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ABSTRACT
In a multi-agent setting, altruistic cooperation is costly yet socially
desirable. As such, reinforcement learning agents can struggle to
converge to efficient, cooperative policies. Indirect reciprocity (IR),
whereby agents are given a chance to discriminate based on prior
actions of others, is a mechanism that can stabilise cooperation.
IR has been used to investigate the reputation rules that stabilise
cooperation in homogeneous populations. However, in heteroge-
neous social systems, discrimination based on prior actions can
supplement discrimination based on arbitrary (protected) charac-
teristics, leading to unfair outcomes. In this work-in-progress paper,
we propose a new model to investigate cooperation and fairness in
systems of indirect reciprocity. As in previous IR literature, agents
asynchronously play a donation game in which reputations and
strategies co-evolve. Strategies and reputation assignment can how-
ever discriminate based on static group labels. We analyse a multi-
agent system where strategies are adopted through reinforcement
learning (Q-learning). We aim at identifying the settings where
both cooperation and fairness emerge. In our preliminary analysis,
we show that, in line with previous literature, imposing specific
social norms (e.g., stern-judging or simple standing) allows cooper-
ation to be learnt. Cooperation is not always fair, though: adding
a group identity layer opens the door for inequality to emerge, as
we highlight in some exemplifying scenarios. We plan to use this
framework to comprehensively analyse intervention mechanisms
that induce learning both high levels of cooperation and fairness.
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1 INTRODUCTION
Cooperation is a fundamental research topic across disciplines [6,
20]. While cooperative populations tend to thrive, individuals are
tempted to act selfishly, receiving the benefits of others’ cooperation
without exerting the effort themselves. The conundrum underlying
this interaction is evident if we formally translate it into the so-
called donation game, whereby a donor decides whether to pay a
cost 𝑐 to offer a benefit 𝑏 to a recipient. Assuming that 𝑏 > 𝑐 > 0,
this simple interaction illustrates the ubiquitous social dilemma of
altruistic cooperation. Understanding how to engineer cooperation
in these settings is a fundamental scientific challenge [18, 20] and
a key frontier in artificial intelligence research [4, 17].

In artificial intelligence, particularly in the context of distributed
and multiagent systems, research has focused on the design of
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autonomous systems where cooperation is stable [7]. Without ex-
plicitly designing to encourage cooperation, the individual costs of
cooperating can cause free rider problems and cooperation to sub-
sequently vanish over time. In such contexts, it is fundamental to
understand how adaptive agents can learn, over time, to cooperate.
The cooperation mechanisms observed in human societies [13, 20]
can accordingly inspire formal methods to stabilise cooperation in
groups of artificial agents.

Indirect reciprocity. One particularly effective mechanism to sus-
tain cooperation among humans is indirect reciprocity (IR) [14, 16,
25]. Within such a framework, agents are assumed to strategically
discriminate, and provide benefits, based on the social standing
of others which encapsulates the social judgements of their previ-
ous actions. A central challenge in this domain is thereby under-
standing how reputations should be assigned for cooperation to
be maximised. Previous work has shown that only a small set of
social norms (i.e., rules followed to assign reputations) are able to
stabilise cooperation in populations of homogeneous agents [15].
These norms have also been tested in the context of reinforcement
learning agents [1].

In general, prior works also assumed that agents are only dis-
tinguished through their actions and reputations. In real settings,
however, agents may be distinguishable by certain traits that give
rise to specific group identities. This raises the question of how
discrimination based on reputations might be affected by discrim-
ination based on group identities. Tag-based cooperation [2, 28]
and indirect reciprocity have been studied independently as mech-
anisms of cooperation, but the implications of combining the two
are yet unexplored. The importance of such combinations has been
raised in reports such as Efferson and Fehr [5]. This paper is re-
lated to similar efforts to combine cooperation mechanisms (such
as direct and indirect reciprocity [26]) by combining reputation
and group (or tag) based cooperation. The connection between
reputation-based and group-based discrimination has been recently
discussed in the context of social psychology [10, 21] and evolu-
tionary biology [27]. Nevertheless, it remains under-explored how
reputations and group identities might affect cooperation in groups
of reinforcement learning agents.

