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ABSTRACT
In the field of reinforcement learning for continuous control, deep
off-policy actor-critic algorithms have become a popular approach
due to their ability to address function approximation errors through
the use of pessimistic value updates. However, this pessimism can
reduce exploration, which is typically seen as beneficial for learn-
ing in uncertain environments. Tactical Optimism and Pessimism
(TOP) proposed an actor-critic framework that dynamically ad-
justs the degree of optimism used in value learning based on the
task and learning stage. However, their fixed bandit framework
acts as a hyper-parameter for each task. We need to consider two
hyperparameters: the number of arms and arm values. To sim-
plify this problem, we consider learning the degree of optimism 𝛽

while training the agent in the environment. We demonstrate that
this approach outperforms other methods that use a fixed level of
optimism in a series of continuous control tasks in Walker2d-v2
and HalfCheetah-v2 environments, and can be easily implemented
in various off-policy algorithms. We call our algorithm: cTOP or
continuous TOP.
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1 INTRODUCTION
Reinforcement learning (RL) has been increasingly successful, par-
ticularly with the use of deep neural networks for value function
approximation. One of the main challenges preventing the wide-
spread use of actor-critic methods [14, 23] in control tasks is their
low sample efficiency. Despite recent progress [12, 13], these meth-
ods still require millions of interactions with the environment to
achieve satisfactory performance on moderately complex control
problems. This means that deploying these algorithms can be pro-
hibitively expensive in systems where collecting samples is costly.
Another challenge arises due to the use of function approximators
that can introduce positive bias in value computation. This can
cause an overestimation of the expected reward, which might result
in the exploration of states and actions that would not otherwise
be explored. However, without a proper understanding of the na-
ture of the overestimation, such exploration can be risky. There
are two opposing views on addressing this tension in the literature
on RL approaches to continuous-control problems: one seeks to
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correct the overestimation. At the same time, the other side argues
that being optimistic can be helpful in encouraging exploration.
Alternatively, RL agents can benefit by varying their optimism and
pessimism based on the task they are trying to accomplish. For
instance, in the exploration-exploitation trade-off, increasing opti-
mism allows the agent to explore more, as they are more likely to
take actions that have not been tried before. In contrast, increasing
pessimism makes it more likely for the agent to choose actions that
have proven to be effective in the past. Moreover, in some tasks,
pessimistic agents are more likely to avoid taking risky actions
whose consequences can be severe, while optimistic agents are
more risk-seeking likely to take risks in the hope of obtaining a
larger reward. Also, varying optimism and pessimism can be helpful
in dealing with non-stationary environments, where the true value
of states and actions may change over time. By adapting to the
changing environment, the agent can maintain good performance
and avoid getting stuck in obsolete policies. Tactical Optimism and
Pessimism (TOP) [17] hypothesize that the degree of action-value
estimation bias and subsequent efficacy of an optimistic strategy
depends on the environment, the learning stage, and the overall
context in which a learner is embedded. Therefore, they propose to
view optimism/pessimism as a spectrum and investigate procedures
that actively move along that spectrum during the learning process.
They measure two forms of uncertainty that arise during learning:
aleatoric uncertainty and epistemic uncertainty, and aim to control
their effects. TOP acknowledges the inherent uncertainty in the
level of estimation bias present and estimates the optimal approach
on the fly by formulating the optimism/pessimism dilemma as a
𝑘−armed bandit problem. However, deciding arm values and the
number of arms depends on each environment, and finding an op-
timal set of arms becomes more of a hyper-parameter search. In
this work, we propose learning the degree of optimism/pessimism
while the agent interacts online with the environment.

