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ABSTRACT
A key challenge for a reinforcement learning (RL) agent is to in-

corporate external/expert
1
advice in its learning. The desired goals

of an algorithm that can shape the learning of an RL agent with

external advice include (a) maintaining policy invariance; (b) accel-

erating the learning of the agent; and (c) learning from arbitrary

advice [3]. To address this challenge this paper formulates the prob-

lem of incorporating external advice in RL as a multi-armed bandit

called shaping-bandits. The reward of each arm of shaping bandits

corresponds to the return obtained by following the expert or by

following a default RL algorithm learning on the true environment

reward. We show that directly applying existing bandit and shaping

algorithms that do not reason about the non-stationary nature of

the underlying returns can lead to poor results. Thus we propose

UCB-PIES (UPIES), Racing-PIES (RPIES), and Lazy PIES (LPIES)

three different shaping algorithms built on different assumptions

that reason about the long-term consequences of following the

expert policy or the default RL algorithm. Our experiments in four

different settings show that these proposed algorithms achieve the

above-mentioned goals whereas the other algorithms fail to do so.
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1 INTRODUCTION
Reinforcement learning [24] is a powerful paradigm for an agent to

learn optimal behavior from sparse and delayed rewards. However,

in many cases learning a good policy can consume significant time

and resources [26]. Formany real-world problems, external advice is

available that can accelerate the learning of the agent. The practice

of providing an RL agent with an additional reward to shape its

learning is called reward shaping and the external reward is called

shaping reward [6, 21]. Incorporating external advice to shape the

learning of an RL agent is a challenge because an external reward

can distract the RL agent from its original goal and alter its optimal

policy [21].

The challenge of incorporating external advice for RL agents

depends on the nature and form of the external advice. In general,

it is not possible to know the nature of the external advice in ad-

vance, that is, whether the external advice is ‘good’ (tells the agent

optimal actions more often than not) or ‘bad’ (leads more often to

sub-optimal actions). The advice can be in any form, that is, the ad-

vice could be available as a policy (a recommended action for each

1
We use external advice and expert advice interchangeably in this paper.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

possible state) [13] or as a value function (that gives value for each

state), or as an arbitrary reward function. A fundamental problem

with reward shaping is that incorporating arbitrary advice without

any restrictions is prone to converging into suboptimal policies

[21]. Potential-based reward shaping (PBRS) methods [5, 19, 27]

have been proposed as a well-established solution to this problem

and are able to maintain policy invariance: they do not alter the

optimal policy of the agent when incorporating external advice.

However existing PBRS methods restrict the form of advice to po-

tential functions that describe a ‘potential’ for each state of the

environment. By restricting the form of advice potential-based re-

ward shaping methods [5, 19] are able to maintain policy invariance.
While potential-based advice helps maintain policy invariance, it

can be infeasible for an expert or an agent to express advice as a

potential function, especially for complex and large environments.

It is much more natural for the expert to express the advice in an

arbitrary reward form. As formulated in [3] a shaping algorithm

ideally should satisfy the following requirements:

• Policy invariance: keep the optimal policy unchanged [19]

• Learn from arbitrary advice [7]

• Accelerate learning of the agent if the advice is good

Explicit shaping methods such as policy invariant explicit shaping

(PIES) [3] can learn from arbitrary advice and maintain policy

invariance but its performance depends on a weighting parameter

b that determines the contribution of expert advice in the learning

of the agent and decays according to a pre-determined schedule.

Determining a good schedule of the decay parameters invariably

requires the knowledge of the nature of the advice (good/bad) before

the algorithm is run which is generally not possible. For example,

if the advice is good, then decay the weight slowly and if it is bad

then decay the weight quickly.

This paper builds on top of PIES and determines the contribu-

tion of advice online by formulting the problem of incorporating

external advice in an RL agent as a multi-armed bandit problem

(MAB) [15]. More specifically, a 2-armed bandit called shaping ban-
dit where the agent must decide whether to follow the expert advice

or follow a default RL policy that learns on true environment reward

at every episode (or time step). We show that direct application of

existingMAB algorithms such as 𝜖-greedy [16], UCB [2] or gradient-

based optimization [10, 24] to this problem can lead to poor results

since these algorithms assume a stationary reward distribution for

each arm. In the case of shaping bandits, the rewards are sampled

depending on the expected return of the underlying RL agent that

is still learning. Thus, the shaping algorithm must explicitly reason

about the non-stationary nature of the returns obtained from the

underlying RL agent.
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While exactly modeling the learning curve of an RL agent is a

tedious task [25], this paper starts with a simple assumption that

the expected return from the underlying RL agent is monotonically

increasing. Building on this assumption we propose a method to get

upper and lower confidence bounds on the reward of arms for the

shaping bandit. Next, based on different assumptions, we propose

three different shaping algorithms lazy PIES (LPIES), upper confi-

dence bound PIES (UPIES), and racing PIES (RPIES) that we show

achieve all the goals of PIES and do not need to know the nature of

the policy in advance. Additionally, we show that algorithms that

do not reason about the non-stationary nature of the underlying RL

agent’s return can lead to policy invariance. We show these results

in four different settings: a 2-armed bandit setting, a tabular RL

navigation task, continuous control Cartpole task with a Deep RL

agent, and on the game of Pong when a Deep-Q-Network (DQN)

learns a policy directly from pixels. Our method is simple, easy to

implement and RL algorithm agnostic that is it can be wrapped

around any underlying RL agent irrespective of which RL algo-

rithm the underlying RL agent is using. Our results show that these

shaping algorithms are able to exploit good advice to accelerate the

learning of an RL agent, avoid bad external advice and still retrieve

the optimal policy, and not get stuck on a sub-optimal policy even

when advised by an expert.

