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ABSTRACT
Deep reinforcement learning (RL) has successfully tackled many
real-world tasks. However, these algorithms suffer from the well-
known sample-inefficiency problem. Deep RL systems usually re-
quire millions of environment interactions to learn and have stable
performance. In this work, we show that human-AI teams out-
perform human-only controlled and fully autonomous teams for
complex tasks. We develop a novel simulator for a critical infrastruc-
ture scenario and a user interface for humans to effectively advise
AI agents. We show that humans can provide useful advice to the RL
agents, allowing them to improve learning in a multi-agent setting.
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1 INTRODUCTION
Protecting a critical infrastructure such as an airport against threats
is a complex, sensitive, and expensive task, leading to a history of
exploring automated solutions [11]. However, complete automa-
tion of such a defense system is inadvisable due to its importance.
Conversely, the task of continuously monitoring such systems and
quickly assessing and handling potential threats would benefit from
AI capabilities. One potential solution would then be to build hy-
brid systems that rely on the strengths of both human operators
and autonomous systems to decrease costs and increase perfor-
mance, while maintaining meaningful human control in dangerous
or critical operations [26].

We developed a system where humans and AI agents can collab-
orate to defend an airport’s airspace from drone incursions. In this
work, we demonstrate experimental evidence that indicates that
AI drone training can be improved by using human-like demon-
strations. The developed platform also provides opportunities for
further experimentation, such as: 1) increasing the confidence in
AI agents by their human operators, 2) accelerating the training
process by injecting human expertise, and 3) investigating various
collaboration and advice modalities between humans and AI agents.
In recent times, reinforcement learning (RL) has hadmany successes
in solving many decision-making problems ranging from the game
of Go [28] to deploying a super-pressure balloon in stratosphere [5].
While several domains like Atari and Mujoco exist to benchmark
current state-of-the-art RL research [19, 33], simulators specific to
real-world scenarios are rare. We develop a novel simulator for the
aforementioned airspace and airportś restricted zone protection

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 9-10, 2023, Online, https://ala2023.github.io/ . 2023.

system. The use case consists of a fleet of ally (blue) drones trying
to protect a restricted airspace from multiple enemy (red) drones.
Following recommendations from experts in the field of air defense,
the simulator is designed to mimic with reasonable simplifications
real-world dynamics with respect to the speed of the drones, their
flight dynamics as well as the specifications of the ground radar sen-
sor, the sensing payloads (radar and electro-optical) embedded on
the blue drones and the neutralization payloads embedded on the
blue drones. Real-world dynamics make the environment complex.
The complexity of the environment means that a naive RL appli-
cation would require numerous environment interactions. Given
the expense and risk associated with these interactions in a real
environment, we would like to minimize them. We demonstrate
that agent demonstrations can minimize the number of required
environment interactions.

To investigate the effects of human and agent demonstrations,
we compare policy networks trained in our simulator using human
demonstrations, agent demonstrations, an agent’s own experiences,
and the experiences of blue drones. We use non-expert human and
agent demonstrations to showcase the robustness of our approach
to address limited availability of human experts.

The key contributions of this work include the following:

(1) developing a novelmulti-agent simulator for a defense-specific
use case modeling real-world dynamics;

(2) using state-of-the-art RL algorithms to train agents in our
simulator;

(3) developing a user interface for our simulator, which enables
human operators to dynamically take the place of an agent
to produce in-context demonstrations; and

(4) demonstrating empirically that trained agent demonstrations
or human-again mix demonstrations help agents to learn
faster.