2 RELATEDWORK
The recent success in deep reinforcement learning has been attrib-
uted to improvements to off-policy actor-critic algorithms. Specifi-
cally, the Deterministic Policy Gradient (DPG) [20] method, which
underpins this work, is based on a deterministic policy. The shape
of the policy gradient is particularly interesting in that it does not
need integration throughout the action space, which means that it
may require fewer samples to learn. DDPG [14] combines the deter-
ministic policy gradient [20] with off-policy learning using neural

https://alaworkshop2023.github.io/


networks architecture based on DQN [16]. This effort leads to an
off-policy actor-critic architecture in which the actor’s gradients
rely solely on derivatives via the trained critic. This indicates that
boosting the critic’s evaluation immediately improves the actor gra-
dients. C51 [3] has demonstrated that the distribution over returns,
the expectation of which is the value function, obeys a distribu-
tional Bellman equation. Estimating the distribution was sufficient
to attain state-of-the-art scores on the Atari 2600 benchmarks. No-
tably, this approach provides these benefits by directly enhancing
updates for the critic.

Optimistic algorithms are built upon the principle of “optimism
in the face of uncertainty” (OFU). They operate by maintaining a set
of statistically plausible models of the world and selecting actions to
maximize the returns in the best plausible world. Such algorithms
were first studied in the context of multi-armed bandit problems
[6], and went on to inspire numerous algorithms for reinforcement
learning.

The off-policy exploration strategy used in OAC [9] is designed
to optimize the upper confidence bound on the critic, which is
derived from an epistemic uncertainty estimate on the Q-function
obtained using the bootstrap method [18]. Unfortunately, due to
the difficulties associated with maintaining low estimation error
when using function approximation, attempts to establish an upper
bound on the true value function have had limited success.

Recently, there has been increasing evidence in support of the
efficacy of adaptive algorithms [19]. Agent57 [1] is the first agent
to outperform the human baseline for all 57 games in the Arcade
Learning Environment [4]. Based on the game state, Agent57 uses
a meta-controller to adaptively adjust its exploration strategies
parameterized by exploration rate and discount factor, thereby
controlling the exploration/exploitation trade-off.

Tactical Optimism and Pessimism (TOP) [17] integrates DPG
with distributional value estimate, just like in D4PG [2]. D4PG
uses a categorical distribution, whereas TOP uses two critics and
a quantile representation. TOP models the trade-off between op-
timism and pessimism as a discrete multi-armed bandit problem.
While optimism can help with exploration if there is a consider-
able estimating error, a more pessimistic strategy may be required
to stabilize learning. Furthermore, both techniques have resulted
in algorithms that are backed by substantial empirical data. TOP
seeks to unify these seemingly contrary views by postulating that
the respective contributions of optimism and pessimism elements
can change depending on the environment. Unlike TOP, which
uses 𝑘−armed bandits, our approach is to learn the degree of opti-
mism/pessimism 𝛽 to actively vary the level of optimism/pessimism
in its value estimates.

3 OFF-POLICY REINFORCEMENT LEARNING
Reinforcement learning considers the framework where an agent
interacts with its environment with the goal of learning tomaximize
its cumulative reward. Ideally, an environment is cast as a Markov
Decision Process (MDP), formally defined as a tuple ⟨S,A, 𝑝, 𝑟, 𝛾⟩,
whereS is the state space,A is the space of possible actions, 𝑝 : S×
A → P(S) is the transition function, 𝑟 : S×A → R is the reward
function, and 𝛾 ∈ [0, 1) is the discount factor. For a given policy 𝜋 ,
the return 𝑍𝜋 =

∑
𝑡 𝛾
𝑡𝑟𝑡 , is a random variable describing the sum

of discounted rewards, starting at state 𝑠𝑡 , and observed along one
episode obtained by unrolling policy 𝜋 until some time horizon 𝑇 ,
potentially infinite. 𝛾 determines the priority of short-term rewards.
Given a set of policies parameterized by 𝜃 , {𝜋𝜃 : 𝜃 ∈ Θ}, the goal is
to update 𝜃 so as to maximize the expected return, or discounted
cumulative reward, 𝐽 (𝜃 ) = E𝜋 [

∑
𝑡 𝛾
𝑡𝑟𝑡 ] = E[𝑍𝜋 ].