2 BACKGROUND
An episodic MDP [24] is given by the tuple ⟨𝑆,𝐴,𝑇 , 𝑅, 𝐻 ⟩ where 𝑆
is a finite set of states, 𝐴 is a finite set of actions, 𝑇 is the transition

probabilities and 𝑅 is a reward function. At each time step, the

environment is in a state 𝑠 ∈ 𝑆 , the agent takes an action 𝑎 ∈ 𝐴,

and the environment transitions to a new state 𝑠 ′ ∈ 𝑆 , according to

the transition probabilities𝑇 (𝑠, 𝑎, 𝑠 ′) = Pr(𝑠 ′ |𝑠, 𝑎). Additionally, the
agent receives a rewardwhose expected value is given by the reward

function 𝑅(𝑠, 𝑎). Finally,𝐻 is a finite horizon. A deterministic policy

𝜋 is a mapping from states to actions, 𝜋 : 𝑆 → 𝐴, that is, for each,

𝑠 ∈ 𝑆 , 𝜋 (𝑠) returns an action, 𝑎 = 𝜋 (𝑠). The 𝜏-step state-action value
function 𝑄𝜋

𝜏 (𝑠, 𝑎) is defined as the expected sum of discounted

rewards the agent will get if it takes action 𝑎 in state 𝑠 and follows

the policy 𝜋 thereafter for 𝜏 steps until the horizon.

𝑄𝜋
𝜏 (𝑠, 𝑎) = E[

𝜏∑︁
𝑘=0

𝑅(𝑠𝑘 , 𝑎𝑘 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] .

The agent aims to find the optimal policy denoted by 𝜋∗ that max-

imizes the expected sum of rewards, and the state-action value

function associated with 𝜋∗ is called the optimal state-action value

function, denoted by 𝑄∗𝜏 (𝑠, 𝑎): 𝑄∗𝜏 (𝑠, 𝑎) = max𝜋 ∈∏𝑄𝜋
𝜏 (𝑠, 𝑎), where∏

is the set of all policies. The action value function for a given

policy 𝜋 satisfies the Bellman equation [20]

𝑄𝜋
𝜏 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + E𝑠′,𝑎′ [𝑄𝜋

𝜏−1
(𝑠 ′, 𝑎′)] ∀ 𝜋 ∈

∏
,

where 𝑠 ′ and 𝑎′ are the state and action at the next time step. The

Bellman equation for the optimal policy 𝜋∗ is called the Bellman
optimality equation: 𝑄∗𝜏 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + E𝑠′,𝑎′ [𝑄∗𝜏−1

(𝑠 ′, 𝑎′)] . Given
the optimal value function 𝑄∗𝜏 (𝑠, 𝑎), the agent can retrieve the op-

timal policy by acting greedily with respect to the optimal value

function: 𝜋∗ (𝑠) = arg max𝑎∈𝐴𝑄∗𝜏 (𝑠, 𝑎).

The idea behind many RL algorithms is to learn 𝑄∗𝜏 iteratively.

For example, SARSA [24] learns𝑄-values with the following update

rule, at each time step 𝑡 (𝑄0 can be initialized arbitrarily):

𝑄𝜏 (𝑠, 𝑎) ← 𝑄𝜏 (𝑠, 𝑎) + 𝛼 (𝑟 +𝑄𝜏−1 (𝑠 ′, 𝑎′) −𝑄𝜏 (𝑠, 𝑎))

where 𝛼 denotes the learning rate, 𝑄𝜏 denotes the estimates of 𝑄∗𝜏
and 𝑟 is the sampled reward. In every episode, the agent follows an

𝜖-greedy policy with respect to 𝑄𝜏 .

2.1 Policy Invariant Explicit Shaping (PIES)
Policy invariant explicit shaping shapes the learning of an agent

by explicitly learning two different value functions one on 𝑅, the

true environment reward, and the other on 𝑅𝑒𝑥𝑝𝑒𝑟𝑡 , where 𝑅𝑒𝑥𝑝𝑒𝑟𝑡

is a reward function specified by an expert.