2 RELATEDWORK
There is a large amount of existing literature on using external
knowledge from different sources tomake RL agents sample-efficient
[2] [6], where this external knowledge can originate from humans
or other agents. Early examples of using human knowledge in de-
cision making relied on collecting demonstrations from experts,
popularly known as imitation learning [27]. However, these meth-
ods usually incur human costs in terms of attention and availability
of experts. Although imitation learning methods are still popular, a
significant amount of existing work uses human preferences and
advice, rather than demonstrations, from experts to better guide
RL agents [7, 23, 29].
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Advice in teacher-student frameworks: In a teacher-student frame-
work [31], a more knowledgeable or skilled teacher provides advice
to a student agent to improve its sample efficiency. Torrey et al. [34]
proposed various heuristics, such as early advising and importance
advising, to decide when to provide advice to the student. In addi-
tion to multi-agent reinforcement learning, Silva et al. [8] proposed
a framework for agents to learn simultaneously from each other
based on their roles (teacher or student). Omidshafiei et al. [22]
introduced a general “learning to teach” framework in cooperative
settings where each agent can be a teacher or student and can learn
when and what to advise within a fixed budget. Kim et al. [14]
proposed a scalable learning-to-teach framework, which addresses
the teacher credit assignment problem and considers the impact
of teacher’s advice on the student’s learning. While many teacher-
student frameworks concentrate on a single teacher and student, or
multiple teachers [13], our focus is on a single teacher with multiple
students. In our research, the teacher is either a trained agent or a
real human operator, while the students are learning agents. This
kind of teacher-student framework had not been examined in a
defense-specific environment.

Demonstration to guide RL:As discussed above, learning from demon-
strations [32] has been a common approach with Deep RL. Hester
et al. [10] first leveraged demonstrations inside an existing deep
RL algorithm (DQN) by using a supervised loss function to model
demonstrations. Later, demonstrations were used to speed upDDPG
in complex robotics tasks [21, 36] by using specific techniques like
behavior cloning loss and prioritized replay buffers. Goecks et al. [9]
provided a unified loss function by integrating loss function com-
ponents from prior works. We use some of these loss functions in
our approach, as explained in detail in Sections 3 and 5.3.

In addition to demonstrations, human trainers have used other
modalities such as feedback to build an explicit model of a human’s
reward model inside the TAMER framework [15]. Knox et al. ini-
tially trained a classifier on explicit human signals and used this
model to infer the best action in guiding an agent. The human
feedback is provided in TAMER in the form of agreement or dis-
agreement within a certain window while watching the agent in
action. Later, this framework was combined with RL [16, 17] where
the human reward model acts as a shaping function to guide the RL
agent. This was later extended to deep learning with respect to the
reward model [39] and Q-function [1]. Similarly, Arumugam et al.
[3] propose COACH framework, a method for training RL agents
using feedback from human operators. The approach involves train-
ing a deep neural network to predict human feedback and using
this predicted feedback to optimize the agent’s policy. MacGlashan
et al. [18] propose a framework that enables an agent to learn from
the feedback provided by a human expert who provides feedback in
the form of "preference queries," which ask the expert to compare
two policies and indicate which one is better. Our simulator is also
an experimentation platform for benchmarking all these different
kinds of modalities. Tambe et al. [30] demonstrated plans for Stack-
elberg games can be executed with human-agent teams (HATs),
but did not explore real-time coordination with humans. Our work
focus on human demonstration to gain significant performance im-
provements utilizing both human and agent knowledge in real-life
applications.

Securing critical national infrastructure, such as airports, is a sig-
nificant challenge for security agencies worldwide due to the threat
of enemy attacks, and only a few research studies have addressed
it. Pita et al. [24] proposed randomizing security schedules using
a game-theoretic approach to enhance airport security. Khalil et
al. [12] used a federated RL-based framework for unmanned aerial
vehicles to operate in a dynamic defence system. In contrast, our
focus is on using an autonomous multi-agent and efficiently incor-
porating human knowledge. Başpınar et al. [4] used a cooperative
DRL model to maximize survival considering both individual and
collective actions of unmanned aerial vehicles. Additionally, Venu-
gopal et al. [37] incorporated uncertainty into their DQN model,
which combines drone signalling, notification, and defender allo-
cation to protect valuable resources. However, our work primarily
concentrates on improving the human-agent team’s performance
by using human knowledge in a more complex and realistic defence-
specific environment.

