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ABSTRACT
Neural MCTS algorithms are a combination of Deep Neural Net-
works and Monte Carlo Tree Search (MCTS) and have successfully
trained Reinforcement Learning agents in a tabula-rasa way. These
algorithms have been able to find near-optimal strategies through
self-play for different problems. However, these algorithms have
significant drawbacks; they take a long time to converge, which
requires high computational power and electrical energy. It also
becomes difficult for researchers without cutting-edge hardware
to pursue Neural MCTS research. We propose Step-MCTS, a novel
algorithm that creates subnet structures within the complete net-
work, each of which simulates a tree that provides a lookahead for
exploration. A Step function is used to switch between the subnet
structures. We show how state-of-the-art Neural MCTS algorithms
can be extended to Step-MCTS and evaluate their performances.
Algorithms extended to Step-MCTS show up to 2.1x decrease in
the training times and achieve a faster convergence rate compared
to the other widely used algorithms in the Neural MCTS domain.
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1 INTRODUCTION
In recent years, there has been considerable progress in beating
the human benchmarks and achieving superhuman capabilities on
games like Chess, Go, Shogi, etc. The main reason for this break-
through is the accessibility of a larger amount of computational re-
sources and the development of machine learning in these domains.
The invention of algorithms like AlphaZero [28], and MuZero [26]
has led to computers beating humans in games like Go which was
a farfetched idea some years ago. In general, these algorithms are
called Neural Monte Carlo Tree Search (MCTS) algorithms as they
use a combination of Deep Neural Networks (DNNs) and MCTS
to find near-optimal strategies to play these games. Along with
this, these algorithms can learn optimal strategies in a tabula-rasa
fashion essentially without any prior knowledge except the game
rules.

Although these algorithms perform exceptionally well on such
complex games, they have some significant drawbacks; These al-
gorithms take incredibly long periods to converge. A user cannot
run these algorithms on average computer hardware for complex
games; they need state-of-the-art graphics processors to run in par-
allel for training. This is an important reason whymany researchers
are unwilling to pursue Neural MCTS research.
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In general, it has been observed that larger networks perform
better at state estimation but training these networks is computa-
tionally very expensive, whereas smaller networks can be trained
much faster, but the evaluations are not very accurate.

As part of this paper, we have developed Step MCTS, an algo-
rithm that can be extended to other existing Neural MCTS algo-
rithms to converge much faster on the same hardware configuration
in considerably less training time. We achieve this by creating sub-
net structures within the complete network and using the smaller
subnets for faster estimations. We further use these estimations to
provide a look ahead to the larger subnets, enabling the complete
network to train much faster than standard training methodolo-
gies. The idea here is that we start with the most basic possible
network configuration, eg., a network with a single input, hidden,
and output layer. We start training the agent with a Neural MCTS
algorithm (ex. AlphaZero, MuZero, etc.) using this network. A tree
is generated using this network, and priorities are given to each
of the states visited in the tree. The states with the highest priori-
ties are then stored in the memory. After each training iteration, a
step function is called, which decides whether to "switch" or not.
Switching here means adding another layer to the network; if the
current configuration of the network is good enough to handle
the complexity of the problem it is solving, the step function will
output a "not switch" action. This means we continue using the
same configuration.

On the other hand, if the network is lagging too much in finding
better strategies and requires additional resources, the step function
will output a "switch" action. In this case, we switch, i.e., add another
layer to the network, initialize its parameters and continue training.
After the switch event, all the crucial states stored in the memory
while training the previous subnet are assigned higher priors in
the value function so that the tree generated by the current subnet
puts more emphasis on these states for exploration and finding
better strategies. This is done because the previous subnet has
already tried to find the best possible strategies using its resources,
so we need to use this information to form better strategies. The
training is thus continued further until a fixed number of iterations
or convergence.

We extend our Step-MCTS to one of the most widely used Neural
MCTS algorithms, AlphaZero, and evaluate our improvements over
the vanilla and advanced versions of this algorithm for different
games like Connect-4, Othello and Chess. Our experiments show
that Step-MCTS shows up to 2.1x improvements in the training
times while having a better rate of improvement during training
compared to vanilla versions of these algorithms and some of their
special configurations.
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2 BACKGROUND
2.1 Neural MCTS
Monte Carlo Tree Search (MCTS) [5] [17] has been used widely
for solving combinatorial problems. It has gained much success in
recent times by combining with deep neural networks for value
estimations. This concept of Neural MCTS was proposed indepen-
dently in Expert Iteration [1], and AlphaZero [28]. AlphaZero uses a
single neural network as the policy and value approximator. During
each learning iteration, it carries out multiple rounds of self-plays.
Several MCTS simulations are run to estimate a policy at each state
during each self-play. This policy is then sampled to pick a move
and continue. The game’s outcomes are propagated to each state
in its trajectory. All these trajectories are stored in a replay buffer
which is later used to train the network.