1.1 Contribution
With this work-in-progress paper, we aim to show, through an ex-
ploratory analysis, how unfair discrimination can evolve in groups
of reinforcement learning agents. By unfair cooperation we mean
cooperation through discrimination based on an arbitrary group
label. These results will be used as a basis to test new mechanisms
that can sustain fair cooperation, which only discriminates based
on prior actions by agents.
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We develop a new model where agents play a donation game
in two different roles (donor and recipient), and receive payoffs
according to the rules introduced above (cooperation cost 𝑐 by a
donor, and cooperation benefit 𝑏 when received by a recipient; no
costs nor benefits are distributed when a donor decides to defect).
We start by noting that applying reinforcement learning in this
context faces a fundamental challenge: agents only have costs when
playing in the role of donor, and benefits of acting cooperatively
are only accrued at a later stage, when playing as a recipient. As
we show, this requires re-formulating the way by which rewards
are used to update Q-values (in the context of Q-Learning).

Furthermore, we assume that agents can discriminate both based
on reputation and an agent’s arbitrary group “label”. This label
is randomly assigned to each agent in the beginning of our sim-
ulations, such that a predetermined proportion of agents in the
population have each label. Contrary to reputations, which are
dynamic, group labels are static to each agent regardless of their
actions. Such a label may be informative about their propensity
or ability to cooperate through heterogeneity in the likelihood of
committing errors, or be a “red herring” and simply a distraction
to stifle cooperation or cause unfairness.

1.1.1 Preliminary findings. In the preliminary results we present,
we are able to show that, as in prior works on evolutionary game
theory [8, 15, 19, 22, 24, 25, 29], in the context of reinforcement
learning there are also so called “leading” rules to assign reputa-
tions (i.e., social norms) that allow agents to learn cooperation. By
introducing group identities, however, we show that agents can
learn more quickly to cooperate with members of a certain group,
even if the norm governing the population is group-agnostic, when
one group is a majority. On the other hand, we show that intro-
ducing norms that assign reputations based on group identities
(e.g., determining that a good reputation is only deserved when
cooperation happens with a recipient belonging to the same group
as the donor) leads to unfair cooperation. These results will provide
the basis to investigate the following:

(1) Group-dependent norms to allow cooperation to evolve at
equal rates regardless group identity,

(2) Mechanisms to reinstate universal cooperation even in the
presence of unfair group-dependent norms.

1.1.2 Structure. The paper is structured as follows: first, in the
remainder of this section, we discuss previous work related to coop-
eration and indirect reciprocity in humans and multi-agent systems.
In section 2 we introduce our model of indirect reciprocity with
heterogeneous agents and group labels, and perception and execu-
tion errors. In section 3, we translate this model into a multi-agent
system where strategies are learned with a Q-learning approach. In
section 4 we show that the policies learned in the multi-agent model
are aligned with those predicted by previous theoretical models,
and that the multi-agent model provides additional insights into
the dynamics of learning. Finally, in section 5 we discuss the impli-
cations of our preliminary results so far and how we will develop
them in future.

1.2 Related Work
1.2.1 The cooperation dilemma. Explaining and inspiring coopera-
tion among humans is a fundamental research topic across disci-
plines [6, 18, 20]. In the field of AI, there is a growing interest in
expanding the ability for AI to interact with and contribute more
directly to society. In a recent commentary [4], the authors argue
that AI requires “social understanding” to achieve success in tasks
that require complex interactions such as navigating pavements,
financial markets, and online communication. Many tasks that AI
engage with also require cooperation with humans or other AI and
so recent works have explored mechanisms to help enable coopera-
tion. The proposed methods include introducing inequality-averse
agents who pro-socially punish defectors [9], intrinsic motivations
[11], an introspective self-play mechanism [1], or non-adaptive
agents playing a fixed pro-social strategy [1, 23].