Actor-critic algorithms provide a solution for maximizing the
expected cumulative reward in Deep RL by using two separate
components: the actor and the critic. The actor, represented by the
policy 𝜋 , is trained to make decisions that maximize the expected
return. The critic, in the form of a value function, evaluates the
actions of the policy by predicting the expected return under the
current policy,𝑄𝜋 (𝑠, 𝑎) B E𝑠𝑖∼𝑝𝜋 ,𝑎𝑖∼𝜋 [𝑍𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. In contin-
uous control, parameterized policies 𝜋𝜃 are updated by taking the
gradient of the expected return ∇𝜃 𝐽 (𝜃 ). In the actor-critic frame-
work, the policy can be updated using gradient ascent through the
deterministic policy gradient algorithm [20]:

∇𝜃 𝐽 (𝜃 ) = E𝜋 [∇𝑎𝑄𝜋 (𝑠, 𝑎) |𝑎=𝜋 (𝑠 )∇𝜃𝜋𝜃 (𝑠)] (1)
In Q-learning, the action-value function can be learned using

temporal difference learning [22], [25], an update rule based on
the Bellman equation [5]. The Bellman equation is a fundamental
relationship between the value of a state-action pair (s, a) and the
value of the next state-action pair (s’, a’):

𝑄𝜋 (𝑠, 𝑎) = 𝑟 + 𝛾E𝑠′,𝑎′ [𝑄𝜋 (𝑠′, 𝑎′)], 𝑎′ ∼ 𝜋 (𝑠′) (2)
For large continuous state space, the value can be estimated with

a differentiable function approximator 𝑄𝜙 (𝑠, 𝑎), with parameters 𝜙 .
In deep Q-learning [16], the network is updated by using temporal
difference learning with a secondary frozen target network𝑄 ′

𝜙
(𝑠, 𝑎)

to maintain a fixed target 𝑦 over multiple updates:
𝑦 = 𝑟 + 𝛾𝑄 ′

𝜙
(𝑠′, 𝑎′), 𝑎′ ∼ 𝜋 ′

𝜃
(𝑠′), (3)

where actions are selected from a target action network 𝜋 ′
𝜃
. The

weights of the target networks are periodically updated to match
the weights of the current network by some proportion 𝜏 at each
time step as:

𝜃 ′ ← 𝜏𝜃 + (1 − 𝜏)𝜃 ′ (4)
This update can be applied in an off-policy fashion, sampling ran-
dom mini-batches of transitions from an experience replay buffer
[15].

4 TACTICAL OPTIMISM & PESSIMISM (TOP)
When operating in an RL environment online, the agent following
policy 𝜋 tends to overestimate the value of 𝑄 (𝑠, 𝑎) because of the
max operator used in the Q-learning update. In contrast to the
method presented in [14], [12] adopts a strategy of training two Q-
functions instead of one and chooses the smaller Q-value between
the two to determine the target Q-value in the Bellman error loss
function. Although it is possible to minimize multiple Q-functions,
this approach can increase computational expenses. Instead, the
TOP technique relies on adaptive optimism in uncertain situations.

4.1 Modeling uncertainty
TOP represents two types of uncertainty: aleatoric uncertainty and
epistemic uncertainty



Aleatoric Uncertainty is characterized as the inherent random-
ness of the environment that cannot be explained regardless of
the agent’s comprehension of the task. To account for this type of
uncertainty, TOP employs distributional RL [3, 10, 11], TOP learns
the full return distribution Ƶ𝜋 (𝑠, 𝑎), for policy 𝜋 and state-action
pair (𝑠, 𝑎), instead of the expected return, 𝑄𝜋 (𝑠, 𝑎) = E[𝑍𝜋 (𝑠, 𝑎)],
𝑍𝜋 (𝑠, 𝑎) ∼ Ƶ𝜋 (·|𝑠, 𝑎). 𝑍𝜋 (𝑠, 𝑎) denotes the return random variable
of policy 𝜋 and state-action (𝑠, 𝑎). The distribution Ƶ𝜋 (𝑠, 𝑎) captures
the aleatoric uncertainty.