The MCTS runs for a fixed number of simulations during self-
play to generate an empirical policy. Each of these simulations
passes through 4 phases:

(1) SELECT: At the beginning of each iteration, the algorithm
selects a path from the root (current game state) to a leaf
(either a terminal state or an unvisited state) according to
an upper confidence boundary (UCB) algorithm [24]. Specif-
ically, suppose the root is 𝑠0. The UCB determines a serial of
states {𝑠0, 𝑠1, ..., 𝑠𝑙 } by the following process:

𝑎𝑖 = argmax𝑎

[
𝑄 (𝑠𝑖 , 𝑎) + 𝑐𝜋𝜃 (𝑠𝑖 , 𝑎)

√︁∑
𝑎′ 𝑁 (𝑠𝑖 , 𝑎′)

𝑁 (𝑠𝑖 , 𝑎) + 1

]
𝑠𝑖+1 = move(𝑠𝑖 , 𝑎𝑖 )

(1)

Here 𝑄 represents the 𝑄-value of the state-action pair, 𝑁
is the number of times a state-action was observed and 𝜋𝜃
is the policy learned by the network. Selecting simulation
actions using Eq.1 is equivalent to optimizing the empirical
policy [11]

𝜋 (𝑠, 𝑎) = 1 + 𝑁 (𝑠, 𝑎)
|𝐴| +∑𝑎′ 𝑁 (𝑠, 𝑎′) (2)

where |𝐴| is the size of the current action space, which ap-
proximates the solution of a regularized policy optimization
problem, which can be stated as follows:

𝜋∗ = argmax𝜋
[
𝑄𝑇 (𝑠, ·)𝜋 (𝑠, ·) − 𝜆𝐾𝐿[𝜋𝜃 (𝑠, ·), 𝜋 (𝑠, ·)]

]
𝜆 =

√︁∑
𝑎′ 𝑁 (𝑠𝑖 , 𝑎′)

|𝐴| +∑𝑎′ 𝑁 (𝑠, 𝑎′) (3)

MCTS simulation will optimize the output policy to maxi-
mize the action value output while minimizing the change
to the policy network as long as the value output of the
network is accurate.

(2) EXPAND: If a selected phase ends at a previously unvisited
state 𝑠𝑙 , it will be expanded completely and marked as visited.
All the child nodes will be considered as leaf nodes during
the next iteration.

(3) ROLL-OUT: Every child of the expanded leaf node carries
out a roll-out. The algorithmwill use the network to estimate
the result of the game. This value is then backpropagated to
the previous states to move into the next phase.

(4) BACKUP: The statistics for each node in the selected states
{𝑠0, 𝑠1, ..., 𝑠𝑙 } are updated by the algorithm from the given
iteration. To illustrate this process, suppose the selected
states and corresponding actions are

{(𝑠0, 𝑎0), (𝑠1, 𝑎1), ...(𝑠𝑙−1, 𝑎𝑙−1), (𝑠𝑙 , _)}

Let 𝑉𝜃 (𝑠𝑖 ) be the estimated value for child 𝑠𝑖 . The Q-value
should be updated such that it equals the average cumula-
tive reward over each access of the underlying states i.e.,

𝑄 (𝑠, 𝑎) =
∑𝑁 (𝑠,𝑎)

𝑖=1
∑

𝑡 𝑟
𝑖
𝑡

𝑁 (𝑠,𝑎) . To rewrite this updating rule in an
iterative form, for each (𝑠𝑡 , 𝑎𝑡 ) pair, we have:

𝑁 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑁 (𝑠𝑡 , 𝑎𝑡 ) + 1

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) +
𝑉𝜃 (𝑠𝑟 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

𝑁 (𝑠𝑡 , 𝑎𝑡 )
(4)

This process will be carried out for all of the roll-out out-
comes from the last phase.

The algorithm returns the empirical policy 𝜋 (𝑠) for the current
state 𝑠 after the given number of iterations has been reached. The
action is then sampled from the 𝜋 (𝑠) after the MCTS simulation,
and the game continues.

