered a POMDP and L(𝑇 ) repre-
sents the whole distribution of levels for task𝑇 . The levels are gener-
ated with a seed, ID or parameter vector that makes them differ from
other levels with respect to their underlying S and Ω spaces [21].
The objective is to maximise the expected discounted returns over
the whole level distribution EL(𝑇 ) [

∑𝑁
𝑡=0 𝛾

𝑡R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)], where
𝑁 is the episode length and R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is the reward at time step
𝑡 .

3.3 Imitation Learning
Imitation Learning can be applied in several ways. Herein we adopt
Behaviour Cloning (BC) using the log loss surrogate function [35]:

𝐿𝐵𝐶 = − 1
|𝐵 |

∑︁
(𝑠,𝑎)∼𝐵

𝑙𝑛(𝜋 (𝑎 |𝑠)) (1)

1Quantity and diversity are related with the distribution shift.



Table 1: Summary of the buffers collected for four MiniGrid tasks as stated in Section 4.1. We provide statistics of the quantity
and diversity of the data as given by the total number of stored levels (#𝑙𝑒𝑣𝑒𝑙𝑠 ) and the mean number of trajectories per level
(𝜇𝜏/𝑙𝑒𝑣𝑒𝑙 ) (the total number of stored experiences is given by the product of these quantities). The optimality of stored trajectories
is given by their mean number of experiences (𝜇{𝑠,𝑎} ) and returns (𝜇𝐺 (𝜏 ) ). The last rows correspond to the expected optimal
returns (E∗ [𝐺 (𝜏)]) and optimal number of steps (E∗ [𝑙𝑒𝑛𝑔ℎ𝑡 (𝜏)]) required to solve these tasks where the expectation is over the
entire level distribution of this task. Each of those buffers contain 10,000 experience tuples.

O1Dlhb O2Dlh MN7S8 MN12S10
10% 60% 90% 10% 60% 90% 10% 60% 90% 10% 60% 90%

#𝑙𝑒𝑣𝑒𝑙𝑠 : number of different levels 88 259 250 68 296 292 115 193 210 70 100 101
𝜇𝜏/𝑙𝑒𝑣𝑒𝑙 : mean number of trajectories per level 1.01 1.03 2.18 1 1.07 2.39 1 1.02 1.13 1 1.04 1.26
𝜇{𝑠,𝑎} : mean number of experiences per trajectory 112.4 37.3 18.34 147.1 31.5 14.3 86.9 50.8 41.8 142.8 96.2 78.1
𝜇𝐺 (𝜏 ) : mean return of trajectories 0.63 0.88 0.94 0.74 0.95 0.98 0.42 0.67 0.73 0.45 0.64 0.71

E∗ [𝐺 (𝜏)]: expected optimal return for any level 0.92 0.95 0.67 0.65
E∗ [𝑙𝑒𝑛𝑔ℎ𝑡 (𝜏)]: expected optimal steps for any level 25.6 32 51.3 93.3

where 𝐵 is a batch of state action pairs (𝑠, 𝑎) containing experiences
to be imitated, and 𝜋 denotes the policy that is being trained. Prior
works combine this BC loss with the online RL loss for a single
backpropagation and optimisation objective [16, 46], whereas we
separate the optimisation for BC and RL [1, 50]2. This allows us to
control the number of optimisation steps and the learning frequency
of each optimisation objective.

3.3.1 Self-Imitation Learning. When expert data is not available,
the agent can be trained with self-imitation learning. This para-
digm attempts to learn a policy based on past successful trajectories
collected by the agent itself [1, 33, 50], so that the agent can im-
prove its behaviour with actions that led to promising outcomes.
RAPID [50] determines the success of a trajectory based on the
following weighted score

𝑆 = 𝑤0 · 𝑆𝑒𝑥𝑡 +𝑤1 · 𝑆𝑙𝑜𝑐𝑎𝑙 +𝑤2 · 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 (2)

where 𝑆𝑒𝑥𝑡 refers to the returns of the episode, 𝑆𝑙𝑜𝑐𝑎𝑙 represents
the diversity of states within the episodes, and 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 represents
the long-term exploration as given by state visitation counts [2, 36].
RAPID ranks trajectories based on their weighted score and stores
the trajectories with highest scores in a replay buffer. Throughout
training, a random batch of trajectories is sampled uniformly at
random and the BC loss is minimised for the given samples.