Epistemic uncertainty, on the other hand, arises from the
agent’s lack of knowledge about the environment due to insuffi-
cient experience. TOP measures the extent to which an optimistic
belief about the return differs from a pessimistic belief. Epistemic
uncertainty is modeled as:

Ƶ𝜋 (𝑠, 𝑎) = 𝑍 (𝑠, 𝑎) + 𝜖𝜎 (𝑠, 𝑎) (5)

Drawing inspiration from [11], TOP represents the return dis-
tribution Ƶ𝜋 (𝑠, 𝑎) using a quantile approximation with 𝑘 quantiles.
Quantiles 𝑞𝑘 (𝑠, 𝑎) are learned using a deep neural network pa-
rameterized by 𝜙 . Epistemic uncertainty is measured using two
quantile functions 𝑞𝑘1 (𝑠, 𝑎) and 𝑞

𝑘
2 (𝑠, 𝑎), parameterized by 𝜙1 and

𝜙2 respectively. Values of mean 𝑍 (𝑠, 𝑎) and 𝜎 (𝑠, 𝑎) is approximated
as follows:

𝑞𝑘 (𝑠, 𝑎) = 1
2 (𝑞

𝑘
1 (𝑠, 𝑎)+𝑞

𝑘
2 (𝑠, 𝑎)) 𝜎𝑘 (𝑠, 𝑎) =

√√√ 2∑︁
𝑖=1
(𝑞𝑘
𝑖
(𝑠, 𝑎) − 𝑞𝑘 (𝑠, 𝑎))2

(6)

4.2 Learning the Critic and Actor
Using the quantile estimates from Equation 6, belief distribution
Ƶ̃𝜋 (𝑠, 𝑎) of the random return variable 𝑍𝜋 (𝑠, 𝑎) is defined as:

𝑞
𝑍̃𝜋 (𝑠,𝑎) = 𝑞𝑍 (𝑠,𝑎) + 𝛽𝑞𝜎 (𝑠, 𝑎) (7)

Belief distribution Ƶ̃𝜋 (𝑠, 𝑎) is considered to be optimistic for
𝛽 ≥ 0 and pessimistic when 𝛽 < 0. TOP dynamically adjusts the
degree of optimism 𝛽 during training using Exponential Weighted
Forecasting Algorithm [8]. By replacing 𝜖 ∼ N(0, 1) with 𝛽 in
Equation 5, belief distributions is non-Gaussian.

Critic:TOP uses the quantiles𝑞𝑘 of the belief distribution Ƶ̃𝜋 (𝑠, 𝑎)
from Equation 7 as a target for both estimates of Ƶ̃𝜋1 (𝑠, 𝑎) and
Ƶ̃𝜋2 (𝑠, 𝑎). The temporal difference error for each Ƶ̃𝜋

𝑖
(𝑠, 𝑎) is defined

as: 𝛿 ( 𝑗,𝑘 )
𝑖

B 𝑟 +𝛾𝑞 𝑗 −𝑞𝑘
𝑖
∈ {1, 2} where ( 𝑗, 𝑘) ranges over all possi-

ble quantiles. Similar to QR-DQN [11], we learn the distributional
critics by taking the gradient of the Huber loss L𝐻𝑢𝑏𝑒𝑟 evaluated
at each distributional TD error 𝛿 ( 𝑗,𝑘 )

𝑖
.

Actor: The actor is trained to maximize the expected value
𝑄̃ (𝑠, 𝑎) under the belief distribution Ƶ̃𝜋2 (𝑠, 𝑎). The expected value
𝑄̃ (𝑠, 𝑎) can be calculated by taking the average of quantiles 𝑞𝑘 for

state-action (𝑠, 𝑎): 𝑄̃ (𝑠, 𝑎) = 1
𝐾

𝐾∑︁
𝑘=1

𝑞𝑘 (𝑠, 𝑎). Then, the actor update

follows the standard DPG gradient:

Δ𝜃 ∝ ∇𝑎𝑄̃ (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )∇𝜃𝜋𝜃 (𝑠) (8)

Δ𝜙𝑖 ∝
∑︁

1≤ 𝑗,𝑘≤𝐾
∇𝜙𝑖L𝐻𝑢𝑏𝑒𝑟 (𝛿

( 𝑗,𝑘 )
𝑖
) (9)