3 PREVIOUS WORK
Monte Carlo Tree Search [5] [17] has always been poor in perfor-
mance when compared to other tree search techniques like minimax
in the domain of tactical games. MCTS proves to be more beneficial
as the state space of the increases and running minimax on such
large trees is not computationally feasible. If the exploration and the
exploitation is efficiently balanced, MCTS would converge asymp-
totically [17]. Initially, the maximum backpropagation technique
was introduced for updating the node values in the trees [5]. Here
we propagate the maximum value instead of the average value so
that after a certain point the search algorithm will consider the
node to have converged. Maximum backpropagation is still being
successfully used in works like BRUE [7] for probabilistic planning
and as Bellman backups for Dynamic Programming [15]. The per-
formance of MCTS has also been enhanced using prior knowledge,
initial applications showed success in the games of Computer Go
[8] and Breakthrough [21]. In this case the values were assigned
higher priorities based on some offline learnt technique and then
these values were used for simulating trees. Another way of inject-
ing prior knowledge is by using progressive bias during selection
[3]. Another technique developed for enhancing the performance
of MCTS is using minimax-style backups and heuristic values and
replacing themwith actual rollouts [23]. Using heuristic evaluations
to terminate games like Lines of Action and Amazons early has
been a great success [32], [16], [20]. More recently, MCTS has been
used with heuristics using implicit minimax backups [19]. Another
way to improve the performance of MCTS by using proven wins
or losses as additional information in MCTS, MCTS Solver [31] is
a prime example of this technique. Finally, there came algorithms
like AlphaGo [27] and AlphaZero [28] which used neural networks
to estimate the value of the node being evaluated. These techniques
have proven to be very successful and are known as neural MCTS
algorithms. Recently, warm start techniques have been used along
with MCTS to accelerate the process of training [33], [30]. In these



cases, various enhancements like RAVE [9], adaptive starts [29] and
Q-value injections [12] have been used to optimize neural MCTS
training.

Our approach builds on neural MCTS. It is based on using subnet
structures within the neural network to learn basic strategies and
give a lookahead for more complex structures by transferring the
gained information and the parameters to these complex structures.
Although there has been work done in training neural networks
using subnets [13], in the neural MCTS domain, there has not
been any work done on optimizing the training using subnets. The
closest approach to our idea that we could find is the MPV-MCTS
[18], it uses two separate networks (smaller and larger) to generate
lookahead. Also, there is no concept of switching, within each
iteration of training, the smaller and the larger network generated
trees are assigned a fix number of simulations. Smaller network
tree generally has a higher number of simulations than the larger
one.

In our work, we are trying to adapt the algorithm to the com-
plexity of the problem that it is trying to solve by providing it with
additional resources. The idea of adaptive computation has been
previously explored in the literature. More recently, algorithms like
ACT [10] have been helpful in training RNNs to decide how many
computational steps should be taken between taking in the input
and emitting the output, but this technique has biased gradient
estimates. Another algorithm that has been recently developed is
called PonderNets [2], which learns the number of computational
steps required to achieve a balance between prediction accuracy
and computational cost. PonderNets use a step function to deter-
mine the time step to stop the execution of a network. Most of
the previously used techniques for dynamic resource allocation
used Reinforcement Learning [4]. In our work, we also use a step
function but this step function is used to inform the network to
switch between various configurations of the subnet starting from
the lowest possible configuration going all the way up to the full
scale network.

4 STEP MCTS
4.1 Subnet
In this section, we discuss the Step MCTS algorithm in detail. Let
us call our complete network 𝑓 , which has 𝑁 hidden layers. Note
that a complete network, in this case, means the upper bound to
the number of computational resources available. Thus, 𝑁 is the
highest number of hidden layers which we could add to the network
given computational hardware. In theory, 𝑁 could be as large as
possible, but we fix it to some finite value in practice. We define a
subnet as a configuration of 𝑓 that has an input layer, output layer,
and 𝑛 hidden layers such that 𝑛 ∈ [1, 𝑁 ]. Thus, a subnet with one
hidden layer would be the most basic configuration available to the
algorithm. Let’s call it 𝑓1. We start our training with 𝑓1 and keep on
increasing the number of hidden layers as required by the network
up to 𝑓𝑁−1 at which point we would have used up all our resources.