Φ𝜏 (𝑠, 𝑎) = Φ𝜏 (𝑠, 𝑎) + 𝛽 [𝑅𝑒𝑥𝑝𝑒𝑟𝑡 (𝑠, 𝑎) + Φ𝜏−1 (𝑠 ′, 𝑎′) − Φ𝜏 (𝑠, 𝑎)]

The agent follows a policy𝜋∗ (𝑠) = arg max𝑎∈𝐴𝑄∗𝜏 (𝑠, 𝑎)+bΦ𝜏 (𝑠, 𝑎)
where b dies from 1 to 0 according to a pre-determined schedule.

Since b goes to zero after a certain fixed number of episodes, PIES

is guaranteed to be policy invariant in limit [22] and if the expert

advice is good then the initial high weight onΦ leads to acceleration

in the learning of the agent. However, since the schedule of b is

fixed, the agent may spend unnecessary resources (computations

and samples) when the advice is bad, and in some cases not enough

resources when the advice is good.

2.2 Upper Confidence Bound (UCB)
Upper confidence bound [2] algorithm describes a policy for decision-

making in the stochastic multi-armed bandit (MAB) [14] problem.

A stochastic 𝑘−armed bandit problem is defined by 𝑘 random vari-

ables 𝑋𝑚,𝑡 for 1 ≤ 𝑚 ≤ 𝑘 and 𝑡 ≥ 1. At each time step 𝑡 the agent

must select𝑚 (or pull the arm𝑚) and receives rewards𝑋𝑚,𝑡 that are

independent and identically distributed according to an unknown

law with an unknown expected value. The expected values of the

rewards are assumed to be stationary with time. The aim of the

agent is to pull the arm with the maximum expected reward (over

all time-steps). The UCB policy is to pull the arm that maximizes

𝑋𝑚 +
√︂

2 log(𝑀)
𝑀𝑗

, where 𝑋 is the average reward received from arm

𝑚 for pulling it𝑀𝑗 times, and𝑀 is the total number of time steps.

3 PROBLEM FORMULATION & METHOD
3.1 Shaping Bandits
We consider an episodic MDP setting, where an agent learns by

interacting with the environment in episodes. We formulate the

problem of incorporating external advice as a 2-armed bandit that

we call PIES-bandit or shaping bandit: at the start of each episode,

the agent must select either to follow a default policy that is 𝜖-

greedy towards the values function𝑄 learned on true environment

reward or it may choose to follow the expert advice that is the

policy that is 𝜖-greedy towards Φ. We call these two arms the 𝑄

and Φ arms. At the end of the episode, the agent observes the

cumulative return as the reward for pulling the 𝑄 or the Φ arm.

As such the aim of the agent is to pull the sequence of arms that

gives the highest cumulative return over a period of 𝑇 episodes.

Let ` : {1, 2, . . . ,𝑇 } → {0, 1} denote a policy that returns a binary



value in response to the episode number 𝑖 ∈ {1, 2, . . . ,𝑇 }. Here
the binary value ` (𝑖) represents the arm recommended by the

policy and by default 0 corresponds to 𝑄 arm and 1 corresponds

to Φ arm. Let 𝑋𝑖,` ∈ [0, 1] denote the random variable that is

the return obtained at the end of episode 𝑖 ∈ {1, 2, . . . ,𝑇 } when
following policy `. Ideally, the agent would like to follow `∗ =

arg max`∈{1,2,...,𝑇 }×{0,1} 𝐽 (`,𝑇 ) where 𝐽 (`,𝑇 ) is the expected sum

of returns obtained for following `

𝐽 (`,𝑇 ) = E[
𝑇∑︁
𝑖=1

𝑋𝑖,` ] .

This is equivalent to minimizing the regret [1, 8] given by:

𝑅(`,𝑇 ) = 𝐽 (`∗,𝑇 ) − 𝐽 (`,𝑇 ).
that is the difference between the expected sum of returns if the

optimal policy `∗ was followed and a given policy `. For explicit

shaping, byminimizing the regret the agentwould be able to achieve

policy invariance since the agent will ideally select the expert arm

only if it leads to high returns over a period of time and accelerate

learning of the agent (most likely, when the advice is good). If the

advice is not good the agent will want to select the default arm

since it yields a higher sum of expected returns. In general, it is

not possible to say if the regret can be minimized for the shaping

bandits without making an assumption about the nature of 𝑋𝑖,` [1],

which in turn depends on the underlying RL agents.

A common assumption regarding𝑋𝑖,` is that its expected value is

stationary in which case this regret can be written as simple regret

[2], and algorithms such as UCB can be used to minimize it. This

assumption is not applicable to PIES-bandits since 𝑋𝑖,` is the return

of an RL agent that is learning, and its expected value may change

with the number and sequence of the arms that are pulled. The

above observation is important, especially for formulating explicit

shaping as a bandit problem. Consider the following example, where

the expert advice guides the agent (unknowingly) to a sub-optimal

policy, let’s say, that returns a percentage of the value of the optimal

policy. If there was no expert advice then the RL agent is likely to

find the optimal policy in limit [22]. However, since we would like

to shape the learning of the agent according to the expert’s advice

it is imperative that the agent’s learning will be slightly biased

by the expert’s policy. In that case, it is highly likely that in the

initial episodes due to abundant feedback the expert policy would

give high returns. A usual (say 𝜖-greedy or UCB or gradient-based)