4 METHODOLOGY
In this section, we outline our approach including the data collection
and IL techniques applied for pre- and concurrent training.

4.1 Data Collection
Unlike in other IL works where expert demonstration are given
to the agent, we initially train an agent until convergence3 using
RAPID [50], as outlined in Section 3.3.1. Each replay buffer, con-
taining 10,000 experience tuples at maximum for a particular task,
is stored as datasets of trajectories at three checkpoints throughout
training. The three checkpoints for each scenario correspond to

2This separation does not affect pre-training with IL because no RL updates are
computed in that stage.
3The purpose of this agent is only to serve as a demonstrator to collect trajectories
and is not leveraged in any other way for our study.

the first time the agent achieves a 0.1, 0.6 and 0.9 evaluation re-
turn in ObstructedMaze; and 0.06, 0.4 and 0.6 in MultiRoom. These
returns correspond to approximately 10%, 60% and 90% of the ex-
pected optimal returns in those tasks. The replay buffers contain
trajectories of varying quality, as given by the achieved evaluation
returns, and diversity. We refer to Table 1 for further details about
the quality, quantity and diversity of each of the datasets. Due to
the total number of experience tuples being limited, the higher the
number of steps per trajectory in a buffer, the lower the number of
total trajectories stored in the buffer4.

4.2 Learning from Offline Data
In this study, we consider two techniques to leverage offline data
for the training of an RL agent: pre-training and concurrent IL.

Pre-training. For pre-training, prior to interacting with the
environment, we sample uniformly at random from the selected
dataset a batch of state-action tuples (independently of the trajec-
tory that they belong to) and minimize the BC loss given in Eq 1.
We complete a fixed number of such updates as given by the num-
ber of epochs. After pre-training, no more IL is applied and the
agent is purely trained using standard RL while interacting with
the environment.

Concurrent training. For concurrent training, both the IL and
RL losses are utilised during online training. The RL agent’s policy
is randomly initialised and trained from online interactions with
the environment as usual. In addition to the RL optimisation, we
sample batches of experience from the selected replay buffer at
regular intervals throughout training and minimise the BC loss
for the given batch. In this work, we sample each of those batches
right after every RL optimisation. Furthermore, during the online
training phase, if an encountered trajectory has a higher score
according to Eq 2 than other trajectories in the buffer, the buffer is
updated with the new trajectory.

4For this reason, in environments where a decrease in the number of steps per trajectory
implies a higher return, the 90% buffers that are expected to contain higher-quality
trajectories (with less steps per trajectory) would have a larger number of trajectories
in comparison to the 60% and 10% buffers.



Figure 1: Two different levels of O1Dlhb (Top) and MN12S10
(Bottom) tasks from the MiniGrid benchmark. In O1Dlhb,
the agent (red triangle) has to move the ball, uncover the key
under the box, pick up the key, open the door, discard the key
and pick the blue ball; whereas in MN12S10, the agent has
to go forward while opening the doors between rooms until
reaching the green goal location. In all scenarios, the agent
has only access to a partial observation of the environment
as shown by the brighter area in front of the agent.

5 EXPERIMENTAL SETUP
5.1 Research Questions
In order to understand how Imitation Learning impacts the de-
scribed offline-to-online paradigm in PCG environments, we pose
the following research questions:

(1) Does pre-training a RL agent with IL improve sample effi-
ciency or converged performance? (RQ1)

(2) Can IL from offline trajectories be concurrently used to train
an agent alongside online RL? (RQ2)

(3) How many levels and trajectories (correlated with the diver-
sity of demonstrations) are needed for effective pre-training?
Howdoes the quality of demonstrations affect the pre-training?
(RQ3)

5.2 Environment
We evaluate our results in multiple tasks of the MiniGrid environ-
ment [3] where the agent has to traverse a maze of varying layout
to a goal location. The considered ObstructedMaze and MultiRoom
tasks, as shown in Figure 1, require the agent to learn different skills.
In these PCG environments the layout changes from level to level
by modifying the agent’s spawn location, orientation, the colour
and objects with which the agent can interact with and also the
final goal location. Hence, the optimal number of decisions/steps
to solve each level is also different. Every level is generated with
a seed and it can be modeled as a POMDP where the agent only
perceives a fraction of the whole layout that surrounds it. Akin
to other studies that provide information relating the generalisa-
tion performance gap for varying numbers of training levels [4],
we analyse how many levels are sufficient to capture the agent’s
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Figure 2: Illustration of the generalisation performance gap
for evaluation in 1,000 held-out testing tasks of the level dis-
tribution (orange) and in a limited distribution of training
levels (blue). For four MiniGrid environments, we show the
final evaluation returns (y-axis) of an agent trained until
convergence to the optimal policy using a state-of-the-art
algorithm for PCG environments [1] as a function of the
number of levels (x-axis) the agent is trained in. The mean
and standard deviation is shown across 3 seeds. We can see
that evaluation performance in 10,000 training levels accu-
rately represents the expected testing performance.

