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ABSTRACT
Many real-world problems require a trade-off between multiple
conflicting objectives. Decision-makers’ preferences over solutions
to such problems are determined by their utility functions, which
convert multi-objective values to scalars. In some settings, utility
functions change over time, and the goal is to find methods that can
efficiently adapt an agent’s policy to changes in utility. Previous
work on learning with dynamic utility functions has focused on
model-free methods, which often suffer from poor sample efficiency.
In this work, we instead propose a model-based actor-critic, which
explores with diverse utility functions through imagined rollouts
within a learned world model between interactions with the real
environment. An experimental evaluation shows that by learning
a model of the environment the performance of the agent can be
improved compared to model-free algorithms.

KEYWORDS
Multiple Objectives, Reinforcement Learning, Model-Based Learn-
ing

1 INTRODUCTION
In many real-world problems, an agent needs to consider multiple
conflicting objectives when making decisions. For instance, when
operating a mining company the market prices of various types
of ores must be considered in relation to the cost of mining each
of them. Such multi-objective optimisation problems do not have
a single optimal solution, but instead a set of solutions that are
optimal for some trade-off among the objectives.

Multi-objective reinforcement learning (MORL) provides meth-
ods that allow agents to learn these optimal solutions by interacting
with the environment [8, 18]. Multi-objective reinforcement learn-
ing problems are modelled using vector reward signals [25], with
each element representing one of the objectives, in contrast to the
scalar rewards used in single-objective reinforcement learning [22],
resulting in vector returns. To evaluate the outcomes of different
solutions in relation to each other, a utility function is used to con-
vert the vector return to a scalar, representing a specific trade-off
among the objectives.

In some scenarios, the utility function is not fixed over time.
In MORL research this is referred to as the Dynamic Utility Sce-
nario [8]. For instance, in our example of a mining company, as
the prices of different ores and fuel change, the utility (return on
investment) of the company’s policy for operating its equipment
in its mines will also change, and a new policy must be found to
balance the objective of mining ores and the objective of managing
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Figure 1: MO-Dreamer interacts with the environment and
builds a dataset of diverse experiences, which are used to
construct a model for imagination rollouts where past ex-
perienced states are revisited with experienced as well as
imagined utility functions for improvement of the policy

fuel consumption. To handle such changes in utility efficiently, it
is desirable to reuse information from learning with previously
encountered utility functions, instead of restarting learning from
scratch. It would be desirable to successively learn a set of policies
and their estimated multi-objective returns. Then, when prefer-
ences over objectives change, the user can select a suitable policy
from the policy set to use and improve upon.

Previous work in MORL for learning with dynamic utility func-
tions has focused on model-free learning, which often suffers from
poor sample efficiency. This is problematic in environments where
only limited interaction with the real environment is available, for
instance due to the cost of running experiments. Recently, model-
based reinforcement learning methods have been improved, and
demonstrated impressive performance on complicated tasks [5, 7,
20]. We believe that learning a model could be particularly useful
for multi-objective reinforcement learning, where many different
solutions need to be explored within a single environment to find
one that fits the user’s utility.

In this work, we therefore propose a model-based actor-critic,
based on DreamerV2 [7], as illustrated in Figure 1. To stabilise
learning in the dynamic utility scenario we use a form of Diverse
Experience Replay to ensure that the replay buffer contains trajec-
tories with diverse multi-objective returns. We then let the agent
explore with diverse utility functions through imagined rollouts
within the learned world model. An experimental evaluation on
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the Minecart benchmark shows that the model-based agent signif-
icantly outperforms the model-free state-of-the-art for frequent
as well as sparse utility changes. In additional experiments on the
Deep Sea Treasure benchmark, the model-based agent outperforms
the model-free agents overall by converging quickly, but learns a
worse final policy. To the best of our knowledge this is the first
study of model-based multi-objective reinforcement learning in the
dynamic utility scenario.

The remainder of this paper is organised as follows. Sections 2
and 3 present relevant background information, as well as related
work on learning in the dynamic utility scenario and model-based
reinforcement learning. Section 4 proceeds to present the com-
ponents of the MO-Dreamer agent, followed by an experimental
evaluation in Section 5. Finally, section 6 provides conclusions and
directions for future work.

2 BACKGROUND
In this section we present background information about reinforce-
ment learning in Section 2.1, and multi-objective reinforcement
learning in Section 2.2.