4.3 Learning the degree of optimism as a
𝑘−armed bandit problem

It would be beneficial for an agent to vary its degree of optimism
or pessimism 𝛽 as the reward distribution varies across environ-
ments. TOP casts the problem of choosing 𝛽 as a 𝑘−armed bandit
framework to adjust its degree of optimism. Before the start of
every episode𝑚, the agent picks arm 𝑑𝑚 from a set of 𝐷 arms, each
taking a discrete value {𝛽𝑑 }𝐷𝑑=1. These arms follow a distribution
p𝑚 ∈ 𝛿𝐷 . Bandit feedback is of the form 𝑓𝑚 = 𝑅𝑚 − 𝑅𝑚−1, which
tells us the absolute level of performance associated with selecting
an arm. Weights of the 𝑘−arms are learned using the Exponential
Weighted Average Forecasting algorithm [8]:

𝑤𝑚+1 (𝑑) =
{
𝑤𝑚 (𝑑) + 𝜂 𝑓𝑚

p𝑚 (𝑑 )
if 𝑑 = 𝑑𝑚

𝑤𝑚 (𝑑) otherwise
(10)

5 OUR APPROACH
5.1 Learning 𝛽 using gradient-based algorithms
Rather than choosing 𝛽 as a hyper-parameter, we want to learn
it. Many optimization algorithms assume a setting where infor-
mation about the gradient of the loss function with respect to the
parameters being optimized is available. We can update 𝛽 for each
episode𝑚 or for each sample from the replay buffer. Updating 𝛽 has
a direct effect on the exploration strategy and sample efficiency. To
update 𝛽 for each sample from the replay buffer, we would need the
gradient signal characteristic of the potential update to the value 𝛽 ,
which will lead to faster convergence towards optimal action-value
estimates. Since we cannot define an action-values distribution in
continuous state-action pairs, it is challenging to reliably update 𝛽 .
Similar to updating 𝛽 for each sample from the replay buffer, updat-
ing 𝛽 for each episode𝑚 is challenging as well. The non-stationarity
of the action-values estimates also adds to the difficulty of finding
a reliable gradient estimate to update 𝛽 . In essence, it may not be
possible to obtain reliable knowledge of the relationship between
𝛽 and 𝑄 (𝑠, 𝑎), implying that the gradient-based algorithms may be
either infeasible or undependable. Moreover, the cost of achieving
effective convergence depends not only on the number of required
iterations but also on the cost per iteration, which is usually higher
in gradient-based algorithms. Additionally, the convergence rates
when using function approximators such as neural networks may
not accurately reflect practical convergence rates in limited sample
sizes.

Oneworkaround to update 𝛽 for each episode𝑚 is to use absolute
feedback 𝑓𝑚 = 𝑅𝑚 − 𝑅𝑚−1. While this does not tell us anything
about the relative feedback of using a specific value of 𝛽 over time,
𝑓𝑚 serves as a good proxy, especially in our case, where the domain
of 𝛽 ∈ R, and where we need to find the optimal 𝛽 in 1M timesteps.
Hence, current gradient-based algorithms act as a bottleneck to
update 𝛽 . Instead, we use gradient-free optimization algorithms
like SPSA which we describe in the next subsection.



5.2 Simultaneous perturbation Stochastic
Approximation (SPSA)

Simultaneous Perturbation Stochastic Approximation (SPSA)[21] is
a general recursive optimization algorithm that is specifically useful
when information associated with the gradient vector of the loss
function is not available or is too resource intensive to compute.
Instead, gradient-free algorithms similar to SPSA are based on
approximating the gradient formed from noisy measurements of
the loss function.

Contrary to the finite-differences method where evaluation is
performed on only one shifted component of the learnable parame-
ter vector, SPSA approximates the gradient by evaluating the loss
function at perturbed values of the original learnable parameter: A
randomnoise is added to every component of the original parameter
vector.

