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ABSTRACT
Optimizing urban transportation networks can improve the lives
of millions of citizens worldwide. The problem of generating new
transportation lines, which maximize the levels of satisfied travel
demand is, however, a complex endeavor. This problem is known as
the Transport Network Design Problem (TNDP) and it is NP-hard.
On top of efficiency concerns, it is nowadays fundamental to also
consider the development of transportation systems that contribute
to alleviating social inequalities. Which technical approaches can
we employ to tackle both efficiency and fairness in TNDP? In this
paper, we explore Multi-Objective Reinforcement Learning (MORL)
as a tool to design efficient and fair transportation networks. We
start by formulatingMulti-Objective transport network design prob-
lems as Multi-objective Markov decision processes. We highlight
the main challenges of introducing multiple objectives in TNDP.
Finally, we describe novel methodologies that can be used to tackle
this problem. With this paper, we hope to start a line of research
that can provide suitable decision support for TNDP, by providing
alternative solutions with different trade-offs between (different
metrics of) fairness, efficiency, and cost.

1 INTRODUCTION
Developing efficient and inclusive transportation systems is a fun-
damental challenge of urban planning, whose success can improve
the life quality of millions of citizens [13]. Computationally, the
problem of designing an efficient transportation network — i.e., gen-
erating transportation lines that maximize satisfied travel demand—
has been formalized through the so-called transport network design
problem (TNDP) [6]. Although having the potential to positively
impact the lives of many people, solving TNDPs is challenging:
The transport network design problem (TNDP) is an NP-hard opti-
mization problem and advancing methods to solve it is an active
research line in computer science and operations research [6].

TNDP has traditionally been addressed through integer optimiza-
tion [12], simulated annealing [5], genetic [19] and other, heuristic-
based algorithms [9, 26]. These methods, while successful, require
a long list of expert-derived constraints and are hard to generalize.
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Researchers have to limit the search space (e.g. by pre-defined corri-
dors and candidate stations) to tackle intractability. Recently, Deep
Reinforcement Learning (Deep RL) models have been proposed
that outperform previous approaches in satisfied demand, with-
out the need to specify multiple constraints [30]. Given the large
state-action spaces considered, Deep RL can further contribute to
devising scalable and generalizable solutions to the TNDP: indeed,
it was recently demonstrated to achieve state-of-the-art results in
terms of optimizing transportation demand (i.e., efficiency) [30].
This, combined with its generalizability capabilities, has made it a
prominent method for various real-world optimization applications
[11, 16, 31].

Despite Deep RL leading to promising results in efficiency for
the TNDP, dealing with fairness issues has only recently started to
be explored. In particular, it has been shown that traditional TNDP
optimization, which focuses on efficiency, can lead to solutions
that disproportionately benefit the societal groups with the highest
mobility, while ignoring other, less advantaged groups [15]. Such a
design approach might increase average efficiency but can also lead
to further enhancing existing patterns of inequality and segregation
in cities [17, 18]. It is therefore crucial to look beyond maximiz-
ing efficiency and consider solutions that offer desirable trade-offs
between multiple objectives when designing public transportation.

In this work-in-progress paper, we propose studying fairness
in transportation network design via a multi-objective rein-
forcement learning approach. We argue that fairness is a multi-
faceted notion that cannot be tackled using a single, scalar utility
and propose a formalization of the problem as a Multi-Objective
Markov Decision Process (MOMDP). We discuss the main chal-
lenges with this formulation and assess the usage of novel methods
for tackling it in two real-world environments: Xi’an, China, and
Amsterdam, Netherlands (Figure 2).

Multiple objectives in TNDP are not an entirely new concept.
In fact, the original problem can arguably be classified as a multi-
objective optimization problem, in which the cost of the operator
and the user are taken into account. Previous works have stud-
ied the trade-offs between these two objectives, using heuristics
[4], meta-heuristics [14] and genetic algorithms [1, 19]. However,
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Figure 1: To clarify the multiple conflicting objectives in a TNDP environment, we define a toy example. We consider two
groups (panel B) with different origin-destination (OD) demands (panel A). We show that different optimization choices can
lead to different results for the two groups. Panel C represents possible new transportation lines and Panel D depicts how such
solutions fare in terms of satisfied OD flows for the two groups and outlines the possibly optimal solutions. The yellow line
(circle) leads to the highest satisfied demand for group 2, while the pink one (triangle) is the best for group 1, the pink triangle
represents a different optimal trade-off between the two, while the red square represents a solution that is dominated by the
pink triangle one. We expect that building a model that learns the different trade-offs leads to useful decision support for
transport planners.

this approach has yet to be comprehensively extended to study-
ing fairness between groups. In this paper, we adopt recent rein-
forcement learning formulations and propose extensions and meth-
ods to tackle group-based fairness as multiple-objectives [15, 30].
Specifically, we will consider how different societal groups ben-
efit from the generated transportation line, in terms of satisfied
origin-destination mobility demand.