bandit policy in such case would keep pulling the Φ arm since it will

give a high return from the start, whereas the𝑄 (default RL) armwill

take multiple pulls before its average reward crosses the average

reward provided by the Φ (expert) arm. As a result, the agent will

follow the sub-optimal policy for a good number of episodes before

(and if) it is able to find the optimal policy. In order to avoid this, the

shaping algorithm must reason about the long-term consequences

of the change in expected values of 𝑋𝑖,` when deciding which

arm to pull. In the next subsections, we describe three different

algorithms that are able to address the challenge of incorporating

external advice in the learning of an RL agent and achieve the above

mentioned goals of shaping. We first describe Lazy PIES which is

able to achieve these goals without any restrictive assumptions.

Next, we describe RPIES and UPIES that are able to achieve these

goals under a couple of ‘strong’ assumptions.

3.2 Lazy PIES (LPIES)
A starting point is to observe that the aim of an RL agent is to

maximize its return, that is, to improve the policy until it yields

the optimal value. Furthermore, since an RL agent learns from its

mistakes, it is reasonable to assume that the more experience the

agent gathers, the more improvement it can make to its policy,

meaning that on average as the number of episodes increases, the

expected return obtained from pulling either of the arms is going

to go up (and most likely not down). Moreover, once the agent

learns the optimal policy, it is unlikely, the agent will return to a

sub-optimal policy. This intuition motivates us to propose a simple

algorithm for shaping called Lazy Policy Invariant Explicit Shaping

(LPIES). LPIES follows a simple rule to pull between theΦ and𝑄 arm:

pull with equal probability each arm until the average of historical

returns from Φ arm is less than the average of historical returns

from arm 𝑄 , then eliminate the Φ arm and keep pulling 𝑄 (forever).

Since the 𝑄 arm is never eliminated the agent is guaranteed to

converge to the optimal policy. The Φ arm will be eliminated as

long as it is not optimal, in which case the agent will learn the

optimal policy anyways but faster since the agent will follow the

expert advice with probability 0.5 (in the case of two arms) and will

be biased by the experience collected by it.

3.3 Shaping as Monotone Bandit
LPIES does not make any strong assumption about the learning of

the underlying RL agent. However, when many experts are present

then the acceleration offered by LPIESmight not be the ‘fastest’. Fur-

thermore, in some rare cases, LPIES may eliminate a good expert by

chance (due to a bad sample). Next, we describe UPIES (and RPIES)

that use confidence intervals on the value of pulling each arm in

order to accelerate the learning of the agent more aggressively. In

order to do so, we formulate the shaping bandit as a special case of

the monotone bandit as described in [8]. To start with we assume

that the expected rewards associated with the arms of PIES-bandits

are monotone in the number of pulls of that arm. Second, the ex-

pected reward of an arm is independent of the number of pulls of

other arms. To state this assumptions formally, let𝑛𝑂 ∈ {1, 2, . . . ,𝑇 }
denote the number of pulls of arm 𝑂 ∈ {𝑄,Φ} and let 𝜌𝑂 (𝑛𝑂 ) de-
note the expected rewards associated with arm 𝑂 after 𝑛𝑂 pulls.

Then we assume 𝜌𝑂 (𝑛𝑂 ) ≥ 𝜌𝑂 (𝑛𝑂 − 1) for 𝑂 ∈ {𝑄,Φ}. Given this

assumption, we can write 𝐽 (`,𝑇 ) = ∑𝑛𝑄
𝑖=1

𝜌𝑄 (𝑖) +
∑𝑛Φ
𝑖=1

𝜌Φ (𝑖). To tie
𝑋𝑖,` to 𝜌 , 𝑋𝑖,` is drawn from an unknown distribution with the ex-

pected value 𝜌𝑂 (𝑛𝑂 ), where 𝑂 = ` (𝑖) and 𝑛𝑂 =
∑𝑖

𝑗=0
I(` ( 𝑗), ` (𝑖)),

where I(` ( 𝑗), ` (𝑖)) = 1 if ` (𝑖) = ` ( 𝑗) else 0.
Most importantly, these assumptions allow us to leverage propo-

sition 1 from [8] that states that in an offline setting if arms of a

bandit offer increasing rewards then there exists an arm 𝑖∗ such that
the optimal policy is to pull 𝑖∗ for all the rounds. For PIES-bandits,
this means that the optimal policy with the highest expected value

is the one that pulls either the default RL (𝑄) arm or the expert arm

(Φ) for all episodes.

Proposition 1. (Haideri et al, 2016) Assuming 𝜌𝑂 (𝑛𝑂 ) ≥ 𝜌𝑂 (𝑛𝑂−
1) for 𝑂 ∈ {𝑄,Φ}, then, the optimal policy
`∗ = arg max`∈{1,2,...,𝑇 }×{0,1} 𝐽 (`,𝑇 ) is to pull Φ (1) arm or 𝑄 (0)
arm for all 𝑇 episodes.