1.2.2 Indirect reciprocity and multi-agent reinforcement learning.
Another recent paper which explores how indirect reciprocity (IR)
can be incorporated into Q-learning is Anastassacos et al. [1]. In-
stead of a norm being predetermined, the goal of the paper is to
examine how agents can establish an effective reputation mecha-
nism by themselves. To do so, they must collectively learn and come
to a consensus about both the social norm and the interpretation of
agents’ reputations. To aid in this, the researchers propose seeding
the population with fixed agents and introspective self-play, where
agents evaluate their own strategy against themselves. They find
that a combination of both mechanisms can sustain cooperation.

While our model also has Q-learning agents, one key difference
is the game being played. In the model of Anastassacos et al. [1],
players take on the role of donor and recipient simultaneously,
making learning more consistent and simpler than in our model. In
section 3.2 we discuss how we adapt Q-learning to the setting of
delayed rewards and how its impact can be seen in our observations.

Moreover, while the techniques used are similar, the focus of our
work is very different. While in Anastassacos et al. [1] the goal is
to internalise the reputation mechanism and examine its effects on
learning cooperation, we take the norm to be an external constant,
introduce another variable agents can discriminate with respect to,
and see how inequality can emerge in spite of cooperation.

1.2.3 Indirect reciprocity and group structured populations. Some
prior works studied IR in populations where agents explicitly be-
long to groups, through the lens of evolutionary game theory. In
this domain, Kessinger et al. [12] assume that different groupsmight
use different social norms and focus on the effect of different in-
formation broadcasting mechanisms, whereby information about
individuals can spread only between members of the same groups
or publicly (as in traditional models). Contrarily to the setting we
explore here, [12] assumes that strategies only discriminate based
on reputations and not group identity. The authors find that in such
systems cooperation ultimately depends on the rate of in/out-group
interactions and cooperation can collapse if information remains
within the same groups.

In a more recent work, also considering the interplay between
group-structured populations and reciprocity, Stewart and Raihani
[27] study how stereotypes might be formed through group reci-
procity: the authors find that stereotyping can lead to negative



(a) Diagram exemplifying an interaction between agents.
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(b) Walkthrough of the interaction in 1a.

Player Donor Recipient

Group Red Blue
Rel — Out-group (O)
Rep — Good (G)
Strategy 11002 (aka Disc) —
Act (O, G) = (0, 1) = 102 = 2

=⇒ 11002 [2] = 1 = C
Norm 110000112 (aka stern-judging)
Judgement (O, G, C) = (0, 1, 1) = 1102 = 6,

=⇒ 110000112 [6] = 1 = G

Figure 1: An illustration (1a) and tabular walkthrough (1b)
(using notation from Table 1 to denote group relations (Rel),
reputations (Rep), and actions (Act)) of an interaction between
two agents which is observed by a judge. The donor’s Strategy
determines the Action taken based on information about
the Groups of the Donor and Recipient, in this case their
relation to each other, and the Reputation of the donor. The
Judge then observes the Action and the information used to
determine it in order to assign the Donor a New Reputation
based on the society’s social norm. In this example, the donor
plays C, and the judge assigns the new reputation is G based
on the so-called stern-judging norm.

judgement bias in which individuals become pessimistic about the
willingness of out-group members to cooperate.

Although these works study dynamics of IR under reinforcement
learning [1] and dynamics of reciprocity associated with group iden-
tities [27] the combination of indirect reciprocity, group identity
and reinforcement learning remains under-explored. In this paper
we propose a model that contributes to fill this gap.

Table 1: Boolean encoding, names and abbreviations for in-
formation used by players and judges.