Each of these subnet configurations simulates its tree. Let us call
the tree simulated by 𝑓1 as 𝑇1 and so on until 𝑇(𝑁−1) . Starting from
𝑓1, we train in mini-batches, and after each iteration, the step func-
tion tells us whether wemove to 𝑓2. If the switch is made, 𝑓2 will help

Figure 1: Step-MCTS: Here, we can see how each of the sub-
nets look. 𝑓1 is a subnet with 1 hidden layer, 𝑓2 has 2 hidden
layers and this goes on to 𝑓𝑁−1. So we begin with 𝑓1, switch
to 𝑓2 and so on. Also, we see how each of the trees provides
a lookahead to the subsequent tree generated by the next
subnet and the step function outputs the switching action.
Lookahead here means the priority states from the storage
buffer

roll out𝑇2, which will now use all the important states/observations
explored by 𝑇1, thus saving a considerable time on exploration.

When training the subnet, at the end of each iteration of training,
the subnet is provided training examples of the form (𝑠𝑡 , 𝜋𝑡 , 𝑧𝑡 ). 𝜋𝑡
is an estimate of the policy from state 𝑠𝑡 , 𝑧𝑡 ∈ [−1, 1] is the final
outcome of the game from the perspective of the player at 𝑠𝑡 . All
the subnets are then trained to minimise the following loss function
(excluding regularisation terms):

𝑙 =
∑︁
𝑡

(𝑣𝜃 (𝑠𝑡 ) − 𝑧𝑡 )2 − 𝜋𝑡 . log(𝑝𝜃 (𝑠𝑡 ))

here 𝑝𝜃 and 𝑣𝜃 are the policy and values functions respectively.

4.2 Step Function
The step function is applied after each iteration of training to decide
whether to switch to the following subnet configuration or not.
Depending on the requirement, the step function could have any
underlying configuration (Threshold based, MLP, RNN, etc.). In
this paper we have shown two different configurations - Threshold
based and RNN based.

4.2.1 Threshold based.
In a threshold based step function, we simply set up a threshold

value 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 where 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [0, 1], for the proportion of
selfplays that should be won during an iteration of training to not
make a switch action. If the ratio of the number of selfplays won
during an iteration of training gets below the threshold value, then
we make a switch to a larger subnet configuration. The subnet
would be prone to switch just after making a switching move, to
avoid this we introduce a fixed number of iterations that a subnet
configuration has to train before taking a switch action.



4.2.2 Recurrent Neural Network based.
We have also implemented an RNN-based threshold function. In

this case, an RNN is used to predict the switching action (whether
to switch or not). In our experiments, we found that the RNN-based
step-function takes a lot more time to train and performs as good
the threshold-based step function. Hence for the rest of this paper,
we will be concentrating on the results of the threshold-based step
function. The details of the RNN-based step function can be found
in the appendix.

4.3 Lookahead
Each of the subnets simulates a tree 𝑇𝑖 ; thus, the total number of
trees in the complete network will be 𝑇𝑖 ∈ [𝑇1, ..,𝑇𝑁−1]. Starting
from 𝑇1, each tree simulates faster than the next one. We take
advantage of the faster simulations of the initial network subsets to
find the states/observations that are most commonly visited. These
states/observations are the most likely ones to be explored further
by the larger subnet configurations. Thus, rather than waiting for
the larger subnets first to discover these states/observations and
explore them, we prioritize these states in the value functions of the
larger subnets so that these states could be explored immediately,
saving time on computation.

To achieve this, we maintain a buffer through the training that
stores the values of the states/observations that have been previ-
ously explored in a prioritized manner. When the step function
returns the "switch" state, before starting the training for the next
subnet, the value function of the next subnet is updated with the
values from the buffer. The states/observations with higher pri-
orities are assigned higher values, and the value increments are
decreased proportionately. Algorithm 1 describes the Step MCTS
in detail.

5 EXPERIMENTS
5.1 Experimental Setup
All the AlphaZero and MuZero based experiments in this paper
are performed on an Apple M1 8-core CPU with 8GB of LPDDR4X-
4266 MHz SDRAM and an integrated 8-core GPU with 2.6 teraflops
of throughput. For our experiments, we will be using a 6-layered
convolutional neural network with four convolutional layers and
two fully connected layers as our default complete network. Two
additional convolutional layers are added to the complete network
configuration, only for Chess and Breakout, due to high state space
and computational complexity. A complete network is nothing but
the upper limit of the resources available to us; thus, if we start from
1 convolutional layer, Step-MCTS can make up to 3 switches during
the whole training since we have four convolutional layers in the
complete network. We did this to make the comparisons with other
algorithms fair as other algorithms would not change the network
configurations during training dynamically. Each convolutional
layer has a filter of size (3,3). We are keeping the filter size the same
throughout the network for simplicity. Note that our algorithm can
be used with any configuration of a deep neural network (e.g., MLP,
ResNet). The architecture will have to be formed accordingly. Each
iteration consists of 100 self-plays, and we use a batch size of 64
for each iteration of training; the optimizer used is Adam, and the
regularization parameter is initiated with 1𝑒−4. For each iteration,