[8] prove the above proposition by contradiction. The main idea

behind the proof is that for any policy ` that is not `𝑄 or `Φ, it is

possible to obtain a higher value than ` by replacing all pull of one

arm with another (depending on whether 𝜌 (𝑛𝑄 ) is greater or lesser
than 𝜌 (𝑛Φ)).

Thus, at any point, we are looking for a policy that in the future

will only pull either the 𝑄 arm or the Φ arm. Now, if only we can

eliminate one of these arms, we will be able to decide which arm

to pull for the rest of the episodes.

3.4 Racing PIES (RPIES)
We leverage this result to propose a racing algorithm for PIES-

bandits called Racing-PIES (RPIES). The main idea behind the RPIES

is racing algorithm [17] which is to pull all arms in a candidate

set of arms in a round-robin fashion (or with equal probability)

and eliminate arms from the candidate set if the upper confidence

bounds of the arm are lower than the maximum of lower confidence

bound across all arms. RPIES applies this idea to PIES-bandits in

the following way. Let `𝑄,𝑡 and `Φ,𝑡 denote policies such that for

the rest of the episodes (after 𝑡 ) `𝑄,𝑡 recommends pulling only 𝑄

arm and `Φ,𝑡 recommends pulling only Φ arm. At any time step 𝑡 ,

either `𝑄,𝑡 or `Φ,𝑡 is the optimal policy for the rest of the rounds.

RPIES tries to find that by maintaining upper and lower confidence

bounds on 𝐽 (`𝑄,𝑡 ,𝑇 −𝑡) (in short 𝐽𝑄 ) and 𝐽 (`Φ,𝑡 ,𝑇 −𝑡) (in short, 𝐽Φ).
RPIES uses separate deep neural networks to estimate the values of

𝐽𝑄 and 𝐽Φ. These DNNs, specifically feed-forward neural networks

𝑓𝑤 are trained on the previous rewards obtained by pulling the 𝑄

or the Φ arm. Furthermore, to enforce the monotone assumption

the weights of the DNNs, 𝑤 are constrained to be non-negative.

The DNNs are trained on a dataset that consists of the pull number

and reward obtained for that pull for each of the 𝑄 and Φ arm,

for example, 𝐷 = {(1, 𝑟1), (2, 𝑟2) . . . (𝑛, 𝑟𝑛)}. The DNN is trained by

minimizing mean squared error. Once trained, the DNN is used

to get an estimate of 𝐽 = 1

𝑇−𝑡
∑𝑛+𝑇−𝑡

𝑗=𝑛 𝑓𝑤 ( 𝑗). These estimates are

divided by the total number of rounds remaining (
1

𝑇−𝑡 ) to limit

their values between 0 and 1 which makes it easier to apply Ho-

effding’s inequality [9] later. For both arms, every time the arm

is pulled, RPIES computes new estimates of 𝐽𝑄 and 𝐽Φ by train-

ing a fresh neural network. Thus, if 𝑛𝑄 denotes the number of

pulls of arm 𝑄 , RPIES maintains a set of estimates of 𝐽𝑄 of size 𝑛𝑄 ,

{𝐽𝑄,1, 𝐽𝑄,2 . . . , 𝐽𝑄,𝑛𝑄 } (same for Φ arm). RPIES treats these samples

as independent and identically distributed (i.i.d) and obtains an

upper confidence interval by applying Hoeffding’s inequality [9]
2

Using Hoeffding’s inequality on the sample, we get with probability

1 − 𝛿
1

𝑛𝑄

𝑛𝑄∑︁
𝑖=1

𝐽𝑄,𝑖 +
√︄

1

2𝑛𝑄
log( 2

𝛿
) ≥ 1

𝑇 − 𝑡 E𝐽𝑄 (2)

At each time step, RPIES pulls the 𝑄 or the Φ arm with probability

0.5 each until one of the arms is not eliminated. An arm is eliminated

when its upper confidence bound is lower than the lower confidence

bound of the other arm.

2
Hoeffding’s inequality: If 𝑋1, 𝑋2, . . . 𝑋𝑛 are independent and 0 ≥ 𝑋𝑖 ≥ 1 for all 𝑖

then for 𝑡 > 0,

Pr( |𝑋 − E𝑋 | ≥ 𝑡 ) ≤ 2𝑒−2𝑛𝑡2

, (1)

where 𝑋 = 1

𝑛
(𝑋1 +𝑋2 + · · · +𝑋𝑛) .