2.1 Reinforcement Learning
Reinforcement learning (RL) allows agents to find policies for se-
quential decision-making by interacting with their environment
in a form of trial-and-error learning. RL problems are typically
modeled as Markov decision processes (MDPs) defined by the tuple
(𝑆,𝐴,𝑇 , 𝑅,𝛾), specifying the states, actions, transition dynamics, re-
ward function, and discount factor of the process. In each time step
the state 𝑠𝑡 ∈ 𝑆 is observed and an action 𝑎𝑡 ∈ 𝐴 is taken according
to the agent’s policy 𝜋 : 𝑆 ×𝐴→ [0, 1]. After executing the action
the agent enters a new state 𝑠𝑡+1 according to the transition dynam-
ics𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1], and receives a reward 𝑟𝑡+1 ∈ R. The goal
of the agent is to maximise its future expected discounted return
when starting in state 𝑠0: 𝑉𝜋 (𝑠) = 𝐸 [∑∞

𝑘=0 𝛾
𝑘𝑟𝑡+1+𝑘 |𝑠0 = 𝑠], with

𝛾 ∈ [0, 1] defining the value of short-term and long-term rewards
respectively.

2.2 Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning is a generalisation of stan-
dard reinforcement learning to problems where multiple conflict-
ing objectives must be considered. Such problems can be modelled
as multi-objective Markov decision processes (MOMDPs) [18]. A
MOMDP provides vector rewards, where each element in the vec-
tor represents the reward for one of the objectives. This results
in vector returns and value functions. A solution found by an RL
agent can be optimal in the sense that for at least one objective
there is no other policy that produces a higher value. The set of re-
turns produced by the set of optimal policies is known as the Pareto
front [18].

To select a single policy we can use a utility function suitable for
the intended user, and convert the vector values to scalar values for
ordering of policies: 𝑉𝑢

𝜋 = 𝑢 (𝑉𝑉𝑉 𝜋 ). The most commonly used utility
function in previous work is the weighted sum [8]: 𝑉𝑢

𝜋 = 𝑉𝑉𝑉 𝜋 ·𝑤𝑤𝑤 .
The weighted sum is a linear utility function, where each element
𝑤𝑖 in the weight vector specifies the corresponding objective’s
relative importance compared to other objectives, and

∑𝑛
𝑖=1𝑤𝑖 = 1

for 𝑛 objectives. As in prior work on learning in the dynamic utility
scenario, we use this form of utility function in our study.

When we model user utility with linear utility functions, we can
use scalarised reinforcement learning [12] to learn policies. This
means that we use the current preference weights to calculate the
scalar value of vector value functions. The scalar values can then
be used in the normal update rules for standard single-objective
value-based or actor-critic style reinforcement learning algorithms.
One disadvantage of scalarised learning with linear utility functions
is that we cannot find solutions in the concave parts of the Pareto
front [26]. Instead we can try to find solutions in the convex cover-
age set (CCS). A CCS is a set of policies that contains an optimal
policy for every linear scalarisation𝑤𝑤𝑤 [18].

3 RELATEDWORK
In this sectionwe presentwork related tomodel-freemulti-objective
reinforcement learning in the dynamic utility scenario in Section 3.1,
and model-based reinforcement learning in Section 3.2.

3.1 Learning with Dynamic Utility Functions
Natarajan & Tadepalli [13] introduced multi-objective reinforce-
ment learning with dynamic preferences in tabular settings. Their
method learns and stores un-dominated policies for encountered
preference weights. When a weight change occurs, learning contin-
ues with the past policy that has the highest scalarised value for the
new weight vector:𝑉𝑉𝑉 𝜋 ·𝑤𝑤𝑤 . This improves performance compared
to learning a new policy from scratch.

Abels et al. [1] extended learning with dynamic weights to multi-
objective deep reinforcement learning. Instead of learning a set
of individual policies, a single deep Q network (DQN [11]) was
used to represent multiple policies, by conditioning the network
on the preference weights of objectives. This allows the network
to generalise across weight changes. In addition, a mechanism for
enforcing diversity in the replay buffer was proposed, to prevent
the agent from forgetting policies learned in the past. Diversity
is measured as the crowding distance [3] of the returns of stored
trajectories, and when the buffer is full trajectories that contribute
the least to diversity are removed first. Conditioned networks have
proven useful in the dynamic utility scenario, as well as in other
settings [10, 14, 15, 17, 27, 30].

Nian et al. [14] extended the work of Abels et al. [1] to par-
tially observable environments. They proposed a Deep Conditioned
Actor-Critic (DCRAC), which can be equipped with LSTM or mem-
ory networks to form beliefs about the current state of the environ-
ment.

Wang et al. [27] proposed a new Near on-policy Experience Re-
play (NER) algorithm for settings where preference weights change
rapidly, and the replay buffer may contain a large number of tran-
sitions that are not relevant for the current weight vector. This
can result in large extrapolation errors [4]. The proposed method
overcomes this problem by prioritising sampling of transitions that
have states and weight vectors that are similar to the current state
and weight vector.

Some model-based approaches have been proposed for MORL,
e.g. variations of Monte Carlo tree search [9, 28], but to to the best
of our knowledge they have not been studied in the dynamic utility



setting. We extend prior work on learning with dynamic utility
functions by studying the potential benefits of online learning of a
world model that can be used to train the agent.