Algorithm 1 Step MCTS
𝑠 ← Initial State/Observation
𝑓𝑖 ← 𝑓1
𝑇𝑖 ← 𝑇1
𝑚 ← Self-plays per iteration
for Each Iteration do

if 𝑆 (𝑛) ← RNN based then
for 𝑘 ∈ [1,𝑚] do

𝜆𝑘 ← Sampled from the 𝑝𝑘
end for
if 1

𝑁

∑𝐾
𝑘=1 𝜆𝑘 < 𝑝𝑇 then

𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

else if 𝜆𝑘 ≥ 𝑝𝑇 then
𝑓𝑖 ← 𝑓𝑖+1
𝑇𝑖 ← 𝑇𝑖+1
𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

end if
else if 𝑆 (𝑛) ← Threshold based then

if 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝑛(𝑧𝑤𝑜𝑛) then
𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

else if 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 𝑛(𝑧𝑤𝑜𝑛) then
𝑓𝑖 ← 𝑓𝑖+1
𝑇𝑖 ← 𝑇𝑖+1
𝑠𝑙𝑒𝑎𝑓 ← Select leaf from 𝑇𝑖 using lookahead
if No lookahead is available then

𝑠𝑙𝑒𝑎𝑓 ← Select unevaluated leaf from 𝑇𝑖
end if
(𝑝, 𝑣) ← 𝑓𝑖 (𝑠𝑙𝑒𝑎𝑓 )
Update (𝑇𝑖 , 𝑠𝑙𝑒𝑎𝑓 , (𝑝, 𝑣), 𝑝𝑘 )

end if
end if

end for

the temperature parameter is set to 0 for the first 25 self-plays to
explore initially. Later on, we set it to 1. The loss functions used
by Step-MCTS for training the main network are the same as its
vanilla Neural MCTS version.

The threshold based step function has the threshold value set to
0.8, which means that in each iteration of training, if the agent is
not able to win more than 80% of the selfplays, we make a switch.



We came up with this value after extensive experimentation with
the RNN based step function.

The RNN based step function is a 2-layered RNN. We used the
same batch size and optimizer as the main network. We keep the
configurations of the other two algorithms the same as Step MCTS.
All the hyperparameters are tuned to the same values. In the case
of the network architecture, the depth of vanilla algorithms is kept
the same as that of our complete network. For MPV-MCTS, a more
extensive network is designed the same as AlphaZero, and the
smaller network is a four-layered ConvNet with two convolutional
and two fully connected layers. The number of simulations of the
smaller tree is set to 1.5 times that of the enormous tree. All the
other hyperparameters are kept the same for fair evaluations.

Step-MCTS is implemented in our AlphaZero experiments is we
use an initial Policy-Value network (subnet) having only a single
convolutional layer. After each training iteration, the self-play tra-
jectories generated are stored in the replay buffer. These trajectories
are then used to train the subnet and the step function. If the step
function output is higher than the set threshold (we used 0.8 for
our experiments), we take a snapshot of the current subnet. We
add a new layer to the network, so now we have two convolutional
layers, then we load the snapshot and initialize the weights of the
new layer.

Along with this, the states that are most commonly visited are
stored in the replay buffer in a separate table. The values of these
states are then initiated as per their priorities, i.e., the most com-
monly visited states are given higher initial values so that they are
explored more by the MCTS. The new tree created by the next sub-
net is rolled out based on these values. The training thus continues
until the set number of iterations are completed.