Boolean type abbrev. “False” value “True” value

Group relation Rel Out-group O In-group I
Reputation Rep Bad B Good G
Action Act Defect D Cooperate C
Group Blue Red

2 MODEL
We consider a well-mixed population where agents interact pair-
wise by playing a donation game. A donation game is characterised
by parameters 𝑏 and 𝑐 where 𝑏 > 𝑐 > 0, and has one player taking
on the role of donor, while the other is the recipient. The donor has
the opportunity to “cooperate”: paying a cost 𝑐 to confer a benefit
𝑏 to the recipient, who itself has no action to take.

Given that cooperation (referred to C) is costly to the donor,
defection (referred to as D) is the dominant strategy in the one-shot
form of this game. In order to encourage players not to play their
dominant strategy, donors’ strategies are allowed to discriminate
based on the current reputation of the potential recipient. This
reputation is binary, and is determined by an external judge who
examines the interactions between agents and determines in each
case whether the action taken by the donor should confer the donor
a good (G) or a bad (B) reputation.

Novel to this paper, we allow donors’ strategies to discriminate
based on the group identifier of their game partner, particularly,
whether their potential recipient is in their in-group (I) or out-
group (O). In this work we have two groups which we refer to as
“red” or “blue”, and these identifiers are unable to be changed once
assigned. Moreover, the proportion of red agents is a parameter
𝑝Red of our model with 𝑝Blue = 1−𝑝Red. For consistency we assume
that the red group is the majority in the population i.e. 𝑝Red > 0.5
but note that this decision is arbitrary.

The role of the judge is to update the reputations of donors after
each interaction. The judge determines the goodness of actions by
the social norm which governs the society (see Table 2 for examples
of norms). A social norm is a logical function𝑁 of the group relation
of the two individuals (O or I), the recipient’s reputation (B or G), and
the donor’s action (D or C), and returns the donor’s new reputation
(B or G). By encoding these inputs as Booleans, as detailed in Table
1, we can write:

𝑁 : Rel × Rep × Act→ Rep, (1)

𝑁 : {0, 1}3 → {0, 1} (2)

Noting that the domain and range of the function has a finite
number of elements, we can enumerate all possible social norms and
assign one a unique integer value. Take the input (I, B, D) = (1, 1, 0),
we can concatenate1 the digits to give 0112 = 3, and then store the
output of the norm at this input in the 3rd digit of a (0-indexed)
binary number 𝑁2 i.e. 𝑁 (1, 1, 0) = 𝑁2 [0012]. Enumerating all possi-
ble inputs from 0002 to 1112 gives rise to an 8-bit integer for every
possible norm. Figure 1 exemplifies a pairwise interaction.
1Concatenation reverses the order of the digits as the first digit of a number is on the
right, but the first dimension of an array is indicated by the left-most index.



2.1 Perception and execution errors
So far, agents have been infallible in their ability to assess informa-
tion and execute their intended action, but, similarly to the explo-
ration rate 𝜖 in Q-learning, Mistakes are both realistic and required
in an analytic IR model to ensure that the space of reputations is
properly explored2.

An agent subject to an execution error 𝜖 ∈ (0, 1) will play the
opposite strategy than they intended with probability 𝜖 . Expanding
on the assessment errors in [3], an agent with perception error
𝛿 = (𝛿Rel, 𝛿Rep) ∈ R2+ will, independently of other bits, perceive
the opposite information in a certain bit 𝑖 with probability 𝛿𝑖 .