3 BACKGROUND
Markov decision process: RL, multi-agent RL, or other human-in-
the-loop learning algorithms are often built on the Markov decision
process (MDP) formulation. An MDP is defined by ⟨S,A, 𝑅,P, 𝛾⟩
where S is the state space, A is the action space, 𝑅 is the reward
function, P is the transition probability function, and 𝛾 ∈ [0, 1)
is the discount factor. At any time step 𝑡 of the episode, the agent
is in state 𝑠𝑡 ∈ S, executes an action 𝑎𝑡 ∈ A based on its policy
𝜋 and current observation 𝑜𝑡 (i.e., 𝑎𝑡 ∼ 𝜋 (·|𝑜𝑡 )). The agent then
transitions to the next state 𝑠𝑡+1 ∈ S according to the transition
probability function P and receives a reward 𝑟𝑡 ∈ 𝑅. The goal of
an RL algorithm is to maximize the expected discounted sum of
rewards by optimizing its policy 𝜋 .

The 𝑄 value function 𝑄𝜋 (𝑠, 𝑎) of a given state-action pair (s, a)
determines the expected future reward starting from the given (s,a)
and following the policy 𝜋 . The optimal value function 𝑄∗ (𝑠, 𝑎)
provides the maximal values in all states and is determined by the
Bellman equation:

𝑄∗ (𝑠, 𝑎) = E
[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′

𝑃
(
𝑠′ | 𝑠, 𝑎

)
max
𝑎′

𝑄∗ (𝑠′, 𝑎′) ]
Deep Q networks: Deep Q networks (DQNs) were introduced
in [20], where neural networks were used to predict the 𝑄 values
and are updated using the Bellman equation. Further improve-
ments were shown in double 𝑄 networks [35] by using two 𝑄

networks instead of just one and in dueling𝑄 networks [38] where
the𝑄 network consisted of seperate heads for estimating value and
advantage functions. The combination of these approaches was
commonly referred to as D3QN (double dueling DQN) and is our
baseline algorithm in this work.

Following the notation in [10], the double DQN loss is given by:

𝐽𝐷𝑄 (𝑄) =
(
𝑅(𝑠, 𝑎) + 𝛾𝑄

(
𝑠𝑡+1, 𝑎max

𝑡+1 ;\
′) −𝑄 (𝑠, 𝑎;\ )

)2
where \ˆ′ are the parameters of the target network and 𝑎max

𝑡+1 =

argmax𝑎 𝑄 (𝑠𝑡+1, 𝑎;\ ).



Deep Q networks from demonstration: DQN from demonstra-
tions (a.k.a. DQfD) was introduced [10] to learn from human demon-
strations in addition to agent’s own experience. Firstly, for pretrain-
ing using demonstrations in a supervised fashion, margin classifi-
cation loss was used.

𝐽𝐸 (𝑄) = max
𝑎∈𝐴

[𝑄 (𝑠, 𝑎) + 𝑙 (𝑎𝐸 , 𝑎)] −𝑄 (𝑠, 𝑎𝐸 )

where 𝑎𝐸 is the action taken by the demonstrator in state 𝑠 . 𝑙 (𝑎𝐸 , 𝑎)
is a margin function that is 0 when 𝑎 = 𝑎𝐸 and positive otherwise.
To improve pretraining, the authors also proposed adding the𝑛-step
return to help propagate the values of the demonstrator’s trajectory
to earlier states. The 𝑛-step return is:

𝑟𝑡 + 𝛾𝑟𝑡+1 + . . . + 𝛾𝑛−1𝑟𝑡+𝑛−1 +max
𝑎

𝛾𝑛𝑄 (𝑠𝑡+𝑛, 𝑎)