Let𝐿(𝜃 ) be a differentiable loss functionwhere𝜃 is an n-dimensional
vector. There exists a 𝜃∗ at which 𝜕𝐿

𝜕𝜃
= 0. SPSA starts with an initial

parameter vector 𝜃0. Its update rule uses the stochastic approxima-
tion scheme given by:

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝑔𝑘 (𝜃𝑘 ) (11)

where 𝜃𝑘 is the 𝑘−th feasible solution, 𝜂𝑘 ∈ R is the learning
rate, and 𝑔𝑘 ∈ R is an iterative direction, a stochastic estimate of
the gradient.

Let 𝑦 (𝜃 ) = 𝐿(𝜃 ) + 𝜖 , where 𝜖 is some perturbation of the output.
We can estimate the gradient at each timestep as follows:

𝑔𝑘𝑖 (𝜃𝑘 ) =
𝐿(𝜃𝑘 + 𝑐𝑘Δ𝑘 ) − 𝐿(𝜃𝑘 − 𝑐𝑘Δ𝑘 )

2𝑐𝑘Δ𝑘𝑖
, (12)

where 𝑐𝑘 is a positive number and Δ𝑘 = (Δ𝑘1 ,Δ𝑘2 , ...,Δ𝑘𝑛 )𝑇 is a
perturbation vector.

In general, gradient-free stochastic algorithms have convergence
characteristics similar to those of gradient-based stochastic algo-
rithms, such as Robbins-Monro stochastic approximation (R-M SA),
while only requiring measurements of the loss function. The main
benefit of such algorithms is that they don’t need a functional
connection between the parameters being optimized and the loss
function being minimized, which is necessary for gradient-based
algorithms.

5.3 Learn 𝛽 using SPSA1
Our goal is the following unconstrained optimization to find the
degree of optimism/pessimism 𝛽 that maximizes expected return
𝐽 (𝜃 ):

(P)max
𝛽∈R

𝐽 (𝜃 ) (13)

There are two versions of approximating 𝑔𝑚 : One-sided and
Two-sided. One-sided gradient approximations involve measuring
𝐿(𝛽𝑚) and 𝐿(𝛽𝑚 + perturbation), whereas two-sided gradient ap-
proximations measures 𝐿(𝛽𝑚 ± perturbation). Before episode 𝑚
begins, we perturb 𝛽𝑚 to estimate the gradient. We use one-sided
gradient approximation as it is relatively cheap to compute com-
pared to two-sided gradient approximations. Hence, our gradient
estimate is:

𝑔𝑚 = 𝐿(𝛽𝑚 + 𝑐𝑚 · Δ𝑚)
Δ𝑚
𝑐𝑚

(14)

Algorithm 1 Algorithm1: cTOP
1: Initialize critic networks 𝑄𝜙1 , 𝑄𝜙2 , and actor 𝜋𝜃
2: Initialize target networks 𝜙 ′1 ← 𝜙1, , 𝜙 ′2 ← 𝜙2, 𝜃 ′ ← 𝜃

3: Initialize replay buffer and 𝛽0 ∼ U([−1, 1])
4: for episode in𝑚 = 1, 2, . . . do
5: Initialize episode reward 𝑅𝑚 ← 0
6: Perturb 𝛽𝑚 as 𝛽𝑚 ← 𝛽𝑚 + Δ𝑚
7: for time step 𝑡 = 1, 2, . . . do
8: Select noisy action 𝑎𝑡 = 𝜋𝜃 (𝑠𝑡 ) + 𝜖, 𝜖 ∼ N(0, 1)
9: Obtain 𝑟𝑡+1, 𝑠𝑡+1 = Env(𝑎𝑡 )
10: Add to total reward 𝑅𝑚 ← 𝑅𝑚 + 𝑟𝑡+1
11: Store transition B ← 𝐵 ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1)}
12: Sample 𝑁 transitions T = (𝑠, 𝑎, 𝑟, 𝑠′)𝑁

𝑛=1 ∼ B
13: UpdateCritics(T , 𝛽𝑚, 𝜃 ′, 𝜙 ′1, 𝜙

′
2)

14: if 𝑡%𝑏 then
15: UpdateActor(T , 𝛽𝑚, 𝜃, 𝜙1, 𝜙2)
16: Update: 𝜙 ′

𝑖
: 𝜙 ′
𝑖
← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙 ′𝑖 , 𝑖 ∈ {1, 2}