3.2 Model-Based Reinforcement Learning
In many real-world problems, the number of interactions that a
learning agent can have with the environment are limited. For
example, environments populated by humans may have low avail-
ability, and environments populated by expensive vehicles may
have a high operating cost. In such settings sample efficiency can
be improved by learning a model of the environment dynamics,
which can then support decision making by running simulations.

Recent advances in model learning have made it possible to
build accurate compact representations even for complex environ-
ments with image observations. The Dreamer agent [5] uses a world
model [6] consisting of three components: a representation model
that provides compact vector-valued state representations of im-
age observations, a transition model that predicts the next model
state based on the current model state and action, and a reward
model that predicts the reward for the current model state. The
agent learns the latent dynamics of the world model by using re-
construction of the images that represent the observations of the
agent as a learning objective. This results in an efficient model that
can simulate several thousands of trajectories in parallel. The agent
achieves impressive results on challenging visual control tasks in
DeepMind Control Suite [23].

DreamerV2 [7] provides an evolution of the Dreamer agent,
which significantly improves the performance on the challenging
Atari benchmark [2] of environments with discrete action spaces
and image-based observations. DreamerV2 uses categorical vari-
ables to represent the latent state of the world model, instead of
the diagonal Gaussian distribution used by the original Dreamer
agent. In addition, KL balancing is used to improve robustness to
novel inputs as well as learning of long term dependencies in the
environment. We use DreamerV2 as the basis for our work, and
extend it to support learning in MOMDPs with dynamic utility
functions.

4 METHOD
In this section we present the structure of the model-based multi-
objective actor-critic, MO-Dreamer. The world model is presented
in Section 4.1, followed by a description ofmodel learning by diverse
experience replay in Section 4.2. We then present the actor-critic
in Section 4.3, followed by a description of policy learning through
imagination rollouts in Section 4.4. We focus on the differences
between MO-Dreamer and DreamerV2. For a detailed description of
DreamerV2 we refer the reader to [7]. An overview of MO-Dreamer
is shown in Figure 1 and pseudo code is given in Algorithm 1.

4.1 Multi-Objective World Model
We build upon the recurrent state space model (RSSM) proposed in
DreamerV2 [7]. The RSSM consists of the recurrent model, repre-
sentation model, and transition predictor, as shown in Equations (1)
– (3).

ℎ𝑡 = 𝑓𝜙 (ℎ𝑡−1, 𝑧𝑡−1, 𝑎𝑡−1), (1)

𝑧𝑡 ∼ 𝑞𝜙 (𝑧𝑡 |ℎ𝑡 , 𝑥𝑡 ), (2)

𝑧𝑡 ∼ 𝑝𝜙 (𝑧𝑡 |ℎ𝑡 ), (3)

The RSSM uses the deterministic recurrent states ℎ𝑡 to compute
distributions over the posterior state 𝑧𝑡 and the prior state 𝑧𝑡 . The
posterior state incorporates information about the image input
𝑥𝑡 , and the prior state tries to predict the posterior state without
access to 𝑥𝑡 . The model state captures the current environment
state based on observing a sequence of images of past environment
states, and the model is able to predict forward in time to support
"imagination" rollouts.

We also use the same predictors as DreamerV2 for state im-
ages, rewards, and discount (which is used to estimate the end of
episodes), except that the reward is now a vector:

𝑥𝑡 ∼ 𝑝𝜙 (𝑥𝑡 |ℎ𝑡 , 𝑧𝑡 ), (4)

𝑟𝑟𝑟𝑡 ∼ 𝑝𝜙 (𝑟𝑟𝑟𝑡 |ℎ𝑡 , 𝑧𝑡 ), (5)

𝛾𝑡 ∼ 𝑝𝜙 (𝛾𝑡 |ℎ𝑡 , 𝑧𝑡 ), (6)

As in DreamerV2, the latent state of the model is represented
with categorical variables, the image predictor is represented by a
diagonal Gaussian with unit variance, and the discount predictor is
represented by a Bernoulli likelihood. We make the assumption that
the elements of the multi-objective reward are statistically indepen-
dent, and represent them as individual univariate Gaussians with
unit variance in the world model. Then the updated loss function
for a world model of a MOMDP with 𝑛 objectives is:

L(𝜙) � 𝐸𝑞𝜙 (𝑧1:𝑇 |𝑎1:𝑇 ,𝑥1:𝑇 )

[
𝑇∑︁
𝑡=1
− ln𝑝𝜙 (𝑥𝑡 |ℎ𝑡 , 𝑧𝑡 )

−
𝑛∑︁
𝑖=1

ln𝑝𝜙 (𝑟 𝑖𝑡 |ℎ𝑡 , 𝑧𝑡 ) + ln𝑝𝜙 (𝛾𝑡 |ℎ𝑡 , 𝑧𝑡 )

+𝛽𝐾𝐿[𝑞𝜙 (𝑧𝑡 |ℎ𝑡 , 𝑥𝑡 ) | |𝑝𝜙 (𝑧𝑡 |ℎ𝑡 )]
]
.