performance across the entire level distribution in MiniGrid tasks.
Figure 2 shows that the performance across 10,000 levels accurately
represents the performance of the agent across the entire level
distribution. Hence, we train and evaluate the agent across 10,000
levels.

The considered tasks represent sparse reward problems (i.e., a
non-zero reward is only provided if the agent reaches a goal location
within the maze in a predefined number of steps) with a reward
function that is defined as follows:

R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
{
1 − 0.9 · 𝑡

𝑡𝑚𝑎𝑥
, if(𝑡 < 𝑡𝑚𝑎𝑥&𝑠𝑡+1 is terminal)

0, otherwise
(3)

with 𝑡𝑚𝑎𝑥 being the maximum number of steps per episode that is
dependent on the respective task (e.g., O1Dlhb: 288, MN12S10: 240).

5.3 Algorithms
Based on previous work demonstrating better performance of on-
policy over off-policy algorithms in PCG environments [4, 7, 30],
we use PPO [43] for the online RL training with hyperparameters
specified in Table 2. We compare the results of agents with and
without pre-training and concurrent IL with three baselines: pure
online PPO, pure IL (train on the demonstrations provided in each
buffer using BC) and RAPID [50](self-imitation-learning approach).

Regarding the neural network architecture, two independent
actor and critic models are used. Both of them are composed by 2
fully connected layers with tanh activation functions. Note that the
IL gradients are only applied through the actor network by forcing
the agent to mimic the {𝑠, 𝑎} tuples provided in the demonstrations;
the critic is not directly affected by IL. For every IL update, we
uniformly sample a batch of 256 {𝑠, 𝑎}-tuples from all the possible
experiences at the buffer and updates the actor network for a total
of 5 consecutive epochs with this batch.



Table 2: PPO Hyperparameters

Hyperparameter Value

Optimiser Adam
Learning Rate 10−4
Adam epsilon 10−5

Environment steps per update 2048
Discount 𝛾 0.99

GAE 𝜆 0.95
Entropy coefficient 0.01

Value loss coefficient 0.5
Number of epoch 4

Number of minibatches 4
PPO clipping constant 0.2

Max grad norm 0.5

6 EVALUATION RESULTS
All the provided plots report the mean and standard deviation of
the average return over the past 100 episodes across 3 different
seeds. As the results are evaluated in a PCG setting, the obtained
training score is used to report the agent’s performance.

6.1 RQ1. Pre-training with Imitation Learning
Figure 3 shows the performance of the agent when using IL for pre-
training of the agent policy. We find that pre-training significantly
improves sample efficiency and performance compared to pure RL
(in yellow) and RAPID (in brown). Both baselines fail to learn at all
or requires a larger number of interactions to attain the optimal
policy. Moreover, an increase in quality of the demonstrations and
number of imitation learning epochs increases the rate of conver-
gence. Nevertheless, independently of the trajectories selected for
imitation, the policy obtained by BC at the end of pre-training is
unable to generalise well to the whole level distribution, as shown
by the respective horizontal lines.

When using 3,000 epochs for pre-training, only the pre-training
from the higher quality 60% and 90% buffers in O1Dlhb and with
the 90% buffer in MN12S10 was effective. By increasing the number
of epochs to 10,000, also the agent trained from highly subopti-
mal buffers, given by the 10% and the 60% buffers in O1Dlhb and
MN12S10, respectively, learn to solve the task. We note that the
agent uses the same offline buffers and identical number of online
interactions for this experiment; we only optimise the policy of the
agent for a larger number of experience batches using IL.