5.2 Training Step MCTS
The idea is to use the smaller networks to find the states that are
most commonly visited so that we can assign higher values to those
states in the policy. The values are not uniformly incremented for
all the previously visited states, hence we have priorities. The states
visited the most number of times will have the highest priority
and the priorities decrease as we go to the less visited states. The
values of the states with high priorities are increased by a higher
factor in the value function and this factor keeps decreasing as
we go to lower priorities. At each step during a self-play, we get
a tuple (s,𝜋 ,z). s is the current state of the board, 𝜋 is the policy
from which we sample a move and z is the outcome of the game.
If we find that s is a high-priority state, we increment the value
of s in 𝜋 by some factor (ex. 5%) and save it to the tuple. This is
how the values of priority states are inflated. Now, all these inflated,
as well as non-inflated (which do not have set priorities) tuples,
will be stored in the replay buffer as a part of self-play data where
they will be used to train the network in the next training iteration.
From an implementation standpoint, we have two buffers, replay
buffer will store all the self-play data which will be later on used
for training (just like AlphaZero) and can have 5𝑥105 games. The
second buffer (let’s call it the priority buffer) will have information
about states and priorities. When we reach a certain state (board
configuration) during self-play, we hash the current configuration
of the board (which is a matrix) and save it as a key to a hash table

in the priority buffer with value as count set to 1, if the hash already
exists, we increment its value by 1. Thus at the end of self-plays
for one iteration of training, we have counts of all the states visited
and their counts. During the next iteration of training, when we
arrive at a certain state, we do a lookup in the hash table to see
if the state is present and what’s the priority, if it is present, we
update the value in the policy accordingly. Also for games with
larger states spaces, we just keep the top 105 states (based on count)
in the buffer so that we do not overflow the buffer.

Training stops (network switches) once the output is sufficiently
inaccurate. Step MCTS essentially starts from scratch and asks for
more resources as its performance decreases, and the Step function
decides when to make that request.

A step function could be any configuration of a neural network.
It takes an input 𝑥 and gives an output 𝑡 , which is essentially the
probability of switching and a hidden state ℎ𝑡 to which the function
is applied recurrently for 𝐾 steps. 𝐾 refers to the number of self-
plays that take place per iteration of training. 𝑥 is the embedding
for each episode of self-play within an iteration of training, and
𝜆 ∈ [0, 1] is the probability of switching the network. The switch is
made after the value of this probability crosses a certain threshold
𝑝𝑇 . After each iteration of training the main network, the step
function is called 𝐾 times recurrently. If 1

𝑁

∑𝐾
𝑡=1 𝜆𝑡 > 𝑝𝑇 , the main

network switches to a bigger configuration immediately. The value
of𝐾 is limited by the number of self-plays that we configure in each
training iteration. We suggest using a higher number of self-plays
per iteration in the case of higher state-space games. Having a finite
𝐾 also helps us normalize the probability distribution, which is a
challenge in the case of PonderNets. Care is taken that the network
does start switching immediately at the start of training or on a
switching action.

The loss function is optimized based on the total weighted loss
of the main network in the previous training step. A difference of 1
time-step is maintained during the training between training the
main network and the step function. During the initial training
or after a switch event occurs, the network will immediately tend
to switch to a higher configuration since the total weighted loss
is relatively high in the beginning. In these cases, care should be
taken that the switch does not occur instantly. For our experiments,
we do not allow the network to switch for the first two iterations
after training or switching events for smaller games like Connect-4
and Othello. In the case of larger games like Chess, we stop the
switching for the first five iterations.

In case of threshold based step function, the switch is made
simply if the number of games won is below the set threshold for a
given iteration of training. We simple add a new hidden layer to
the network and continue training.

The main network is trained the same way as any vanilla Neural
MCTS algorithm like AlphaZero. After every switching event, a
snapshot of the current network is taken, a new network is ini-
tialized using an additional layer, and the snapshot is loaded back.
The weights of the additional layer are initialized using the He [14]
initialization method, and the training is then resumed.

A memory buffer is used to prioritize the states that have been
most commonly visited. Before resuming the training after a switch



event, we initialize the value function with the priors that we cal-
culated using the data from the buffer for each of the states.

6 EVALUATIONS
Step-MCTS is a generic approach that can be extended to various
Neural MCTS algorithms. Here wewill show howwe have extended
the most commonly used Neural MCTS algorithms like AlphaZero
[28] to Step MCTS. We also evaluate our extended Step-MCTS
algorithms for different games. To evaluate our new algorithm, we
will be using the 6x6 Connect-4, 8x8 Othello and Chess. We choose
these games because they are sufficiently complex to concretely
show that our algorithm performs much better than other Neural-
MCTS configurations (AlphaZero [28], and MPV-MCTS [18]). Our
evaluations are based on the performance ratings of the algorithms
and the training times. The performance evaluation metrics that we
have used are Elo score [6], and Alpharank [22]. We will calculate
these metrics over the training and compare them for different
algorithms that we are evaluating.