(7)

4.2 Diverse Experience Replay
The world model is trained with data collected from the agent’s past
experiences with the real environment, which have been stored
in a replay buffer. In addition to sequences of image observations,
actions, rewards, and discount factors, the stored experiences also
contain information about the utility weights that were active in the
corresponding episode. DreamerV2 randomly samples trajectories
from the buffer to construct batches of sequences with fixed length.
In the dynamic utility scenario it is necessary for the agent to



learn that different policies should be followed for different utility
functions, and to retain that knowledge over time. Abels et al. [1]
addressed this issue by splitting the replay buffer of a DQN agent
into a main buffer and a secondary buffer that enforces diversity
in terms of the multi-objective returns contained in the buffer.
When the buffer becomes full and samples must be removed, the
trajectories that contribute the least to diversity are removed first.
We apply a variation of this technique to the replay buffer of MO-
Dreamer.

When using model-based learning in the dynamic utility sce-
nario, it is important to quickly learn a sufficiently accurate model
of the achievable rewards in different parts of the environment.
To promote learning environment features suitable for multiple
utility functions we want to ensure diversity in the data used in
the early stages of learning. We therefore use two replay buffers,
as in [1], but enforce diversity on the main buffer. The diversity
mechanism thereby comes into play as soon as the main buffer is
filled (while in [1] it does not come into play until both buffers are
filled). When the main buffer is full, the trajectory that contributes
the least to diversity is moved to the secondary buffer, which uses
a first-in-first-out (FIFO) principle. We then sample trajectories
from either buffer with a probability proportional to the number of
samples contained in each of them. This means that the early stages
of learning will prioritise sampling trajectories with diverse out-
come in terms of the multi-objective return, while in later stages of
learning the diversity buffer and secondary buffer will be sampled
with equal probability.

4.3 Actor-Critic for Dynamic Utility
We use an actor-critic setup to learn the behaviour of the agent,
where the critic learns a multi-objective value function that guides
the updates of the actor’s policy. To enable single-network rep-
resentations of the action distributions as well as the state value
functions of multiple policies, each corresponding to a different
utility function, we condition both actor and critic on the current
utility weights:

𝑎𝑡 ∼ 𝑝𝜓 (𝑎𝑡 |𝑧𝑡 ,𝑤𝑤𝑤), (8)

𝑣𝑣𝑣𝜉 (𝑧𝑡 ,𝑤𝑤𝑤) ≈ 𝐸𝑝𝜙𝑝𝜓

[∑︁
𝜏≥𝑡

𝛾𝜏−𝑡𝑟𝑟𝑟𝜏
��𝑤𝑤𝑤 ]

, (9)

where 𝜓 and 𝜉 are the parameters of the actor and critic re-
spectively. When the critic gets a certain weight vector as input
in combination with the current model state, it will output the
corresponding vector of optimal objective values from its current
estimation of the CCS. When the actor gets a certain weight vector
as input, it will select the best policy for optimising the correspond-
ing utility.

To learn the value function of the multi-objective critic we use
temporal-difference learning with the vector 𝜆-return [22] as target
value:

𝑉𝑉𝑉 𝜆
𝑡 � 𝑟𝑟𝑟𝑡 + 𝛾𝑡

{
(1 − 𝜆)𝑣𝑣𝑣𝜉 (𝑧𝑡+1,𝑤𝑤𝑤) + 𝜆𝑉𝑉𝑉 𝜆

𝑡+1 if 𝑡 < 𝐻
𝑣𝑣𝑣𝜉 (𝑧𝐻 ,𝑤𝑤𝑤) if 𝑡 = 𝐻

, (10)

Algorithm 1 MO-Dreamer
Initialise neural network parameters randomly.
Prefill replay buffer with exploration policy.
while 𝑡 < 𝑡𝑚𝑎𝑥 do

for c:=1 to 𝑁𝑡𝑟𝑎𝑖𝑛 do
𝑝𝑚𝑎𝑖𝑛 = 𝑁𝑚𝑎𝑖𝑛/𝑁𝑡𝑜𝑡 : probability of sampling main buffer
𝑝𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 = 1 − 𝑝𝑚𝑎𝑖𝑛

Sample batch B with chunks from replay buffers.
Train world model with B.
Select mix of current, past and imagined weights {𝑤𝑤𝑤𝑖 }.
Imagine trajectories {(𝑧𝜏 , 𝑎𝜏 ,𝑤𝑤𝑤𝑖 )}𝑡+𝐻𝜏=𝑡 from each initial
model state-utility pair (𝑧𝑡 ,𝑤𝑤𝑤𝑖 ).
Predict rewards 𝑟𝑟𝑟𝑡 ∼ 𝑝𝜙 (𝑟𝑟𝑟𝑡 |ℎ𝑡 , 𝑧𝑡 ) and values.
Train actor-critic with data from imagination rollouts.