Interestingly, the evaluation return obtained by the pre-trained
policies are not a robust indicator for successful policies at the
end of RL training. For example, in the MN12S10 task the agent
pre-trained for 3k epochs from the 60% buffer achieves ≈ 0.2 re-
turns after pre-training but quickly collapses to 0 returns during
RL training. Moreover, in O1Dlhb the adoption of either the 60% or
90% buffers leads to almost the same kickstart in terms of perfor-
mance to the agent (e.g., ≈0.4 return), yet the latter exhibits a faster
convergence during the online phase. Notice that both buffers have
similar quantity and diversity but they differ in the quality of the
demonstrations, which explains why the 90% leverages better re-
sults. When the quality and the diversity of trajectories is decreased
(i.e. 10% buffer, pink), the kickstart of the policy is less effective (e.g.,
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Figure 3: Performance of the agent when pre-training with
IL before the RL training phase in O1Dlhb (Left) and MN12S10
(Right). The horizontal dashed lines represent the pre-trained
policies’ evaluation score (trained solely with BC) that serve
as initialisation point for the training phase. Depending the
task and the demonstrations used, the employed number of
pre-training updates (3k or 10k) affects more/less the per-
formance. Notice the x-axis provides the number of interac-
tions/steps of the agent (after the pre-training phase).

≈0.1 return) while still leading to significant benefits compared to
the baselines.

In contrast, in MN12S10 all available buffers exhibit high diversity
(see Table 1), but only the agent pre-trained from the 90% buffer
(blue) is able to get non-failure results with 3,000 epochs. It appears
that in this task, the quality of the trajectories plays a bigger role to
attain a good initial policy than the diversity, failing when having
a init policy that obtains less than ≈0.3 return (≈ 186 steps), which
is the case in the 60% buffer with 3,000 epochs. Nevertheless, when
using both the 60% and 90% buffers with 10,000 epochs the agent
has a initial return performance of 0.35 and 0.5 respectively, and it
manages to learn the task consistently. In O1Dlhb, even when using
the 10% buffer that corresponds with a ≈0.1 return (≈ 272 steps)
performance policy, the agent was able to learn an effective policy
during RL training. Furthermore, all pre-training learning curves
in MN12S10 indicate a sharp drop in returns at the beginning of
online RL training in comparison to the performance of the policy
obtained through pre-training. We hypothesise that the reasons
why this might happen is due to two phenomenons: (1) A strong
shift between the level distribution of the demonstrations used in
pre-training and the whole level distribution, and (2) misalignment
between the IL and RL objectives (i.e., different gradient directions).
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Figure 4: Performance of the agent in MN12S10 when increas-
ing 𝑡𝑚𝑎𝑥 from 240 to 480 and using Imitation Learning during
pre-training phase.

We highlight that the maximum number of steps for a single
episode and expected optimal returns vary significantly across the
O1Dlhb and MN12S10 tasks. In O1Dlhb the agent is allowed to collect
trajectories that are ×11.5 (i.e., 288/25 ≈ 11.5) longer (worse) than
the trajectory of the optimal policy. In contrast, in MN12S10 that gap
is reduced to ×2.5 (i.e., 240/93 ≈ 2.5). Consequently, in the MN12S10
task the agent has significantly less steps within an online episode
to adapt its policy during the online training while still solving
the task and thus receiving a positive reward signal. In order to
evaluate our intuitions, we manually increment 𝑡𝑚𝑎𝑥 in MN12S10
from 240 steps to 4805. The curves in Figure 4 effectively show
that an increase in maximum episode length allows the agent to
act suboptimally while still receiving positive rewards and thereby
avoids the previously observed failures for the 10% buffer (pink)
while also preventing a drop in initial return when pre-trained with
the 60% buffer (green).

6.2 RQ2. Concurrent Online Reinforcement
Learning and Imitation Learning

In Figure 5 we compare the impact of concurrently training the
agent with IL and RL during online training. We find that agents
trained with concurrent IL manage to solve all the task and with all
the analysed buffers even when pre-training exposed difficulties to
learn (e.g. in MN12S10 with the 10% buffer, pink). Thus, concurrent
learning exhibits better robustness despite not having any prior
knowledge at the beginning of the training phase. On the contrary,
due to the significant jumpstart obtained by the pre-trained poli-
cies, the latter obtain a better sample-efficiency. These results are
further improved by combining both pre-training with IL (in order
to benefit from the kickstart and sample efficiency) and concurrent
IL during online training (for robustness). Combining both of these
approaches results in robust convergence to the optimal policies in
both tasks in less number of online training steps.