The remainder of the paper is structured as follows: first, we
state the multi-objective transport network design problem (Section
2) and formulate it as a Multi-Objective Markov Decision Process
(Section 3). We continue by presenting environments to apply the
formulation (Section 4) and outlining the main challenges of intro-
ducing multiple objectives to the TNDP (Section 5). We conclude
by describing novel methodologies that can be used to tackle the
problem (Section 6).

2 TRANSPORT NETWORK DESIGN PROBLEM
(TNDP)

We consider the TNDP where the goal is to generate a graph
𝐺 (𝑁, 𝐸), which represents a transport line, where 𝑁 (nodes) are lo-
cations to place stations on, and 𝐸 (edges) are connections between
them. Depending on the modality of the line, the graph can be di-
rected (bus, tram, etc.) or undirected (metro, subway, etc). Since we
deal with metro networks, the graph is undirected — as in previous
works [30].

The city is represented as a two-dimensional grid environment
𝐻𝑛×𝑚 . The traditional optimization objective is defined as the total
captured travel demand of the created line, expressed as a function
𝑈𝑜𝑑 of the estimated Origin-Destination (OD) matrix [7, 8], where
{𝑈𝑜𝑑 }𝑖 𝑗 represents travelingmagnitude from location 𝑖 to 𝑗 . The OD
matrix is considered deterministic and does not change during the
episode. The total number of selected locations is hard-constrained
by a construction budget 𝐵, a station number limit 𝑇 , and a set of
direction-based constraints, so as to avoid unorthodox line shapes

[30]. We use 𝑈𝑜𝑑 (𝐺 (𝑁, 𝐸)) to denote the demand covered by the
new transportation graph 𝐺 . This is calculated by summing the
origin-destination demand between all nodes in the graph:

𝑈𝑜𝑑 (𝐺 (𝑁, 𝐸)) =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

{𝑈𝑜𝑑 }𝑖 𝑗 , 𝑖 ≠ 𝑗 (1)

Note that despite the transport line being represented as a graph, the
environment in which we apply the problem is grid-based. Nodes
are grid cells and edges are connections between them. Given the
above, the problem is formalized as follows:
Find the transportation graph 𝐺 (𝑁, 𝐸), such that:

max 𝑈𝑜𝑑 (𝐺 (𝑁, 𝐸))
s.t. 𝑐𝑜𝑠𝑡 (𝐺) ≤ 𝐵

|𝑁 | ≤ 𝑇
(2)

Where:
• 𝑁 ⊆ 𝐻𝑛×𝑚

• 𝐸 = {(ℎ𝑖 , ℎ 𝑗 ) : ℎ𝑖 , ℎ 𝑗 ∈ 𝑁,ℎ𝑖 ≠ ℎ 𝑗 }
In the traditional objective, the optimizer learns to maximize

𝑈𝑜𝑑 , the sum of satisfied mobility flows captured by the created line.
However, this efficiency-based optimization objective does not ad-
dress how the benefits of the newly designed line are distributed be-
tween different groups. By groups here we refer to socio-economic
divisions such as income, education, or development index. Opti-
mizing for efficiency can lead to large disparities between low and
high-developed areas [15].

To address this we formulate a multi-objective problem, in which
we introduce the group-based satisfied mobility flow. We define a
set𝐴, which represents 𝑑 different groups based on socio-economic
indicators, such as income, development index, or education. Each
cell ℎ ∈ 𝐻𝑛×𝑚 of the environment is then associated with a group
𝑎 ∈ 𝐴.