end for
for 𝜏 := 𝑡 to 𝑡 +𝑇 do
Compute action 𝑎𝜏 ∼ 𝑝𝜓 (𝑎𝜏 |𝑧𝜏 ,𝑤𝑤𝑤)
Step environment 𝑜𝜏+1, 𝑟𝑟𝑟𝜏+1, 𝑑𝑜𝑛𝑒 ← 𝑒𝑛𝑣 .𝑠𝑡𝑒𝑝 (𝑎𝜏 )
if done then
𝑜𝜏+1 ← 𝑒𝑛𝑣 .𝑟𝑒𝑠𝑒𝑡 ()

end if
end for
Add new experience to main replay buffer.
Enforce sample limit and diversity in main buffer.
Enforce sample limit in secondary buffer.

end while

and optimise using the squared loss:

L(𝜉) � 𝐸𝑝𝜙 ,𝑝𝜓

[
𝐻−1∑︁
𝑡=1

1
2
∥𝑣𝑣𝑣𝜉 (𝑧𝑡 ,𝑤𝑤𝑤) − sg(𝑉𝑉𝑉 𝜆

𝑡 )∥2
]
, (11)

where sg refers to stopped gradients.
To learn the policy of the actor we use the scalarised advan-

tage function as a baseline and optimise with the following Rein-
force [29] loss:

L(𝜉) � 𝐸𝑝𝜙 ,𝑝𝜓
[𝐻−1∑︁
𝑡=1

(
−𝜌 ln𝑝𝜓 (𝑎𝑡 |𝑧𝑡 ,𝑤𝑤𝑤)

·sg((𝑉𝑉𝑉 𝜆
𝑡 − 𝑣𝑣𝑣𝜉 (𝑧𝑡 ,𝑤𝑤𝑤)) ·𝑤𝑤𝑤) − 𝜂H[𝑎𝑡 |𝑧𝑡 ,𝑤𝑤𝑤]

)]
,

(12)

where the weight vector𝑤𝑤𝑤 is the utility function that was active
when the corresponding samples of a batch was collected. The
entropy term in the actor loss can help prevent over-fitting, which
is of particular importance in the dynamic utility scenario, where
the agent needs to do transfer learning between different preference
weights.

Since the actor-critic is learning from the compact hidden state
of the world model, the actor and critic are represented by simple
MLPs, rather than the CNNs that would typically be used when
learning directly from image input.
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Figure 2: Minecart (left), Partially Observable Minecart (mid-
dle), and Deep Sea Treasure (right) evaluation environments

4.4 Imagination Rollouts
The MO-Dreamer actor-critic is trained through "imagination" roll-
outs in the learned world model. The initial state of each rollout
corresponds to a time step of a sequence sampled from the replay
buffer and then encoded to a compact world model state. In addition
to the compact representation of the experienced real environment
state, the agent is also provided with the utility function that was
active in the episode where the state was experienced. Either this
utility function or the current utility function of the environment
are used by the agent when doing rollouts in the world model and
optimising the policy with the sample batch collected. Continually
revisiting past trajectories prevents the agent from forgetting which
policy to use for utility functions encountered in the past, and the
robustness of the agent’s behaviour is improved. The diverse ex-
perience replay mechanism ensures that there remains a diverse
mixture of initial states and utility functions in the replay buffer.

In the initial stages of learning the replay buffer is filled with
experiences gathered by an exploration policy, and the trajectories
followed may not be at all optimal for the actual utility function
of the episode. Since we are learning with a model, we are able
to revisit states previously encountered by the agent, but with a
different utility function, to explore which parts of the environment
provide most value for that function.We implement this mechanism
in the exploration phase of the agent, by performing additional
imagination rollouts with imagined utility functions sampled by
the agent, rather than the utility functions experienced in the past.
This results in a diverse mixture of initial states and utility functions,
which can help the agent figure out which parts of the environment
to visit when given a utility function in the future.

5 EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of MO-
Dreamer. Section 5.1 describes the environments and evaluation
metrics used. Section 5.2 provides a summary of the algorithms
studied and their settings. Section 5.3 then presents the results.

5.1 Experiment Setup
In this work, we study the dynamic utility scenario with frequent
and sparse utility changes. As in previous work, we use a linear
utility function represented by objective weights, which are sam-
pled from a Dirichlet distribution (𝛼 = 1). We perform experiments
on the well-known MORL benchmarks Minecart [1] and Deep Sea
Treasure [1, 24], illustrated in Figure 2. These environments were
also used in prior work on learning with dynamic utility functions.