6.3 RQ3. Sensitivity to number and diversity of
demonstrations

Lastly, we analyse the sensitivity of using IL for pre-training in a low
data regime where we train the policy with IL using a low number
5Note that this changes the expected optimal return from 0.65 shown in Table 1 to ≈
0.82.
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Figure 5: Performance of the agent when randomly initial-
ising the policy and using both Imitation Learning and Re-
inforcement Learning losses online during the training in
O1Dlhb(Left) and MN12S10(Right). The obtained results are
compared when IL is just used for pre-training (dashed lines).
Within the worst demonstration setup (i.e., 10% Buffer), the
best results are retrieved when IL is used at both pre-training
and the main training phase.

of different levels (with a single trajectory per level). Moreover,
we inspect how the trajectories belonging to optimal (90% buffer)
or suboptimal (60% buffer) solutions significantly impact the IL.
We show the following results of the RL training with varying
pre-training in Figure 6.

Unexpectedly, the agent manages to effectively solve a large
variety of environments when only provided with as low as 2 and
up to 20 different trajectories. Pre-training with a larger number of
trajectories positively impacts sample efficiency, but such benefits
quickly diminish depending on the environment. For example for
the O1Dlhb task, very limited improvements in sample efficiency
can be observed by having more than 5 levels. We note that online
RL training with IL for pre-training in some cases fails to learn in
MN7S8 and MN12S10, which can potentially be addressed by increas-
ing 𝑡𝑚𝑎𝑥 as previously seen in Figure 4.

By vertically analysing the reported results in each scenario in
Figure 6, it can be noticed that when using suboptimal demonstra-
tions (60% Buffer) the agent is more robust to the reduction in the
number of levels used; this is, the agent needs fewer numbers of
trajectories during pre-training to learn an optimal policy at the
end of the following online training. An example of that can be seen
in MN12S10, where with the 90% buffer the agent only learns when
using 10 or 20 levels, whereas with the 60% buffer the agent can
learn with as few as 3 levels. We hypothesise that this occurs be-
cause of the specific levels stored (and consequently sampled) from
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Figure 6: Agent performance when initialising the agent networks with the obtained policies during the IL pre-training phase
with different fixed number of trajectories (one per level) that are considered optimal (top) or suboptimal (bottom). We provide
the results, from left to right, for: O1Dlhb, O2Dlh, MN7S8 and MN12S10. As in Figure 3, the dashed lines represent the BC pre-trained
policies’ evaluation score.
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Figure 7: Levels corresponding to the trajectories collected in O1Dlhb. Below each level the return (and corresponding steps) of
the trajectory/demonstration to be mimic is eased.

each buffer. In order to verify this, in Figure 7 we show the specific
sampled levels in O1Dlhb together with the return and number of
steps of the associated trajectory. The first 2 levels beginning from
the left are used for the reported ’2 levels’ results in Figure 6; in the
same way, the first 3 levels beginning from the left in Figure 7 are
used for the reported ’3 levels’ in Figure 6; and all the provided 5 lev-
els in Figure 7 for the ’5 levels’ results in Figure 6. Inspecting these
levels demonstrates that the trajectories within the 60% buffer are
notably suboptimal (the expected optimal number of steps required
to solve levels in this environment are ≈ 26, see Table 1), whereas
the levels within the 90% buffer contain trajectories with as few
as 16-20 steps. The distribution of levels and thereby trajectories
contained within the 90% buffer is therefore skewed towards easier
levels which require shorter trajectories than expected for levels of
this environment.

Therefore, there are twomain possible reasons thatmight explain
why the agent pre-trained with few trajectories from the 90% buffer
exhibits worse results:

• (1) The stored distribution of levels. Each trajectory con-
tained in the buffer belongs to a specific level, which at the
same time requires a different number of steps to be solved
optimally [38]. Thus, some levels can be considered easier
due to them requiring fewer steps which leads to trajectories
with higher returns. The RAPID prioritisation leads to trajec-
tories of such easier levels to be prioritised over trajectories
of other levels [1], causing a shift in the distribution of stored
levels.

• (2) The coverage and interactions represented by the
trajectories within these levels. Suboptimal trajectories
in MiniGrid are longer than optimal trajectories, thereby
covering a larger part of the state space and possible inter-
actions with the environment which might be beneficial for
learning skills required in the task.