17: Update: 𝜃 ′ : 𝜃 ′ ← 𝜏𝜃 + (1 − 𝜏)𝜃
18: end if
19: end for
20: 𝑓𝑚 = 𝑅𝑚 − 𝑅𝑚−1
21: SPSAUpdate(𝛽𝑚, 𝑓𝑚)
22: end for

Algorithm 2 : SPSAUpdate
1: Error Buffer B𝑒 = deque(maxlen=5)
2: 𝜂 = 0.1, decay rate 𝛼 = 1 − 𝜂
3: function update(𝛽𝑚, 𝑓𝑚)
4: B𝑒 ← B𝑒 ∪ 𝑓𝑚
5: 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = Normalize(B𝑒 )
6: 𝑔𝑚 = 𝜖𝑚 ∗ 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
7: if m > 1 then
8: 𝛽𝑚 ← 𝛼𝛽𝑚
9: end if
10: 𝛽𝑚 ← 𝛽𝑚 + 𝜂𝑔𝑚
11: 𝑚 ←𝑚 + 1
12: end function

where Δ𝑚 ∼ N(0, 1). In our case, the feedback is our loss func-
tion 𝐿. Our feedback mechanism is the same as TOP:

𝐿sb = 𝑅𝑚+1 − 𝑅𝑚 (15)
One of the challenges in directly using SPSA is that the learning

rate 𝜂𝑚 must decay over the entire course of the agent’s training
experience to satisfy convergence properties. This means we would
need to specify how many episodes 𝑀 the agent will experience
in its training lifetime.𝑀 now becomes a random variable as it is
dependent on different environments. To mitigate this problem, we
use Exponential Weighted Averaging over the recent five feedback
samples. Algorithm1 describes the skeleton with changes marked in
red made to the TOP[17] framework. Algorithm2 shows the SPSA
update mechanism.

6 EXPERIMENTS



Table 1: Average reward over five seeds on Mujoco tasks,
trained for 1M time steps. ± values denote one standard devi-
ation across trials. Values within one standard deviation of
the highest performance are listed in bold

Task cTOP TOP-TD3 TD3

Hopper-v2 3630 ± 120 3695 ± 152 3367 ± 136
Walker2d-v2 5672 ± 447 5408 ± 87 4529 ± 360

HalfCheetah-v2 13148 ± 438 13076 ± 357 12321 ± 657

The key questionwewould like to answer is whether learning the
degree of optimism/pessimism 𝛽 help, rather than pre-specifying
the arm values when framed as a multi-armed bandit problem. We
test this hypothesis by running experiments on three state-based
continuous control tasks from the Mujoco framework [24] via Ope-
nAI gym [7]. We use TD3 and TOP-TD3 as baselines. TD3 uses
the default hyperparameters configuration. TOP-TD3 uses the arm
settings {−1, 0}, with 𝛽 = −1 corresponding to a pessimistic arm
and 𝛽 = 0 corresponds to average of critics’ quantiles. Hyperpa-
rameters were kept constant for all environments. Each algorithm
was trained for one million steps and repeated for five random
seeds. Our results displayed in Table 1 show cTOP outperforming
TOP-TD3 and TD3 for Walker2d-v2 and HalfCheetah-v2, while
marginally underperforming for Hopper-v2.

7 CONCLUSION
We empirically demonstrate that learning the degree of optimism
𝛽 while training the agent is often helpful across tasks. To vary the
degree of optimism, previous off-policy RL algorithms either rely
on a fixed value of optimism or may have to pre-specify the arm
values when framed as a multi-armed bandit problem. We show
that cTOP adaptively updates its degree of optimism while training
the agent in order to achieve maximum return.

One limitation of our algorithm is stability. While cTOP achieves
a better average return for Walker2d-v2 and HalfCheetah-v2, there
is a marginal drop in performance for Hopper-v2. We believe this
is due to the non-decaying nature of EWMA on the learning rate.
This might lead to noisy updates, which could result in divergence
from the optimal action-value function. A natural extension will
be to use meta-gradients to learn 𝛽 robustly.
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