In Minecart the agent operates a minecart (white icon) to dif-
ferent mines (black areas) for mining different ores, which can
then be brought back to the home base (red area) to be sold. The
current contents of the cart is displayed as colour bars within the
cart icon, as illustrated in Figure 2. The available actions allow the
agent to Mine, turn Left or Right, Accelerate, Brake, or Idle. The
objectives are related to the values of the different ores once sold,
and the fuel cost caused by operating the minecart. Episodes end
when the minecart returns to the base, or when a maximum of
1000 time steps have passed. Minecart is one of the more challeng-
ing benchmarks for multi-objective reinforcement learning, with a
high-dimensional observation space in the form of an image of the
environment state (as in Figure 2), stochastic state transitions when
mining (based on the ore distribution specified for each mine), and
delayed rewards for mining and selling ores. We use the default
configuration of Minecart [1], which has two ores. In Minecart we
also run experiments that study the world model’s ability to handle
partial observability, by only providing a 240x240 pixels observa-
tion centred on the agent (as in Figure 2) instead of the 480x480
pixels observation of the full environment. In this environment we
use a discount factor of 𝛾 = 0.98.

In Deep Sea Treasure the agent operates a submarine (white
square) to treasures (green squares). Deeper treasures have higher
value, but there is a penalty for each time step in the episode,
resulting in two objectives. The available actions allow the agent
to step Left, Right, Up or Down. Episodes end when a treasure
is collected, or when a maximum of 1000 time steps have passed.
Observations are given as images of the environment state (as
in Figure 2). We use the configuration from [1], where the value
of collecting each treasure lies in the CCS. In this configuration
each time step gives a penalty of -1, and the values of treasures
from left to right are {18, 26, 31, 44, 48.2, 56, 72, 76.3, 90, 100}. In this
environment we use a discount factor of 𝛾 = 0.95.

Ideally we would like to use regret as a metric to compare the
results of different algorithms. The regret is defined as the difference
between the optimal return and the actual return for a given utility
function, Δ(𝑔𝑔𝑔,𝑤𝑤𝑤) =𝑉𝑉𝑉 ∗𝑤𝑤𝑤 ·𝑤𝑤𝑤 −𝑔𝑔𝑔 ·𝑤𝑤𝑤 , where𝑉𝑉𝑉 ∗𝑤𝑤𝑤 is the optimal value
in the CCS for the current weight vector, and 𝑔𝑔𝑔 is the discounted
return. The regret metric can consistently evaluate performance
over different runs and for different weight vectors.

Since the optimal policy for Minecart is not known, we instead
use the heuristic proposed by [1] to estimate an approximate CCS.
Since we are using an estimate for the optimal utility, there is
a chance that the regret estimate could become negative, if the
RL agents learn policies that outperform the heuristic. To avoid
this, we estimate the optimal episodic utility with the maximum of
𝑉𝑉𝑉 ∗𝑤𝑤𝑤 ·𝑤𝑤𝑤 and the highest utility achieved by any learning agent. A
negative side effect of this metric is that we can only evaluate for the
fewest episodes completed by any learning agent, which is roughly
38000 episodes for CN-PER (as defined in Section 5.2). For Deep Sea
Treasure the optimal policy is known, so for experiments in that
environment we evaluate regret for all learning steps. Experiments
in Minecart last for 1M time steps in the environment, experiments
in Deep Sea Treasure last for 100k time steps, and each experiment
is run for ten iterations to reduce the effects of random variations.
We then evaluate the mean cumulative regret, as well as the mean
episodic regret.
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Figure 3: Average cumulative episodic Δ on Minecart over ten runs for frequent and sparse utility changes
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Figure 4: Average cumulative episodic Δ on Deep Sea Treasure over ten runs for frequent and sparse utility changes

5.2 Algorithms
In the experiments we compare MO-Dreamer to the existing state-
of-the-art model-free algorithms for learning with dynamic utility
functions presented in Section 3. We also evaluate MO-Dreamer to
ablated versions of itself, to see how different components of the
agent affects its performance. We study the following agents:

• MO-Dreamer: Full model-based agent with utility condi-
tioned actor-critic networks, diverse experience replay, and
imagined utility functions during exploration
• MO-Dreamer-No-DER: Ablation study of MO-Dreamer with-
out diverse experience replay and sampling
• MO-Dreamer-No-IU: Ablation study of MO-Dreamer with-
out imagined utility functions during exploration
• MO-Dreamer-PO: MO-Dreamer with partial observability

• CN-NER: Model-free baseline with utility conditioned DQN
and diverse experience replay according to [1], combined
with near on-policy experience sampling (NER) according
to [27]
• CN-PER: Model-free baseline with utility conditioned DQN
and diverse experience replay according to [1], combined
with standard prioritised experience replay (PER) [19]

We configure MO-Dreamer to train every 10 steps in the real
environment for Minecart, and every 5 steps for Deep Sea Treasure.
Imagination rollouts have a horizon of 15 steps in the world model.
We train with batches of 10 sequences of 50 steps, sampled from
the replay buffer. The replay buffer is configured with a capacity of
200k steps for Minecart and 20k steps for Deep Sea Treasure. We
prefill the buffer with 100k exploration steps for Minecart and 10k
exploration steps for Deep Sea Treasure (corresponding to the size



of the main buffer), before starting normal training. In Minecart
we explore using a random policy. In Deep Sea Treasure we in-
stead use model-based exploration with Plan2Explore [21], since
random exploration is inefficient for finding the deeper treasures.
Plan2Explore provides intrinsic motivation to the agent for explor-
ing parts of the environment where the model quality is low.