The subsequent 𝑛-step loss, which takes into account the 𝑛-step
return, is denoted as 𝐽𝑛 (𝑄). Furthermore, an L2 regularization loss
was added to the parameters of the network to prevent it from
over-fitting to the relatively small demonstration dataset. Thus, the
overall loss used to update the network is:

𝐽 (𝑄) = 𝐽𝐷𝑄 (𝑄) + _1 𝐽𝑛 (𝑄) + _2 𝐽𝐸 (𝑄) + _3 𝐽𝐿2 (𝑄) (1)

Hester et al. used DQfD in the context of a single-agent RL setting.
In this paper, we extend it to a multi-agent RL setting where we
train all five ally drones based on demonstrations and combined
experiences of all the agents. We elaborate further on these details
in Sections 4 and 5.

4 PROBLEM FORMULATION
This section describes the problem setting, its formalization as an
MDP, and the architecture for the simulator and user interface.

4.1 Environment design

Figure 1: Environment

In this paper, we introduced an airport defense simulator and
explored the impact of human feedback onmulti-agent RL problems.

The environment used for our problem formulation is shown in
Figure 1. There are two teams, the ally (blue) and the enemy (red).
The blue drones can be autonomous or controlled by a human. Each
drone is equipped with electro-optics. The blue team consists of
five drones, a ground radar sensor and a ground control station
(GCS). Each ally drone also has several neutralization payloads (i.e.,
devices capable of neutralizing enemy drones when they are within
a certain range). The red team comprises a single drone equipped
with its radar sensor and a potentially hazardous payload. The goal
of the blue team is to protect the restricted zone of the airport from
the red team by detecting, localizing and neutralizing the enemy
drones.

In this environment, the blue and red drones has a partially
observed view of the environment. The detection and localization
of the red drone provided by the radar and EO sensors embeds
noise and uncertainty. As per the defense expert’s suggestions, we
intentionally introduce errors into the system to simulate these real-
world factors. Specifically, the detection probability of the radar is
95% and there is a 5% probability of the radar failing to detect the
red drone. Moreover, the radar fails to detect the enemy drone if it
is outside the radar range. The detection frequency is set to 1 Hz
and the maximum speed of the drones is ten meters per second.
The range of the neutralization payloads embedded on the blue
drones is set to ten meters. All these dynamics make the scenario
complex and require the blue drones to anticipate the trajectory of
the red drone.

The experimental platform is built around a simplified airspace
simulator operating in 2D. Although simplified, several aspects
have been modelled following real-world specifications based on
feedback from domain experts, such as the detection capabilities
of the drone sensors and the radar, as well as the dynamics of the
rotary-wing drones.

4.2 MDP formulation
We define the MDP for this domain as follows.

(1) Observation space: The observation space consists of the
relative positions of the red drone, the blue drones, and the
restricted airspace over 3 time-steps. Each agent has a partial
observation of the environment. Each blue agent has an
observation that includes 1) the relative x and y distance to
the red drone (in meters) and 2) the relative x and y distance
to the center of the restricted zone (in meters). To implicitly
account for velocity, we stack three time steps together, for
a total of (2 + 2) × 3 = 12 features.

(2) Action-space: The action-space is continuous, varying from
[-1,1]. We discretize the action-space into 2 discrete actions:
positive and negative angles of rotation.

(3) Reward function:The blue drones receive a positive reward
if they successfully neutralize the red drone and a negative
reward if red drone enters the target area.
The team’s reward is defined as follows

𝑅(𝑠) =
{
+1 if any blue drone neutralizes the red drone
−1 if the red drone enters the restricted zone



Additionally, at every time step, the blue drones receive
a shaping reward 𝑅𝐼 (𝑠) proportional to their relative dis-
tance from the red drone in consecutive time steps; 𝑅𝐼 (𝑠) =
(𝑑𝑡−1 (𝑏, 𝑟 ) − 𝑑𝑡 (𝑏, 𝑟 )) where 𝑑𝑡 (𝑏, 𝑟 ) and 𝑑𝑡−1 (𝑏, 𝑟 )refers to
the relative distance between the blue and red drone at time-
step 𝑡 and (𝑡 − 1) respectively.