Estimating a lower confidence bound does not require us to make

use of the DNN. Instead, the monotone assumption makes it quite

straightforward to draw a lower confidence interval on 𝐽𝑄 and

𝐽Φ. Since the reward can only increase with the number of pulls

the expected value of 𝐽𝑄 per round can only be greater than the

expected value of the average of previous rewards. For example for

the 𝑄 arm

1

𝑛𝑄
E

𝑛𝑄∑︁
𝑖=1

[𝑋𝑖,`𝑄 ] ≤
1

𝑇 − 𝑡 E𝐽𝑄

The left-hand side of the above equation again can be lower

bounded with probability 1− 𝛿 using the Hoeffding’s inequality [9]

E

𝑛𝑄∑︁
𝑖=1

[𝑋𝑖,`𝑄 ] ≥
𝑛𝑄∑︁
𝑖=1

[𝑋𝑖,`𝑄 ] −
√︄

1

2𝑛𝑄
log( 2

𝛿
)

It is now possible to leverage existing proof techniques [17] to

show that RPIES will eliminate the sub-optimal arm and hence be

policy invariant. We bypass all of that by simply rigging the race

in RPIES in favor of the 𝑄 arm. This is because we know that the

vanilla𝑄 arm is optimal in limit and wewould not want to eliminate

it. RPIES never eliminates the𝑄 arm instead, it waits until the upper

confidence interval of Φ arm is lower than the lower confidence

interval of𝑄 arm and then it eliminates Φ. Note that the only way Φ
is not eliminated is if Φ is indeed the optimal value function which

is not bad. Thus, in the limit, RPIES is policy invariant by design.

In general, under this framework, any expert/external advice that

is not the optimal policy will not survive the elimination. Instead,

even nearly-optimal external policy will only distract the learning

of the underlying RL agent, since the agent must follow a sub-

optimal policy for a fixed set of episodes. However, in case the

external advice is optimal, then the RPIES agent will be able to

bias the experience of the underlying RL agent with the experience

gained from following the optimal policy and this can help the RL

agent to learn faster. Next, we propose UPIES having proposed a

method for obtaining confidence intervals on the value of 𝑄 and Φ
arms.

3.5 UCB-PIES (UPIES)
We can now propose an upper confidence bound algorithm for PIES-

Bandit, that at each round pulls the arm with the highest upper

confidence bound given by:

𝐼 = arg max

𝑂 ∈{𝑄,Φ}

1

𝑛𝑂

𝑛𝑂∑︁
𝑖=1

𝐽𝑂 +

√︄
2 log(𝑛𝑄 + 𝑛Φ)

𝑛𝑂

In the rest of the paper, we show empirically that the above

two algorithms satisfy the goals of PIES but without the need to

know the nature of the external advice in advance. We conduct

experiments on a bandit problem first, followed by a tabular RL

grid word setting and then a deep Q network applied to the cart

pole environment.

4 EXPERIMENTS
In this section, we first show that policies (𝜖-greedy/UCB) that do

not consider the long-term potential of the underlying RL agent can

lead to poor results. We show this in a two-armed bandit setting

and then in a grid world. Following this, we show the performance



of LPIES, UPIES and RPIES when the advice is good and bad in a

grid world. The final two experiments compare the performance of

LPIES, UPIES, and RPIES to an RL agent that is learning without

shaping on Cartpole and Pong. In these experiments, the underlying

RL agent is using DNN-based function approximation, and the

advice is coming from an external agent that has been trained to

act in the respective environment.

4.1 Two-armed bandit
In the first experiment, we consider a simple two-armed bandit

problemwhere arm 1 of the bandit offers a constant expected reward

of 0.5 whereas arm 0 offers an expected reward that slowly but

linearly increases from 0 to 𝑌 ∈ {0.05, 0.25, 0.75, 0.95} (at the rate of
0.01 per pull). The agent’s observations are corrupted by zero-mean

Gaussian noise with a variance of 0.1. The purpose of this bandit

is to simulate a setting where one arm is slowly learning towards

a worse/better long-term reward (default RL agent) whereas the

other arm is able to provide a constant reward from the start (expert

arm). We compare the performance of UPIES against 𝜖-greedy and

a version of UPIES where we train the neural network without

the non-negative weight constraint. This baseline is called non-

monotone-UPIES since it does not put constraints on the weights

𝑤 of the DNN. In general, we expect 𝜖-greedy to perform worse

when 𝑌 is greater than 0.5 and perform quite well when 𝑌 is less

than 0.5. In comparison, the performance of UPIES is expected to

be good across all the settings.

Figure 1 shows the cumulative reward earned by the three poli-

cies over 1000 episodes across ten runs. As the value of 𝑌 increases,

we see that both 𝜖-greedy and non-monotone-UPIES fail to perform

as well as UPIES. Both these policies prefer the constant reward

arm since it offers larger rewards in the initial pulls. While 𝜖-greedy

invariably prefers the constant reward arm, the performance of

the non-monotone-UPIES depends on the historical reward sample

it receives. Since non-monotone-UPIES is free to fit a downward-

looking curve to the rewards of arm 2 if a recent bad sample (consec-

utive low rewards) is observed, it leads to a significant decrease in

the average cumulative reward for non-monotone UPIES. In cases

when such a bad sample is not observed the algorithm identifies

the upward-moving trend of the increasing arm and collects a good

reward. This nature of this algorithm is highlighted by its high

variance. UPIES is able to pick the best arm in all four cases. When

the value of𝑌 is less than 0.5, it is able to minimize the performance

gap between itself and greedy strategies such as epsilon greedy.