Up until the first 20% environment steps we perform 8 train-
ing iterations between each interaction with the environment, to
quickly learn a high quality world model and policy. Half of these
iterations use imagined utility functions. After 20% steps we re-
duce the training intensity to 2 iterations between each interaction
with the environment (primarily to reduce the amount of wall
time required to run the experiments), and only use current and
past experienced utility functions in rollouts to focus learning on
experienced combinations of state and utility.

We use the default settings of DreamerV2 for the actor and critic
networks. For the model networks we use the default configuration
in Minecart, while in Deep Sea Treasure we use the simpler ATARI
configuration, since Deep Sea Treasure has a simpler observation
space. The Adam optimiser is used for training, with learning rates
of 𝛼 = 2 × 10−4 for the model and critic, and 𝛼 = 8 × 10−5 for the
actor.

For the model-free agents we use the reference implementation
and hyperparameters of CN-PER provided by [1] as a basis, and
then add the near on-policy sampling mechanism proposed by [27]
with its default hyperparameters.

5.3 Results
The average cumulative regret and standard deviation over ten runs
onMinecart is shown in Figure 3. It can be seen that themodel-based
agents need fewer steps to complete the same number of episodes
as the model-free agents. It can also be seen that MO-Dreamer out-
performs the model-free baselines in terms of average cumulative
regret, for frequent as well as sparse utility changes, indicating
improved sample-efficiency. The algorithm converges quickly after
the exploration phase has ended at 100k environment steps, which
is when the main replay buffer is filled. The two model-free base-
lines almost overlap in both settings, although they accumulate
different amounts of regret after completing all episodes of learn-
ing. In our experiments, CN-PER performs better with frequently
changing utility functions than what was reported by [27], but it is
outperformed by CN-NER. For sparse utility changes, CN-PER has
slightly better performance on average.

MO-Dreamer without diverse experience replay performs worse
than the full algorithm, especially so when learning with sparse
utility changes. This is likely caused by over-fitting. Qualitatively
we could observe during training that in some runs an agent would
have a bias for one of the ore’s mined, regardless of the current util-
ity function. The agent would often recover from this sub-optimal
behaviour later in training, but at that point a lot of regret could
have been accumulated. The recovery from sub-optimal behaviour
indicates that it is beneficial for a learning agent to be able to revisit
a previously visited area of the environment and improve upon its
behaviour for a given utility function.

When learning with sparse utility changes, using imagined util-
ity functions is essential for good performance, as illustrated by

Table 1: Average episodic Δ on Minecart

Algorithm Δ overall Δ after 200k steps
Frequent Utility Changes (every episode)

CN-NER 0.1215 ± 0.0057 0.0959 ± 0.0053
CN-PER 0.1278 ± 0.0097 0.1030 ± 0.0089

MO-Dreamer 0.06610.06610.0661 ± 0.0226 0.03770.03770.0377 ± 0.0228
MO-Dreamer-No-DER 0.0786 ± 0.0342 0.0529 ± 0.0380
MO-Dreamer-No-IU 0.0682 ± 0.0132 0.0389 ± 0.0120
MO-Dreamer-PO 0.0716 ± 0.0257 0.0466 ± 0.0262

Sparse Utility Changes (every 1000 episodes)
CN-NER 0.1313 ± 0.0131 0.1079 ± 0.0142
CN-PER 0.1291 ± 0.0199 0.1043 ± 0.0217

MO-Dreamer 0.06050.06050.0605 ± 0.0130 0.03090.03090.0309 ± 0.0081
MO-Dreamer-No-DER 0.1011 ± 0.0381 0.0753 ± 0.0431
MO-Dreamer-No-IU 0.0919 ± 0.0314 0.0476 ± 0.0179
MO-Dreamer-PO 0.0704 ± 0.0186 0.0414 ± 0.0146

Figure 3. This mechanism allows the agent to prepare for dealing
with utility functions not yet encountered in the real environment.
When learning with frequently changing utility functions the mech-
anism is less important, since the replay buffer will still contain a
sufficiently large set of diverse examples of preference weights.

Providing MO-Dreamer with only partial observations of the
environment instead of full observations only has a small negative
impact on the agent’s performance. For frequent utility changes
MO-Dreamer-PO’s regret curve almost overlaps the regret curve of
MO-Dreamer-No-DER up until 500k steps, where MO-Dreamer-PO
starts performing better. For sparse utility changes MO-Dreamer-
PO’s performance is close to that of the full MO-Dreamer agent,
while outperforming the other model-based agents. In both set-
tings MO-Dreamer-PO outperforms the model-free baselines, even
though they are learning with full observability.