We train the agents in a multi-agent centralized training and
execution setting where each agent has it’s own observation-space
as defined in the MDP formulation. Each agent has the same re-
ward function and action space. We train these agents in parallel
using Cogment [25]. Cogment is an open-source platform enabling
training and operating various kinds of multi-agent RL and human-
in-the-loop learning algorithms in a distributed way, due to its
microservice architecture.

4.3 User Interface and Architecture for HIL
Interactions

Figure 2: User interface for human operators to control the
agents

In order for the human operator to control the ally drones, we
have developed a user interface as shown in Figure 2. The blue
drones can be either fully autonomous, fully human operated, or
hybrid (i.e., control is shared by the human-agent team). This is
implemented by two Cogment actor implementations (drone and
human actors), shown in Figure-3. For each drone agent in the
simulation, Cogment instantiates two actors using those implemen-
tations, it can then dynamically assign the control of the drone
entity to one of them. The human operator can select drones and
set specific waypoints for them by predicting the enemy drone’s
anticipated trajectory. In Figure 2, the waypoints are denoted by
grey circles on the map. Once a specific waypoint has been de-
fined, Cogment dynamically gives control of the associated ally
drone to the operated agent causing it to move towards the defined
waypoint via the shortest path under the standard physical dynam-
ics constraints. Similarly, the human operator can delete existing
waypoints through the interface to rectify any errors in predicting
the enemy drone trajectory. Conversely, when no waypoints are
defined, the control is given back to the autonomous agent. The
interface also allows the human to operate at 3 simulation speeds
(1x, 2x, 5x), according to their preferences.

Figure 3: Airspace simulation and hierarchical multi-agent
modeling

5 EXPERIMENTS
In this section, we report the experimental settings and the results
of our comparative analysis of different ways forRL approaches to
receive guidance in our simulator.

5.1 Environment configuration
Our study focuses on a simulated environment created specifically
for this research, as described in Section 4.1. At the start of each
episode, all drones start from random positions , with the blue and
red drones having the same speed. To simplify the environment,
we sampled the starting position of the blue drones from a circular
region with a radius of 1000meters located near the restricted zone.
In contrast, the red drone’s starting position is sampled from a
similar circular region located atleast 1000 meters to the right of the
restricted zone. Additionally, we added three waypoints between
the blue and red drones to facilitate the simulation. These way-
points guide the red drone to reach the restricted space within a
fixed time-limit.

5.2 Performance metric
We evaluated the performance of the trained agent using the suc-
cess rate as the performance metric. The success rate is defined
as the percentage of times the blue team wins over all evaluation
trials. This metric was chosen as it provides a clear and intuitive
measure of the agents’ ability to defeat the red drone and is directly
proportional to the average reward. We execute thirty evaluation
episodes per hundred training episodes to compute the success
rate. During the evaluation episodes, agents do not learn or explore.
Our learning curves show the performance metric reported in the
evaluation episodes. We also averaged the results over five runs
with different seed values to account training and environmental
stochasticity.

5.3 Experimental setup
For our experiments, we use a fully trained D3QN agent for gen-
erating 2, 500 agent demonstration. We collect 250 human demon-
strations from seven humans that completed at least 30 episodes.
Our baseline was D3QN, training from scratch without additional
guidance. We adapt prior work [10] to leverage demonstrations
inside D3QN from either another agent or from a mix of human and



agent demonstrations1 We use D3QN-PH to represent D3QN agents
trained with additional agent demonstrations and D3QN-MH to
represent D3QN agents trained with a mix of agent and human
demonstrations. For experiments with D3QN-PH and D3QN-MH,
we sampled thirty percent demonstration samples from real human
or trained agent replay memory and seventy percent from agent
replay memory consisting of past agent experiences.