Further, we define the group-based satisfied mobility flow ob-
jective 𝑈 𝑎

𝑜𝑑
, 𝑎 ∈ 𝐴. The optimization formulation in Equation 2



is not sufficient under these conditions, as we are not looking to
maximize a single objective, but rather to provide the trade-off
and allow for different decisions. We, therefore, re-formalize it as a
multi-objective optimization problem in Equation 3.

max
{
𝑈
𝑎1
𝑜𝑑

(𝐺 (𝑁, 𝐸)), · · · ,𝑈 𝑎𝑑
𝑜𝑑

(𝐺 (𝑁, 𝐸))
}

s.t. 𝑐𝑜𝑠𝑡 (𝐺) ≤ 𝐵

|𝑁 | ≤ 𝑇

(3)

If a (possibly non-linear) utility function for the decision-maker is
known, the problem can again be solved using the aforementioned
techniques. If, however, the preferences are unknown, the multi-
objective formulation will in general not lead to a single optimum.
This is because what may be optimal for one group can be bad for
a different group. As such, the proposed formulation leads to a set
of non-dominated solutions from which a potential decision-maker
may choose. To aid a decision-maker in this situation, previous
work has studied support systems for multi-objective sequential
decision-making problems [32].

When considering multiple conflicting objectives, it is not im-
mediately obvious which solution to choose.

3 MOMDP FORMULATION
To study the Multi-Objective TNDP using Reinforcement Learning,
we first adopt the formulation of Wei et al., which transforms it into
a sequential decision-making process. Following this framework,
there is a single agent that generates a solution (i.e. a transport line)
by taking sequential actions, receiving a reward and adapting its
policy based on it. In particular, at every time step 𝑡 , the agent selects
a cell ℎ ∈ 𝐻𝑛×𝑚 to place a station on. At the end of the episode, the
sequence of selected cells is the generated transport graph𝐺 (𝑁, 𝐸),
where each cell is a node, and there exists an edge between every
two sequential nodes. Note that actions are further constrained
by feasibility rules that dictate the direction, by preventing the
agent from selecting a backward cell or forming unusual metro line
shapes (e.g. meandering) [30]. For simplicity, we omit the feasibility
rules from the following discussion.

Formulated as a Multi-Objective Markov Decision Process
(MOMDP) ⟨S,A,P, ®R⟩, the Transport Network Design Problem is
characterized as follows:

• S: the state; sequence of selected grid cells.
• A: the action; selected cell at each time step.
• P : S ×A ×S → [0, 1]: the state transition function; in this
problem it is deterministic.

• ®R : S×A×S → R𝑑 : the vectorial reward the agent receives
for taking actions A; 𝑑 = |𝐴|, where d corresponds to the
number of groups for which a group-based satisfied mobility
flow objective (Equation 3) has been defined.

At each time step, actions are taken according to a policy 𝜋 ∈
Π, where 𝜋 : 𝑆 × 𝐴 → [0, 1]. In the single-objective case, the
optimization goal is to find the optimal policy 𝜋∗, that maximizes
the expected cumulative reward, which is represented by the value
function 𝑉 𝜋 :

𝑉 𝜋 = E

[
𝐻∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1 |𝜋, 𝑠0

]
(4)

Where 𝑠0 is the initial state and 𝐻 is the (finite) horizon, which is
constrained by 𝐵 and 𝑇 . For TNDP, the discount factor 𝛾 is consid-
ered constant and will be omitted in future references. The policy-
optimization objective can thus be defined as:

𝜋∗ = argmax
𝜋

𝑉 𝜋 (5)

This is helpful in that it creates a complete ordering of policies,
making comparison and selection a straightforward process [10].

In contrast, on multi-objective cases, the value function is a
vector itself, with as many dimensions as there are objectives. This
leads to a vector-valued value function:

®𝑉 𝜋 = E

[
𝐻∑︁
𝑡=0

𝛾𝑡 ®𝑟𝑡+1 |𝜋, 𝑠0

]
(6)

Comparing policies is therefore not straightforward, and different
decision-makers may prefer different policies. As such, we should
compute a coverage set, i.e., a set of alternative policies containing
an optimal policy for any preference function that a decision-maker
might have [10, 23]. A common choice for such a coverage set is a
Pareto front (or possibly a smaller Pareto coverage set), which is
optimal if we do not know anything about the preference function
other than that it is monotonically increasing in all objectives, and
policies should be deterministic. A different possible choice that
could be natural in a TNDP setting is a Lorenz optimal set [20],
which is a subset of the Pareto front that incorporates the notion
that if we can ‘transfer value’ from an objective –which corresponds
to the utility of a group in a TNDP – that has a higher value to an
objective with a lower value, decreasing the sum over all objectives,
this ought to be preferred. In this sense, it implements a rather
minimal notion of fairness.