6.1 AlphaZero
After extensively training StepMCTSwith the RNN based step func-
tion, we found that it uses a switching strategy where it moves to
the next subnet configuration if the network wins less than roughly
80 % of the selfplays in the given iteration of training. The perfor-
mance of both Threshold based and RNN based step functions is
nearly the same when we use this value for the threshold. Along
with this we save a large chunck of training time when we do not
use the RNN. As you will see in the evaluations done below for dif-
ferent two player games, even the switching action approximately
takes place at the same training step in both our step functions.
Hence, after this point in this paper, we will be referring to the
configuration using the threshold based step function when we
refer to the Step MCTS model. Table 1 describes the performance
of Step-MCTS for each of the evaluated games.

6.1.1 Connect-4.
The first game that we evaluated our algorithm on was 6x6

Connect-4. This game has the lowest state space of all the games
we have evaluated in this paper. The performance scores and the
training time comparisons obtained can be seen in Figure 7. The
figure shows that Step-MCTS converges much faster than vanilla
AlphaZero and MPV-MCTS; this is because the Connect-4 game is
less complex, and the algorithm can devise a smart winning strategy
using smaller subnets, later further optimizing over it using larger
subnets.

6.1.2 Othello.
The next game that we have evaluated is the 8x8 Othello game.

This game has a significantly larger state space as compared to
Connect-4. The performance and the training time comparisons can
be seen in Figure 3. Here too, the Step-MCTS algorithm converges
faster than vanilla AlphaZero or MPV-MCTS. Vanilla AlphaZero
took 148 hours to complete 60 iterations of training, and MPV-
MCTS took 127 hours, while Step-MCTS was able to do this in 102
hours and achieve faster convergence.

6.1.3 Chess.

Figure 2: Elo (top-left), Alpharank (top-right), total training
time (bottom-left) and total weighted loss (bottom-right) of
different algorithms for Connect-4 evaluations

Figure 3: Elo (top-left), Alpharank (top-right), total training
time (bottom-left) and total weighted loss (bottom-right) of
different algorithms for Othello evaluations

The last game that we evaluated using AlphaZero is Chess which
is computationally intensive to train. Two additional convolutional
layers were added, now we have six convolutional layers and two
fully connected layers in the complete network. While training
Step-MCTS for Chess, we observed that the network quickly made



switches in the initial iterations of training to reach the complete
network configuration. This was due to the inability of a straight-
forward network configuration (1 or 2 layers) to handle a complex
game like Chess. Hence, we started the training with three convo-
lutional layers. We also kept a default number of iterations that a
subnet configuration must complete before taking the switch action.
We chose this value as 5 in our Chess experiments. The total time
taken by AlphaZero and MPV-MCTS for 300 iterations was 488 and
456 hours, respectively, while Step-MCTS only took 384 hours.

Figure 4: Elo (top-left), Alpharank (top-right), total training
time (bottom-left) and total weighted loss (bottom-right) of
different algorithms for Chess evaluations

7 CONCLUSION
In this paper, we presented Step-MCTS, a novel algorithm that
uses subnet structures within the complete network to generate
lookahead that helps in faster training of Neural MCTS algorithms
on modest hardware. We extended our algorithm to one of the
most commonly used Neural MCTS algorithms, AlphaZero, and
showed that using Step-MCTS trains 2 times faster on average
over all the games that we have evaluated. Note that along with
the improvements with training time, we also saw a faster rate of
improvement in the Elo and the AlphaRank scores compared to
Vanilla forms of those algorithms. A 2x improvement in training
time alsomeans that we are able to save roughly 50% of the electrical
energy that would be required on other state of the art models,
which is a considerable amount as these algorithms take a very
long time to train. Along with this, we believe that an algorithm like
Step-MCTS would help facilitate more researchers in Neural MCTS
research, which is currently restricted largely to organizations with
state-of-the-art hardware. As a future scope of this research, we
would like the step function also to predict what kind of layer should
be added to the network after the switch event (convolutional,

residual, dropout, fully connected, etc.) which, for this paper, we
had only considered convolutional layers.