Algorithm abbreviation Human Demo Agent Demo

D3QN 0 0
D3QN-PH 0 2,500
D3QN-MH 500 2,000

Table 1: Algorithm abbreviation with # of human and agent
demo for each algorithm.

After testing our models with various proportions of demon-
stration data, we determined that the performance of the learning
process was not significantly affected by the agent and demo pro-
portions. Hence, we set these proportions to 70% agent experience
and 30% demonstration experience to get adequate learning. To
update the network, the training algorithm sampled mini-batches
from the demonstration data and applied three loss functions: the
double Q-learning loss and the n-step double Q-learning loss as
described in Section 3. In initial experiments, the 𝐿2 regulariza-
tion loss and margin classification loss failed to improve learning
and these losses were not used. Moreover, we did not use any
pre-training for any of the reported algorithms. The Q-function
of DQN is updated by Equation 3, D3QN-PH and D3QN-MH are
updated using Equation 1. The expert margin in Equation 3 was
set to𝑀 = 0.8 in alignment with prior work [10]. A heuristic agent
was used as a basic benchmark, which is a manually coded agent
that relies on the distance between the blue and red drones. The
heuristic agent always directs the closest blue drone towards the
red drone, and when it reaches the neutralization range, this blue
drone immediately neutralizes the red drone.

The human-demo in Figure 4 refers to the average winning per-
centage of actual human demonstrators. The winning percentage
for average human demonstration is 62% with standard deviation
of 17%. Human participants are researchers, software engineers,
and graduate students from the University of Alberta and partner
organizations. We only considered demonstrations where either
the agent or human won the game to account for good quality of
demonstrations. The results in Figure 4 report the mean and stan-
dard deviation over 5 runs, with the y-axis indicating the winning
% and the x-axis denoting the number of training episodes.

We perform hyper-parameter tuning to find reasonable parame-
ters for the algorithms. We considered learning rate values of [0.4,
0.04, 0.004, 0.0004, 0.00004], epsilon decay values of [0.99, 0.995,
0.9995, 0.99995, 0.999995], and discount factor values of [0.9, 0.99,
0.999]. The supervised loss coefficient weight (_2 in Equation 1)
varied between 105 to 1, and we set _3 to 0. The same network struc-
ture was used across D3QN, D3QN-PH, and D3QN-MH, consisting

1Agent demonstrations refer to demonstrations generated by a D3QN agent that was
trained to an average performance of 85% +/- 10%.

Parameter Value

Training Episodes 10,000
Replay Memory size 100,000

Batch size 64
Learning rate 0.0004
Discount factor 0.99

Target network update frequency 10
Initial 𝜖 1.0
Final 𝜖 0.05

𝜖 decay per episode 0.999995
Table 2: Model hyper-parameters.

of two hidden layers with 64 fully connected neurons. A final fully
connected layer was added to represent each action’s Q-values. The
non-linearity function used in all layers was rectified linear units
(ReLU). During training, we use the Adam optimizer and applied
an epsilon-greedy policy, gradually reducing epsilon from 1 to 0.05.
The batch size was 64 and the replay memory size was 1, 00, 000.

5.4 Results
We aim to investigate the following two research questions:
(RQ1) How well does a trained agent perform in this specific envi-

ronment?
(RQ2) Do agent or human demonstrations help make the RL agent

more sample efficient?

Figure 4: The success rate comparison for D3QN, D3QN
with trained agent demonstrations, D3QN with real human
and trained agent mix demonstrations, and a heuristic base-
line. Here, the suffix -PH represents demonstrations from a
trained agent and -MH indicates amixture of real and trained
agent demonstrations.