Figure 3 shows that there is more variance in the results for MO-
Dreamer compared to the model-free baselines. This experiment
uses a high training intensity in the early stages of learning, in an
attempt to reduce the accumulated regret. There is a risk that an
agent will learn sub-optimal policies during the period when all
relevant features are not available in the compact state of the world
model, e.g., idling at the home base to minimise fuel costs instead of
moving to a mine to collect ores. One thing we noted when running
the experiments was that the representation of the cart’s contents
took time to learn. This problem of "vanishing objects" has also
been noted in previous work [16]. In the early stages of learning
this issue could, e.g., result in the learning agent being rewarded for
bringing back ores to the home base, even though it cannot observe
that there are actual ores stored in the cart.

Table 1 presents the average episodic regret overall, as well as
after 200k environment steps for Minecart. MO-Dreamer signifi-
cantly outperforms the model-free baselines for frequent as well as
sparse utility changes.

The average cumulative regret and standard deviation over ten
runs on Deep Sea Treasure is shown in Figure 4. Since the optimal
policy is known in this environment, we evaluate all agents over



Table 2: Average episodic Δ on Deep Sea Treasure

Algorithm Δ overall Δ after 20k steps
Frequent Utility Changes (every episode)

CN-NER 0.7885 ± 0.1616 0.3428 ± 0.0949
CN-PER 0.7705 ± 0.1629 0.32950.32950.3295 ± 0.1010

MO-Dreamer 0.64980.64980.6498 ± 0.1428 0.4585 ± 0.1677
MO-Dreamer-No-DER 0.8516 ± 0.3551 0.7259 ± 0.3851
MO-Dreamer-No-IU 0.9172 ± 0.4554 0.5994 ± 0.4201

Sparse Utility Changes (every 100 episodes)
CN-NER 0.8429 ± 0.1949 0.33850.33850.3385 ± 0.0854
CN-PER 0.9092 ± 0.2745 0.4123 ± 0.2138

MO-Dreamer 0.79000.79000.7900 ± 0.3808 0.3822 ± 0.2136
MO-Dreamer-No-DER 0.8293 ± 0.2781 0.6535 ± 0.3339
MO-Dreamer-No-IU 1.1690 ± 0.4647 0.5756 ± 0.3617

the full 100k time steps of learning. MO-Dreamer accumulates less
regret than the model-free baselines for frequent as well as sparse
utility changes. However, compared to Minecart the comparison of
agents is more affected by noise in the results. In a typical run of
training MO-Dreamer with 10 iterations, there were a few outliers
that performed significantly worse than the other iterations, and
highly affected the mean and standard deviation of the experiment.
This is similar to the behaviour related to overfitting that was
also observed on Minecart, but more severe. One possible reason
is that the replay buffer is too small, resulting in only a limited
number of trajectories that reach the deeper rewards being stored
in the buffer. The batches used for training are also assembled from
sampled chunks of the stored trajectories, which means that for
long trajectories the chunk may not contain the episode end, where
the treasure is collected. Increasing the buffer size and using an
improved sampling mechanism could improve performance. Other
ways of improving performance could be to adjust the entropy
coefficient, reduce the model capacity, or enhance the exploration
policy.

Table 2 presents the average episodic regret overall, as well as
after 20k environment steps for Deep Sea Treasure. MO-Dreamer
has the best performance overall, but the model-free agents learn
better final policies. CN-NER has slightly better total performance
than CN-PER.

6 CONCLUSION
In this work, we proposed MO-Dreamer, a model-based multi-
objective actor-critic for learning in environments with dynamic
utility functions. MO-Dreamer enforces diversity in the returns of
the trajetories stored in and sampled from the experience replay
buffer, to enable high-intensity training early in the learning process
without over-fitting. In addition, MO-Dreamer uses imagination
rollouts with a diverse set of utility functions, to explore which
policy to follow to optimise the return for a given set of objective
preferences. An experimental evaluation on the Minecart bench-
mark with frequent as well as sparse changes in utility functions
showed that MO-Dreamer significantly outperforms the model-free

state-of-the-art algorithms for multi-objective reinforcement learn-
ing in the dynamic utility scenario in terms of cumulative regret and
average episodic regret. On the Deep Sea Treasure benchmark, MO-
Dreamer outperforms the model-free agents overall by converging
quickly, but learns a worse final policy.

In future work we intend to study how learned world models can
be used for various forms of transfer learning in multi-objective de-
cision making problems. For instance, we would like to study how
the world model learned when acting with a linear utility function
can be used to transfer to non-linear utility functions. This might
require new exploration strategies, to improve the world model in
parts of the environment that are relevant for non-linear utility func-
tions but not for linear ones. Future work should also studymethods
and hyperparameters for training with small datasets while main-
taining robustness. Finally, experiments should be conducted on
more and harder benchmark problems.
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