In Figure 1 (Panel D), we show three Pareto-efficient solutions,
eachwith different values for each group. Depending on the decision-
makers, any of these three might be preferred. Therefore, all three
could be selected to be implemented, and as such should be pre-
sented to the decision-maker. The metro line corresponding to the
red square in Figure 1 cannot be optimal, and should therefore be
removed before presenting the possible solutions to the decision-
maker.

4 ENVIRONMENTS
We provide two real-world case study environments, based on
the cities of Amsterdam (Netherlands) and Xi’an (China). Figure 2
presents these environments.

Amsterdam environment. We generate and release the Amsterdam
environment. The city is split in a 𝐻35×47 grid, with equally sized
cells of 0.5𝑘𝑚2. Since GPS data are not available for Amsterdam, we
estimate the origin-destination travel demand using the recently
published universal law of human mobility, which states that the
total mobility flow between two areas 𝑖, 𝑗 depends on their distance
and the visitation frequency [24]. It is calculated as follows:

𝑂𝐷𝑖 𝑗 = 𝜇 𝑗𝐾𝑖/𝑑2𝑖 𝑗 ln(𝑓𝑚𝑎𝑥/𝑓𝑚𝑖𝑛) (7)

where𝐾𝑖 is the total area of the origin location 𝑖 ,𝑑2𝑖 𝑗 the (manhattan)
distance between 𝑖, 𝑗 and 𝜇 𝑗 is the magnitude of flows, calculated
as follows:

𝜇 𝑗 ≈ 𝜌𝑝𝑜𝑝 ( 𝑗)𝑑2𝑗 𝑓𝑚𝑎𝑥 (8)



Figure 2: Two real-world environments for the MO-TNDP. On the left, the city of Amsterdam is split into square cells of 0.5𝑘𝑚2

each, creating a 35x47 grid. Each cell is associated with an aggregate origin-destination demand (blue colormap, panel A) and a
house price quintile (panel B). On the right side, the same plots are shown for the city of Xi’an, which is split into a 29x29 grid
(cell size 1𝑘𝑚2). Note that in this environment we also represent the two metro lines already existing in the city. MO-TNDP can
be solved in both empty and environments with pre-existing lines.

We estimate the flows for a full week, by setting 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 to 1/7
and 7 respectively. Since in our case the grid cells are of equal size,
𝐾 can be omitted from the calculation.

Every cell is associated with an average house price, which we
take from the publicly available statistical bureau of The Nether-
lands (CBS)1 dataset. Groups are the five quintiles of the price. We
ran experiments on an empty environment (no previously existing
lines).

Xi’an environment. The Xi’an environment was generated and re-
leased to the public by Wei et al.2 The city is split in a 𝐻29×29 grid,
with equally sized cells of 1𝑘𝑚2 (this is because Xi’an is a much
bigger city). An origin-destination demand matrix was created us-
ing GPS data from 25 million mobile phones, whose movements
were tracked during a period of one month. Each cell is also asso-
ciated with an average house price index, which we use to split
the grid into five equally sized quintiles. This represents a setting
where detailed data on mobility demand is available (contrasting
with the Amsterdam case study before). We ran experiments on an
environment with two previous existing metro lines.

We chose the average house price as a proxy for the development
of a neighborhood, as it is universal and available for multiple cities
without raising privacy concerns.

5 CHALLENGES IN MULTI-OBJECTIVE TNDP
Designing public transportation with fairness considerations poses
multiple challenges, both on technical and decision-making aspects.
In this section, we outline the most important ones.

5.1 Unknown Decision-Maker Preference
The biggest advantage of using Reinforcement Learning to tackle
optimization tasks like the TNDP is its generalization properties
[3, 15]. A single agent can learn on one environment and be used
to generate lines on a different environment.

1https://www.cbs.nl/nl-nl/maatwerk/2019/31/kerncijfers-wijken-en-buurten-2019
2https://github.com/weiyu123112/City-Metro-Network-Expansion-with-RL

However, given the nature of public transportation design, know-
ing the optimal preference of the decision-maker beforehand is
impossible. Different cities have different objectives and acceptable
trade-offs, while there are multiple notions of fairness in TNDP
[2, 15]. For example, one might be interested in building a line that
maximizes the benefits of the most-disadvantaged group, according
to Rawls’ theory of justice [2]. Their utility function is defined as
follows [15]:

max𝑈 𝑎𝑚𝑖𝑛

𝑜𝑑
(𝐺 (𝑁, 𝐸)) (9)