However, as the value of 𝑌 increases, the long-term reasoning of

UPIES leads to larger cumulative rewards as compared to the other

baselines. The lowest cumulative reward that UPIES achieves is for

𝑌 = 0.25, mainly due to pulling arm 0 until it is confident that it

will not yield a larger reward than arm 1 in the future. Finally, the

performance difference between 𝜖-greedy and UPIES highlights the

role of the count-based exploration bonus that UPIES uses, whereas

the performance difference between non-monotone UPIES and UP-

IES highlights the role of monotone constraints on the weight of

DNNs used by UPIES. For all experiments, for all methods using

bandits-based shaping (UPIES, RPIES and LPIES) we used a feed-

forward DNN with three layers of size 8,4 and 1 respectively. The

DNNs were trained for 2 epochs every time.
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Figure 1: (top) Results on a two-armed bandit problem. One
of the arms yields a constant reward of 0.5 and the other
arm yields a linearly increasing reward at the rate of 0.01
per pull with maximum reward in the set {0.05, 0.25, 0.75, 0.95}
(bottom) Results on a grid-world environment where the
advice is not adversarial but sub-optimal and takes the agent
to an easier but smaller reward. Bandit-based methods are
able to retrieve the optimal policy whereas 𝜖-greedy policy
prefers to pull the shaping arm since it offers relatively high
rewards during the initial rewards. Y-axis is the return at the
end of the episode. X-axis is the episode number.

4.2 Grid-world
Next, we show experiments on an RL agent learning to navigate

to a goal in a 20 x 20 grid-world [3, 24]. The agent starts at the

coordinates (0,0) and the goal of the agent is located at (20,20). If

the agent navigates to the goal, it receives a reward of 100 and the

episode ends. At every time step, the agent must take an action and

it pays a small negative reward of 0.1 (to encourage the agent to

find the goal as quickly as possible). The episode ends after 2000

time steps if the agent is not able to find the goal state. We consider

three different types of advice that can shape the learning of the

agent: (a) good advice, (b) friendly but sub-optimal advice, and

(c) adversarial advice. Good advice rewards the agent +0.1 every

time it takes an ‘east’ or ‘south’ action, that is, it moves towards



the goal. If the agent is to follow this advice then it will reach the

goal state via one of the shortest paths and will earn the maximum

reward. Adversarial advice offers the agent a reward of +0.1 for

taking actions ‘west’ or ‘north’. As such it recommends the agent

do the exact opposite of the good advice. Needless to say, this is the

worst advice that the agent can follow and it leads to large negative

rewards. A ‘friendly but sub-optimal advice’ rewards the agent +0.1

for taking action ‘east’ but leads the agent to a sub-optimal state

located at (20,0) which rewards the agent +5 and the episode ends.

The point of friendly advice is that it represents advice that leads an

agent to an easier but sub-optimal goal. The underlying RL agent

follows the SARSA algorithm with optimistic initialization.

The expectation from a shaping algorithm is to perform well in

all these three scenarios. While 𝜖-greedy policies will perform well

when the advice is good or adversarial (on one of the extremes),

it suffers when the advice leads to an easier but sub-optimal goal.

Figure 1 (bottom) shows the performance of UPIES, RPIES, 𝜖-greedy

algorithm and a no-shaping agent when the advice is friendly but

sub-optimal. Similar to the 2-armed bandit setting, 𝜖-greedy policy

is not able to let go sub-optimal friendly advice arm. This is mainly

because the sub-optimal advice leads the underlying RL agent rel-

atively quickly to a goal. The 𝜖-greedy policy is happy to collect

the rewards from the friendly advice arm, not reasoning about the

learning of the vanilla RL arm. Both UPIES and RPIES, on the other

hand, are able to reason about the learning of the default RL arm.

While UPIES is able to retrieve the optimal policy almost as quickly

as the agent with no-shaping. RPIES on the other hand is cautious

before eliminating the sub-optimal arm, nonetheless, it is able to

retrieve the optimal policy.

Next, we show that LPIES, UPIES and RPIES (collectively Bandit-

PIES) accelerate the learning of the agent when the advice is good

and they are quickly able to ignore the adversarial advice. Figure 2

(top) shows the performance of Bandit-PIES when good advice is

available. Bandit-PIES are able to accelerate the learning of the RL

agent as compared to a no-shaping agent when the advice is good.

Figure 2 (bottom) shows the performance of Bandit-PIES when the

advice is adversarial. Both UPIES and RPIES get distracted slightly,

however, again both algorithms are able to retrieve the optimal

policy quite quickly. The high variance of RPIES is mainly due to

the back-and-forth between the default RL arm and the adversarial

RL arm. LPIES however is able to eliminate adversarial advice from

the start.

The previous experiments demonstrate the need for long-term

reasoning for the learning of the underlying RL agent when shaping

the learning of the agent. Next, we show that Bandit-PIES are able

to accelerate the learning of the agents when the advice is good

(even if not optimal) when the underlying RL agent is using deep

neural network-based function approximation.