2.2 Evolutionary stability
Given the model introduced above, a natural question one can pose
is: Given a specific norm, which strategies are more likely to end
up being played by agents? One way this can be answered is with
evolutionary game theoretical (EGT) tools. A key concern of EGT
is that of the evolutionary stability of strategies: as agents play the
donation game, they gain and lose utility based on their strategy
and its impact on their reputation. Assume that strategies 𝑆Red
and 𝑆Blue have proliferated the entire incumbent population of red
and blue agents respectively, and that the population is governed
by social norm 𝑁 . By calculating the expected utility of a player
of both groups playing their respective strategy (𝑆Red or 𝑆Blue),
we can determine whether a random strategy mutation in either
group could outperform the incumbents of that group. One can
derive the expected utilities of incumbents and mutants and deter-
mine whether the norm-strategy-strategy triple (𝑁, 𝑆Red, 𝑆Blue) is
an evolutionarily stable state (ESS).

Stronger than the traditional Nash equilibrium, a strategy 𝑆𝐼 is
evolutionarily stable on the condition that if any alternative strategy
𝑆𝑀 arises in a group that 𝑆𝐼 has proliferated and that the proportion
of agents playing this alternative is sufficiently small, then this
alternative strategy will performworse than the incumbent strategy
𝑆𝐼 and die out. We say that a triple is an ESS if both of its strategies
are evolutionarily stable.

While EGT and an ESS analysis is informative in terms of which
strategies are more or less stable under each norm, we still need to
understand 1) how prevalent each equilibrium point is and 2) how
likely a population of learning agents is to converge to a certain
ESS. For both purposes, we can use reinforcement learning.

3 REINFORCEMENT LEARNING MODEL
Rather than learning through imitation found in typical EGT mod-
els, it is interesting to examine whether a finite population of sto-
chastic agents whose strategies are learned over time through inter-
actions would converge to cooperative sets of strategies (eventually
the same states forming ESS strategies).

3.1 Obstacles to learning
Beyond the difficulty inherent to agents simultaneously learning
to coordinate, previous IR work has shown that, even in finite
populationmodels with imitation-based learning, larger exploration
rates causes a breakdown in cooperation [24]. This has implications
2Execution errors must be strictly non-zero to satisfy the existence and uniqueness
conditions of solutions to the reputation dynamics equations in section 2.2.

for any reinforcement learning (RL) approach, where exploration
is initially very common as it is necessary for learning the quality
of an action in a given state.

Another potential source of difficulty is the delayed nature of
rewards in indirect reciprocity, as the rewards of acting as a donor
are only later (and indirectly) obtained as a recipient. The problem of
learning with sparse and delayed rewards is a well-known challenge
in reinforcement learning. Delayed rewards in RLmodels with some
stochastic aspect can cause uncertainty in the attribution of utility
to actions e.g. how to know that some actions lead to a goal if it is
not clear how the goal is reached? Even in deterministic systems,
delayed rewards tends to lead to slower learning and therefore more
exploration making cooperative equilibria in IR models less stable.

In the case of our model, actions are only taken by donors, and
they can only understand the effects of their actions in subsequent
interactions where they are the recipient. This means that, without
sufficient exploration permitted, an initially cooperative agent could
play as a donor multiple times in a row and reinforce the idea
that cooperating is a costly endeavour which provides less utility
than defecting. In this case the agent would converge towards a
policy of unconditional defection (known as AllD), which is always
stable and has a larger basin of attraction the smaller the level of
exploration [24]. However, the fact that reputations are memoryless
in the sense that they are overwritten by actions and we don’t
allow for strategies that take an agent’s previous reputation into
account (as in [25]) the current state (information) in our model
has no implications on past or future states. This means utility will,
in absence of perception errors, be attributed to the correct action.

3.2 Q-learning for IR Agents
With this in mind, we carefully apply a Q-learning algorithm similar
to [1] . Action selection is standard: at each encounter, a donor’s
policy 𝜋 chooses the best action given the information about the
recipient with probability 1−𝜖 , and chooses either D or C uniformly
at random 𝒰({C, D}) otherwise i.e.