Where 𝑎𝑚𝑖𝑛 is the most disadvantaged group. For example, in cases
where some transportation lines exist already, 𝑎𝑚𝑖𝑛 can be defined
as 𝑎𝑚𝑖𝑛 = argmin

𝑎∈𝐴
𝑈𝑜𝑑 , meaning the group with the lowest satisfied

OD flows before the line was created.
In another example, a decision-maker might decide it is best to

follow an equal-sharing notion, where all groups should receive
an equal share of the added benefits [2]. This can be expressed as
minimizing the disparities in satisfied ODs between all groups [15]:

min
∑︁
𝑖

∑︁
𝑗

|𝑈 𝑎𝑖
𝑜𝑑

(𝐺 (𝑁, 𝐸)) −𝑈 𝑎 𝑗

𝑜𝑑
(𝐺 (𝑁, 𝐸)) |, 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗 (10)

Evidently, while the above notions can arguably both be char-
acterized as fair, they lead to completely different solutions. This
disparity is illustrated in Figure 1 (D); the pink triangle follows an
equal sharing utility while the blue arrow a Rawlsian utility.

5.2 Non-Linear Decision-Maker Preference
In the previous section, we discussed the challenges that arise
from the lack of prior knowledge on the utility function of the
decision-maker. We offered some examples, based on well-known
notions of social good. Should the acceptable notion be known
beforehand, then the multi-objective problem is reduced to a single
objective, with a scalarized reward, using functions similar to those
we presented. However, in many cases, utility functions are non-
linear, and better approximation methods need to be applied [21].
This is especially the case when considering group fairness, where



a high control over the balance of the utilities of different groups is
desired.

A common case of a non-linear utility function is the General-
ized Gini Index (GGI), which is a measure used to take decisions
that maximize a weighted sum of utilities, by giving more weight
to those with lower utilities. The GGI is very versatile and general-
izable; it can be used to achieve a wide range of fairness notions
[15, 25] and is defined in Equation 11.

𝐺𝐺𝐼𝑤 =
∑︁
∀𝑎∈𝐴

𝑤𝑑𝑢
𝑎
𝜎 (11)

Where 𝜎 is a permutation that sorts the utilities 𝑢𝑎, 𝑎 ∈ 𝐴 in de-
scending order and weights 𝑤𝑑 are non-increasing weights, i.e.,
𝑤1 > 𝑤2 > ... > 𝑤𝑑 . In the context of transportation network
design, the GGI can be used to generate lines that achieve equity
or equality in satisfied origin-destination flows between all defined
societal groups.

The GGI has been used to balance rewards between groups in the
TNDP, but applying single-objective optimization [15]. To achieve
this, the reward is scalarized using the index at every time step.
However, this approach does not optimize the non-linear GGI. In
contrast, to achieve the non-linear GGI optimization, traditional RL
algorithms like Q-Learning and Policy Gradient need to be modified.
In Section 6.1 we propose methods to tackle this challenge using
multi-objective policies.

5.3 Large Action Space
Q-Learning has been effectively used to tackle a wide range of
reinforcement learning problems, either on single or multiple objec-
tives [29]. Formalized as a sequential decision-making process, the
TNDP problem is reduced to selecting a grid cell to place the next
station on, at every time step. This leads to a very large action space
A. In the real-world examples we propose in this paper (Figure
2), the cities of Amsterdam and Xi’an are divided into grids of size
35 × 47 and 29 × 29 respectively. Station distance and shape-based
constraints are being applied to accommodate feasible transport
line solutions, but in order to ensure model generalizability, they
are preferably applied on the output of the policy [15, 30]. This
poses a major computation challenge for applying multi-objective
Q-learning to the TNDP and can make it intractable in large envi-
ronments.

6 TACKLING THE MULTI-OBJECTIVE TNDP
In this section, we discuss methodologies for tackling the Multi-
Objective Transport Network Design Problem. Specifically, we out-
line single-policy (6.1) and multi-policy learning (6.2). Note that
this is not an exhaustive set of methodologies.

6.1 Single-Policy Methods
When the preferences of the decision-maker are known exactly,
it may be possible to employ methods from single-objective RL.
Specifically, when the utility function of the decision-maker is
linear, the MOMDP can be reduced to an equivalent MDP [23].
When utility functions are non-linear, however, this is generally
not possible [22]. Fortunately, the TNDP can be represented as

a purely deterministic MOMDP, which can still be reduced to a
single-objective MODMP by augmenting the state space [27].