4.3 Cart-pole with deep neural networks
In the next experiment, we show UPIES and RPIES are able to

incorporate external advice in a deep RL agent. Furthermore, the

advice, in this case, comes from another deep RL agent that is trained

to near completion. The expert agent is a DQN that is trained to

balance a cart-pole [23] to near completion. The untrained RL agent

is also a DQN that tries to learn to balance cart pole from scratch.
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Figure 2: (top) Results on a grid-world environment where
the advice is nearly optimal. Bandit-based agents are able to
accelerate the learning of the agent. Y-axis is the return at the
end of the episode. X-axis is the episode number. (bottom)
Results on a grid-world environment where the advice is
adversarial (drives the agent away from the goal). Bandit-
based agents are able to retrieve the optimal policy. Y-axis
is the return at the end of the episode. X-axis is the episode
number.

As the external advice, the agent gets a positive reward (+0.1) for

taking the same action as the expert agent. Both the expert agent

and the RL agent are DQNs with three layers of size 16, 16, and 2

respectively. The RL agent is trained with a learning rate of 0.001

using Adam [11] optimizer. The value of gamma is set to 0.99 and

the exploration 𝜖 starts at 0.1 and gradually decays to 0.01 over a

period of 100 episodes. In this case, we compare the performance

of Bandit-PIES against an agent with no shaping. Since the expert

agent is already trained to balance the cart pole, we expect the

external advice to be good and accelerate the learning of the agent.

Figure 3 show the performance of Bandit-PIES against a no-shaping

agent. While Bandit-PIES are able to accelerate the learning of the

agent, however, UPIES is much faster. While LPIES/RPIES is slower

than UPIES it does significantly better than the no-shaping agent.

A key qualitative difference between the behavior of UPIES and
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Figure 3: (top) Results on a cart pole environment where
the advice is nearly-optimal. Bandit-based agents are able to
converge to the optimal policy faster. Y-axis is the return at
the end of the episode. X-axis is the episode number. (bottom)
Results on pong where the advice comes from imitating a
DQN trained to play Pong. Bandit-based agents are able to
converge to the optimal policy faster. Y-axis is the return at
the end of the episode. X-axis is the episode number.

LPIES/RPIES is that LPIES/RPIES pull the default RL and expert

arms with equal probability whereas UPIES prefers the expert arm

in this case.

4.4 Pong
Next, we show that UPIES is able to accelerate the learning of an

RL agent learning to play Pong directly from pixels. The advice

in this case comes from another DQN that was trained to play

Pong. We only try UPIES here to save computation and time. The

agent gets a positive reward for imitating the expert agent. Figure

3(right) show the performance of UPIES against a no-shaping agent.

It turns out that in this case, the behavior of UPIES was similar

to RPIES mainly because even if the agent followed the expert

advice, it was not necessarily able to end with winning the game

eventually. Nonetheless, the UPIES agent is able to beat the default

RL agent in terms of the number of episodes required to learn

the optimal policy. For Pong the expert and the RL agent both are

a convolutional neural network with two convolutional layers of

kernel size 8 and 4 respectively. The last layer is a dense layer of size

256. Rectified Linear Units (ReLU) are used as the activation on all

three layers. The RL agent is trained with a learning rate of 0.00025

with a gamma of 0.99 with Adam optimizer. The expert reward was

0.01 for every time the RL agent took the action suggested by the

expert agent

5 RELATEDWORK
The closest work to ours is that of PIES [3], two-level Q learning

[16], and incremental meta-gradient learning (IMLG) [10]. All three

methods formulate the problem of shaping as a bi-level optimization

problem. However, none of these methods address the challenge of

non-stationarity resulting due to learning of underlying RL agents.

As we show this can lead to sub-optimal results. Before these meth-

ods, potential-based reward shaping [5, 7] was commonly used

for reward shaping. However, it is limited by its requirement of

expressing the shaping advice as a potential function. Other related

methods are learning to shape reward [18] and heuristics-based RL

[4]. These methods do not directly address the challenge of incor-

porating shaping rewards but instead, address the challenge of how

to express (or learn to express) a good shaping reward. It is easy

to see that unless any of these approaches take into account the

non-stationarity of rewards they will fail in the two-armed bandit

settings described earlier since they propose 𝜖-greedy policies that

are greedy with respect to historically collected rewards. PBRS is

related to reward shaping and frameworks like TAMER [12]. We

show that PIES-based algorithms are able to learn from a teacher

agent and accelerate learning. A big advantage of our method over

most of these existing methods is that it is underlying RL model

agnostic and simple to implement. One can take any underlying

RL agent and simply apply our method on top of it.

6 DISCUSSION AND FUTUREWORK
This paper presented a suite of methods for incorporating external

advice in RL framework. The methods are adaptable to the needs of

the user, simple to implement, and underlying RL model agnostic.

We show that these methods in principle and in practice achieve

the goals of reward shaping as outlined in [3]. However, the propa-

gation of uncertainty when computing the confidence bounds can

be improved and weaker assumptions can help the results of this

paper. Finally, another direction to extend the current method is to

apply UPIES to every state-action pair at every time step instead of

every episode as done in this paper.
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