Regarding the first hypothesis, we visualise the probability dis-
tribution of sampling trajectories depending on their number of
steps in Figure 8. The distribution related to the steps needed to
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Figure 8: Probability distribution of sampling trajectories
with variable number of steps from the 10% (pink), 60%
(green) and 90% (blue) buffers. The same distribution is pro-
vided when doing it across the 10,000 train levels with an
optimal agent (orange).

complete each task by an optimal agent across 10,000 train levels
(orange) is not covered by any of the buffers. For the 90% buffer,
the overlap with this distribution is fairly small, clearly indicating
that the levels covered within this buffer are skewed towards levels
with shorter optimal solutions between 15 and 21 steps. In contrast,
the 10% buffer only contains highly suboptimal trajectories. Only
the 60% buffer contains a notable number of levels which are rep-
resentative of the data distribution generated by an optimal agent
which might explain the results shown in Figure 6.

For our second hypothesis, we raise the following question:What
would happen if we explicitly select levels present in both the 90% and
60% buffers and train the agent with the respective trajectories of the
buffers within these levels? We reproduce the results of Figure 6 for
O1Dlhb in Figure 9. When considering the same levels –yet different
quality of trajectories– the results are very similar: agents trained
from the 60% and 90% buffer exhibit robustness issues when using
only 2 or 3 levels with instabilities being more severe for the 90%
buffer. However, the agents pre-trained from the 90% buffer seem
to converge slightly faster when having a larger amount of levels
available.

In light of these results, we can state that the selection of levels
(distribution shift of levels diversity) used for pre-training is perhaps
surprisingly more important than the quality and quantity of the
trajectories. This explains why in Figure 6 the 90% buffer reports
worse results compared to the 60% buffer: the trajectories contained
in the 90% buffer belong to levels that do not represent the whole
level distribution, which can be seen in themismatch between 𝜇𝐺 (𝜏 )
and E∗ [𝐺 (𝜏)] in Table 1 for all the considered environments and
also in the mismatch of probability distributions shown in Figure 8.

In summary, using IL to pre-train RL agents with only a handful
of demonstrations can significantly speed-up the learning. More-
over, when using such low data regimes, it is more important to
select trajectories belonging to the whole spectre of the level dis-
tribution (i.e., maximise the diversity of the levels) rather than
providing optimal examples.
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Figure 9: Interpretation as in Figure 6. Here, the same levels
are used yet different quality of trajectories

7 CONCLUSIONS
In this paper, we studied the potential of Imitation Learning from of-
fline data to improve the sample-efficiency and overall performance
of on-policy RL algorithms in challenging PCG environments. We
considered the setting of pre-training a policy using IL as well as
concurrently optimising the policy with IL during online RL train-
ing. For this purpose, we collect demonstrations (buffers) with a
variable quality, quantity and diversity belonging to different levels.

We show that pre-training on offline demonstrations leads to
a significant jumpstart in the performance and consequently im-
proved sample-efficiency inmany tasks, evenwhen provided demon-
strations are far from optimal. To further improve the performance,
the number of pre-training epochs can be increased. Besides, due to
a possible misalignment between the offline trajectories and the ac-
tual level distributions, relaxing the maximum number of steps per
episode is suggested. Concurrently training the agent with IL and
RL during the online training exhibits robust performance, solving
all considered tasks for demonstrations of various quality. Overall,
the best strategy is to combine and use IL both for pre-training
and during the online training concurrently with RL. Lastly, we
provide empirical results showing that for all considered tasks pre-
training with as few as 2 to 5 trajectories can make the agent learn
an optimal solution, whereas RL without pre-training fails to solve
the tasks. Interestingly, we find that the diversity of the distribu-
tion of trajectories used for pre-training is more important than
the quality of these demonstrations. In particular, the pre-trained
policy is more robust during following RL optimisation whenever
the provided offline trajectories represent the full distribution of
trajectories encountered for the PCG task.

Future work should consider extending the analysis of our work
to other PCG environments (e.g., Procgen [4]) to study the effec-
tiveness of proposed IL techniques in diverse settings. Moreover,
the pre-training stage could make use of more advanced IL tech-
niques such as adversarial IL [17, 34] and curriculum learning ap-
proaches [27] to further improve the performance of the agent. In
line with our finding that diversity of the provided demonstrations
is key for effective pre-training, techniques for unsupervised envi-
ronment design to ensure diversity of levels [37] could be applied
to ensure that demonstrations effectively cover the whole level
distribution.
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