A concrete non-linear preference function that a decision-maker
may aim to optimize in the TNDP is the generalized Gini index
(Equation 11). Assuming a vectorized ®𝑄𝜃 ∈ R |𝐴 | function parame-
terized by 𝜃 , the objective is defined as follows:

®𝑄𝜃 = 𝑟 + 𝛾 ®𝑄𝜃 ′ (𝑠′, 𝑎∗) (12)

Where 𝑎∗ = argmax
𝑎′∈A

𝐺𝐺𝐼𝑤 (𝑟 +𝛾 ®𝑄𝜃 ′ (𝑠′, 𝑎′)). It is important to note

here that this formulation violates the additive returns assumption
of the Bellman equation for non-linear ®𝑄 [10]. Therefore, it is nec-
essary to extend the state, concatenating the previously received
rewards. Nevertheless, this approach is intractable in problems with
large action spaces, like the TNDP.

Alternatively, one can use a policy-search approach, where a
mapping 𝜋𝜃 from states to actions is learned, without relying on
Bellman returns. Recently, a novel method was proposed to tackle
fairness in MO problems using policy gradient [25]. It is defined as
follows:

∇𝜙𝐺𝐺𝐼𝑤 (𝐽 (𝜋𝜙 ) = ∇) = 𝑤⊺
𝜎∇𝜙 𝐽 (𝜋𝜙 ) (13)

Where 𝐽 (𝜋𝜙 ) ∈ R |𝐴 | and 𝜎 is the sorting permutation over 𝐽 . 𝐽 is
used here to associate the objective with the original policy-gradient
definition.

Siddique et al. leverage Equation 13 to develop a GGI-based
Advantage Actor Critic (A2C) and Proximal Policy Optimization
(PPO). They apply their methods in two optimization domains and
achieve a fair division of outcomes between different objectives. We
propose to use this method to tackle the single-policy MO-TNDP,
because of its efficiency on large action spaces.

6.2 Multi-Policy Methods
A complicating factor in the proposed multi-objective formulation
is that the environments may have a large state and action space
as well as a relatively high number of objectives, depending on
the decision-maker’s criteria. This makes popular tabular meth-
ods such as Pareto Q-learning [29] or scalarized multi-objective
Q-learning [28] intractable. Recently, however, a novel deep RL
method called Pareto Conditioned Networks (PCN) was proposed
for multi-objective RL in deterministic environments [21]. We
believe that this algorithm can be leveraged to solve the multi-
objective TNDP.

PCN is a multi-policy algorithm for sequential decision-making
that concurrently learns which policies lead to non-dominated so-
lutions and how to execute these policies again when prompted. In
addition, it leverages quality metrics that ensure the learned Pareto
front represents a wide range of diverse solutions. As such, the
resulting set of policies may be used to effectively inform decision-
making.

PCNs attempt to stabilize learning using a supervised method
to parameterize the policy, instead of traditional TD-learning. The
training dataset is dynamic and generated via a collection of trajec-
tories

〈
𝑠, ℎ̂, R̂

〉
it encounters while learning; 𝑠 represents the state

and R̂ the reward obtained in horizon ℎ̂. The action 𝑎𝑖 ∈ A taken
at time step 𝑖 is used as the label. A datapoint ⟨𝑠𝑡 , ℎ𝑡 , 𝑟𝑡 ⟩ is created
for each time step in the (finite) trajectory. The policy 𝜋 is updated



using a cross-entropy loss function:

𝐻 = −
∑︁
𝑎∈A

𝑦𝑎𝑙𝑜𝑔𝜋 (𝑎 |𝑠𝑡 , ℎ𝑡 , 𝑟𝑡 ) (14)

PCN learns to generate solutions on the Pareto front by applying
a pruning function to keep only tuples that lead to non-dominated
returns on the different objectives. This process ensures that the
boundaries of the coverage set are constantly being extended. PCNs
have been proven to perform better than baselines even in settings
with a large number of objectives, which is important for the MO-
TNDP [21].

7 CONCLUSION
In this work-in-progress paper, we proposed a Multi-objective Rein-
forcement Learning formulation for studying fairness in the Trans-
port Network Design Problem. We provided environments and
outlined the most important challenges in applying the formula-
tion. Finally, we proposed state-of-the-art methodologies for single
and multiple policies to tackle the problem. In the future, we plan
to run experiments based on these algorithms.
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