𝜋 (𝑠) =
{
argmax𝑎∈{C,D} 𝑄 (𝑠, 𝑎), with probability 1 − 𝜖
𝒰({C, D}), with probability 𝜖

(3)

Following a typical tabular Q-Learning approach, each agent
maintains a 2 × 4 Q-table where 𝑄 (𝑎, 𝑠) is the Q-value associated
with action 𝑎 ∈ {0, 1} subject to information 𝑠 ∈ {0, 1, 2, 3} = {𝑖 𝑗2 :
𝑖 ∈ Rel, 𝑗 ∈ Rep}. After an interaction, whether or not a donation
occurs, the Q-table of both players is updated by the equation

𝑄 (𝑎, 𝑠) ← 𝑄 (𝑎, 𝑠) + 𝛾 [𝜇 −𝑄 (𝑎, 𝑠)] (4)
where 𝜇 is the (possibly negative or zero) utility incurred in

the interaction and 𝛾 ∈ (0, 1) is the learning rate. A donor who
cooperates will receive 𝜇 = −𝑐 , discouraging cooperation in the
short term. For a recipient, we set 𝑎 to be the last action they took
as a donor. Importantly, Q-values decay for both players even when
the interaction causes no utility to be gained or lost because the
donor chose to defect (𝜇 = 0 for both players.

For our tests, we had a model of 50 learning agents with 𝛾 = 0.01,
𝜖 = 0.1, and initialised the Q-table (somewhat arbitrarily) such that

𝑄 (𝑎, 𝑠) 𝑖 .𝑖 .𝑑.∼ 𝒩

(
𝑏Red + 𝑏Blue

2
, 1
)
, (5)



where 𝑏Red and 𝑏Blue are the benefit conferred to someone in
the majority and minority groups respectively. We then ran the
model for 5,000 episodes, each consisting of 502 = 2500 interactions
each such that, on average, every agent would interact with every
other agent once every episode. In each interaction, the donor is
chosen deterministically (for performance reasons), but the donor
chooses another agent to be the recipient entirely at random. The
proportion of red agents was 0.9, and we set 𝑏 = 8, 𝑐 = 1.

4 OBSERVATIONS
4.1 Cooperation
The norm governing the population has a deciding effect on the
level of cooperation in a society. We find this to clearly be the case
as we see in Figure 2, where three of the four established norms
lead to cooperation, but image scoring (IS) does not. Further to this,
the figure also reveals that the rate at which the policy is learned is
also affected by the governing norm. We see that while cooperation
is learned quickly under SJ, it is far slower under shunning (where
the only “good” action is cooperation with a good player).

4.2 Fairness
Our model permits unfair norms that discriminate based on label.
In Figure 3 we can see two examples of these norms: 208 and 224.
These norms are each one bit different to shunning (which is 192).
Norm 208 flips the bit for cooperating with bad outsiders from bad
to good, meaning it is out-group biased, whereas Norm 224 does the
same for cooperation with bad insiders, being in-group biased.

In the case of Norm 208, we can see that the majority group
quickly learn to cooperate only in cases where it will provide them
a good reputation. Yet, despite the norm, the minority group is not
able to learn to cooperate in any situation and quickly becomes
overrun by unconditional defectors.

However, the emergent effect we see for Norm 224 is rather
unexpected. The figure shows us that the probability of majority-
majority cooperation if the recipient is bad is close to 50%. This is
due to the fact that half of the majority population have a policy
close to Disc, and the other half only defect against bad outsiders.
Looking closer at the Q-values in Figure 4, we can see that they
are roughly evenly scattered to the left and right of the line 𝑦 = 𝑥 ,
explaining the previous probability of cooperation. This is a stable
state that wouldn’t have been discovered through EGT alone as the
method of discovery in this case is a simple enumeration where
each population is assumed to all play the same strategy.

Due to the majority-minority interaction rate being lower than
majority-majority rate, we see that out-group interactions are learned
at a slower rate. This slower effective learning rate means that there
is an asymmetric learning rate for majority-minority interactions:
minority agents (after a much shorter amount of time) know exactly
what to do when interacting with a majority agent, but majority
agents haven’t had the opportunity to learn a definitive policy yet.