To answer RQ1, we train a D3QN and plot its performance in
Figure 4. The agent reaches a success rate of roughly 90% in 3500
episodes. The trained agent outperforms the baseline heuristic



(a) trained agent demonstration (b) a human user (User 1) (c) a human user (User 2)

Figure 5: Visual representation of five episodes from trained agent and two different real human users

agent, which has a success rate of 60%. The average human perfor-
mance is around 63%, which is almost equal to the heuristic agent.
This is because of two reasons: (1) there is a relatively small number
of human demonstrations (250 winning episodes) and (2) the game
has a learning curve and our human participants require some time
to get used to the interface and the dynamics of the game.

To answer RQ2, we identify that D3QN-PH reaches a success
rate of more than 90% in 1600 episodes, outpacing D3QN as shown
in Figure 4. We performed an unpaired t-test to examine the sig-
nificant difference between the performance of the D3QN-PH and
D3QN agents. The D3QN-PH agents exhibit a statistically signifi-
cant performance as compared to D3QN (𝑝 < 0.0001) and the effect
size is 1.43. At the end of learning, both algorithms converge to the
same final performance level (around 90%). This provides support
for our claim that trained agent demonstrations make the RL agent
more sample efficient in our environment, consistent with existing
results in the literature [10, 21].

5.5 Pilot study using human demonstration
We also trained the learning agent with a mix of agent and actual
human demonstrations, denoted as D3QN-MH as shown in Fig-
ure 4. We sampled an equal proportion of human and trained agent
demonstrations in every mini-batch used for training. We used a
mix of both types of demonstrations because of the lack of human
demonstrations collected in our ongoing pilot study. The results do
not suggest a significant learning improvement when compared to
D3QN-PH; however, the performance is still statistically significant
than the baseline D3QN.

Since, this simulation has a learning curve for humans because
of the interface and the dynamics, we intend to collect more demon-
strations from humans and to include a burn-in period for humans
to understand the environment and learn to play before collect-
ing demonstrations. We visualized five trajectories of all blue and
red drones from trained agent demonstrations and two actual hu-
man demonstrations from different users who played more than 30
games, as shown in Figure 5. In this figure, the blue star denotes one
of the ally drones that neutralized the enemy drone and is the frame
of reference (located at (0, 0)). The red and green lines represent
the relative position of the enemy drone and the restricted airspace
(with respect to the blue drone’s position). Figure 5(a) shows five
trajectories of ally drones generated from the trained D3QN agent.

We note that across all the figures, the red drone starts moving
towards the restricted zone while being chased by the blue drones
until it is neutralized. The low density of red lines around the blue
star indicates that the blue drones quickly neutralizes the red drone
without following it for a long time. From Figure 5(b) and 5(c),
which depicts trials by two different human participants, we notice
that there is more movement (high-density) around the blue star,
suggesting that the human tries setting waypoints in different areas
(using the whole team of five blue drones) of the map to neutralize
the red drone. These trajectories are sub-optimal (longer trajectory
length) as compared to the trajectories from trained agent demon-
strations. However, these might be helpful to neutralize the red
drones in difficult environment configurations where the trained
RL agents fails to catch the enemy drone (trained agents have a
failure rate of around 10% in this task).

6 ETHICS STATEMENT
Our human subject study was approved by the University’s ethics
board (REB number: Pro00107555). We have designed the simulator
environment so that drones are not equipped with weapons that
can directly endanger the lives of humans. We are also focusing on
a defensive task to minimize the risk of our work being used by
bad actors.

7 CONCLUSION
To conclude, we developed a novel defense-specific simulator that
reflects read-world dynamics. We further showed that in such a
complex domain, a trained agent and AI combination is effective
compared to fully human or fully autonomous operations. As part
of an ongoing effort, we want to show that actual humans can be
effective in such domains where many interactions and specificity
are involved. As part of future work, we want to customize the
user interface to seamlessly handle different modalities of human
advice. We also want to experiment with humans having different
expertise over different tasks in this domain. Finally, we want to
handle different modalities of advice depending on when they are
most effective for agents and convenient for humans.
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