Step MCTS (Threshold)
Game Iterations Self-

plays/Iter
Simulations Switching

Iterations
Total Time Improvement

over AZ
Elo
Score

AR
Score

Connect-4 60 100 25 [4,7,26] 38 hrs 1.89x 1462 0.987
Othello 60 100 50 [3,12,24] 77 hrs 1.92x 1848 0.994
Chess 300 100 50 [7,74,148] 236 hrs 2.06x 2482 0.991

Table 1: Step MCTS training metrics
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A APPENDIX
A.1 RNN-based Threshold Function
RNN [25] is applied 𝐾 times recurrently where 𝐾 is equivalent
to the batch size. Note that 𝐾 will be the same for a particular
subnet, and the step function will be applied for each mini-batch
for 𝑘 ∈ {1...𝐾}. After the step function is applied for each step, we
get a scalar probability 𝜆𝑘 based on which we decide whether to
switch the network or not. To represent the Markov process, we
can simply define a Bernoulli random variable𝑋𝑛 = 𝐵𝑒𝑟 (𝜆𝑘 ) whose
properties can be given as follows:

Prob. Mass Func. : 𝑃 (𝑋 = 1) = 𝜆𝑘 ; 𝑃 (𝑋 = 0) = (1 − 𝜆𝑘 )
Expection = 𝐸 [𝑋 ] = 𝜆𝑘

Variance = 𝑉𝑎𝑟 (𝑋 ) = 𝜆𝑘 (1 − 𝜆𝑘 )
The two states that this variable can take are 𝑋𝑘 = 0 (continue),

which means we do not need to switch the subnet in the current
iteration and we can continue with the same subnet and 𝑋𝑘 = 1
(switch), which means that we need to now switch to the next
subnet 𝑓𝑖+1. Here we can set the transition probability as follows:

𝑃 (𝑋𝑘 = 1|𝑋𝑘−1 = 0) = 𝜆𝑘 ≤ 𝑘 ≤ 𝐾
We will depend on the value of 𝜆𝑘 to decide the optimal value

of 𝑘 , after which we can switch the subnet. Once we get 𝑋𝑘 = 1,
the process is terminated, and the training immediately contin-
ues using the next subnet. The probability distribution 𝑝𝑛 as the
generalization of a geometric distribution as can be given as:

𝑝𝑘 = 𝜆𝑘

𝑘−1∏
𝑗=1
(1 − 𝜆 𝑗 )

This can be treated as a valid probability distribution if we
consider 𝐾 sufficiently large. While predicting, we simply sam-
ple from this distribution to find if the network should continue
with the same subset or switch to the next one. If after 𝐾 time
steps, 1

𝑁

∑𝐾
𝑘=1 𝜆𝑘 > 𝑝𝑇 , we make a switch. Here, 𝑝𝑇 is a threshold

probability above which we make the switch and below which we
do not.

Inorder to train the step function, we use the following loss
function:

𝐿 =

𝐾∑︁
𝑘=1

𝑝𝑘L(TWE𝑓 𝑖,𝑖∈[1,𝑁 ] ) + 𝛽𝐾𝐿(𝑝𝑘 | |𝑝𝐺 (𝜆𝑝 ))

The first part of the equation is called the Reconstruction loss
(𝐿𝑟𝑒𝑐 ), and the second part is called the Regularization loss (𝐿𝑟𝑒𝑔).
Here L(TWE𝑓 𝑖,𝑖∈[1,𝑁 ] ) is the Total Weighted Error (TWE) of the
current subnet structure 𝑓𝑖,𝑖∈[1,𝑁 ] . The geometric prior distribution
𝑝𝐺 (𝜆𝑝 ) on the switching policy can be defined using the hyperpa-
rameter 𝜆𝑝 . The Regularization loss is the KL divergence between
the switching probability 𝑝𝑘 and the prior, a geometric distribu-
tion parameterized by 𝜆𝑝 . The purpose of regularization loss is to
provide a non-zero probability to all the possible steps during the
recurrent application of the step function. A similar loss function
has been used in PonderNets [2] where the objective was to decide
when to stop the training, whereas in our cases, the objective is
when to switch the subnet. The reconstruction loss in the case

of PonderNets is cross-entropy, whereas we use the TWE of the
current subnet structure.

A.2 Loss Plots

Figure 5: Policy Loss (Left) and Reward Loss (Right) Plots
for Connect-4. Note that for Step MCTS (Threshold), the plot
shows a drop at around the 8th step, our first switch happened
at 7th step.

Figure 6: Policy Loss (Left) and Reward Loss (Right) Plots for
Othello. Note that for Step MCTS (Threshold), the plot shows
a drop at around the 25th step, our second switch happened
at 24th step.

Figure 7: Policy Loss (Left) and Reward Loss (Right) Plots for
Chess. Note that for Step MCTS (Threshold), the plot shows
a drop at around the 150th step, our third switch happened
at 148th step.
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