5 CONCLUSION AND DISCUSSION
Here we propose a new model combining indirect reciprocity [14,
15, 25] with group-identity, in a setting where agents adapt through
multi-agent reinforcement learning. We observe that cooperation
emerges under typical norms if recipients are able to use their
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Figure 2: Time-series representing the probability that an
agent belonging to the majority group cooperates with an
agent of the same group (full-lines), an agent of the out-group
(dashed-lines), an agent with a good reputation (green) or an
agent with a bad reputation (red). Here we represent four
well-known (fair) norms, that do not explicitly discriminate
based on group identity. Each norm is able to sustain cooper-
ation to varying degrees. In the long run, stern-judging (SJ),
simple-standing (SS) and shunning (SH) lead to high levels
of cooperation, although SJ and SS induce agents to learn
cooperation faster. Image scoring (IS) fails to steer agents
into cooperation. These observations match previous well-
known results in the context of evolutionary game theory,
although here agents adapt through individual reinforce-
ment learning. Although here we only represent fair norms,
we can already observe that agents might learn to cooperate
faster with members of the in-group (e.g., compare the green
dashed and full lines in SH)

rewards to update the Q-values of actions played as donors. Fur-
thermore, we observe that unfair norms – assigning reputations in
ways that discriminate based on both actions and group-identity
– trigger biased cooperation: agents learn to cooperate only with
in-group members. This work connects multi-agent reinforcement
learning, cooperation and ongoing discussions related with fair-
ness in AI systems. In the field of algorithmic fairness there is a



Name Encoding (O,B,D) (I,B,D) (O,G,D) (I,G,D) (O,B,C) (I,B,C) (O,G,C) (I,G,C)

All bad 0 0 0 0 0 0 0 0 0
Shunning 192 0 0 0 0 0 0 1 1
Stern-judging 195 1 1 0 0 0 0 1 1
Simple standing 207 1 1 0 0 1 1 1 1
Image score 240 0 0 0 0 1 1 1 1
Norm-208 208 0 0 0 0 1 0 1 1
Norm-224 224 0 0 0 0 0 1 1 1

Table 2: Norms are used by observers (e.g., a Judge) to assign reputations to individuals based on their actions and opponents’
characteristics. We represent norms by their binary encoding, concatenating their outputs in all possible contexts (see Table 1
for notation). The named norms are “fair”: each consecutive pair of entries (covering the same input except group relation) is
the same. The unnamed norms (208 and 224) show either in or out-group bias, the effects of which can be seen in Figure 3.

growing interest in understanding discrimination from the perspec-
tive of benefits precluded based on protected characteristics. In
this context, different fairness metrics have been formalised to cap-
ture how agents are treated differently based on possibly arbitrary
group identifiers. We have shown that introducing such identifiers
may complicate the maintenance of cooperation and the rate at
which cooperation develops in the context of indirect reciprocity
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Figure 3: Unfair norms cause unfair outcomes. With Norm-
224 (see Table 2) agents learn to prefer in-group (over out-
group) cooperation (i.e., dashed and full lines do not match).
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evenly on either side of the line indicating that a roughly
equal proportion will cooperate or defect with bad insiders.

and multi-agent reinforcement learning, even when reputations are
assigned without considering the identifier.

Despite this, there are many other angles by which to view this
model which raises more questions. In future work, it would be in-
teresting to test which other variables in our model impact learning
fair cooperation and which do not have a large effect. This would
provide a set of guidelines for more complex reinforcement learning
models to follow when trying to encourage fair cooperation.

Finally, by using the previous extension or otherwise, we aim
to study intervention mechanisms to counteract the unfairness
brought upon by unfair norms or other inequalities such as cost,
benefit, or group size.
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