
Efficient Bayesian Ultra-Q Learning for Multi-Agent Games
Ward Gauderis

Vrije Universiteit Brussel
Brussels, Belgium

ward.gauderis@vub.be

Fabian Denoodt
Vrije Universiteit Brussel

Brussels, Belgium
fabian.luc.m.denoodt@vub.be

Bram Silue
Vrije Universiteit Brussel

Brussels, Belgium
bram.silue@vub.be

Pierre Vanvolsem
Vrije Universiteit Brussel

Brussels, Belgium
pierre.vanvolsem@vub.be

Andries Rosseau
Vrije Universiteit Brussel

Brussels, Belgium
andries.rosseau@vub.be

ABSTRACT
This paper presents Bayesian Ultra-Q Learning, a variant of Q-
Learning [12] adapted for solving multi-agent games with indepen-
dent learning agents. Bayesian Ultra-Q Learning is an extension of
the BayesianHyper-Q Learning algorithm proposed by Tesauro [11]
that is more efficient for solving adaptive multi-agent games. While
Hyper-Q agents merely update the Q-table corresponding to a sin-
gle state, Ultra-Q leverages the information that similar states most
likely result in similar rewards and therefore updates the Q-values
of nearby states as well.

We assess the performance of our Bayesian Ultra-Q Learning
algorithm against three variants of Hyper-Q as defined by Tesauro,
and against Infinitesimal Gradient Ascent (IGA) [9] and Policy Hill
Climbing (PHC) [1] agents. We do so by evaluating the agents
in two normal-form games, namely, the zero-sum game of rock-
paper-scissors and a cooperative stochastic hill-climbing game. In
rock-paper-scissors, games of Bayesian Ultra-Q agents against IGA
agents end in draws where, averaged over time, all players play the
Nash equilibrium, meaning no player can exploit another. Against
PHC, neither Bayesian Ultra-Q nor Hyper-Q agents are able to win
on average, which goes against the findings of Tesauro [11].

In the cooperation game, Bayesian Ultra-Q converges in the
direction of an optimal joint strategy and vastly outperforms all
other algorithms including Hyper-Q, which are unsuccessful in
finding a strong equilibrium due to relative overgeneralisation.

KEYWORDS
Reinforcement Learning, Multi-Agent, Game Theory, Q-Learning

1 INTRODUCTION
In multi-agent games, a useful solution for all agents is to play
according to the Nash equilibrium [7], but calculating the Nash
equilibrium is often impractical or even computationally intractable,
especially in imperfect information games [8]. An alternative ap-
proach is to use Reinforcement Learning (RL) [10], where the goal
for an agent is to learn a policy through trial-and-error learning
that maximizes a predefined reward signal. The question of building
agents capable of successfully and efficiently adapting their strate-
gic behaviour to other adaptive agents in an imperfect information
setting has proven to be a significant challenge in multi-agent re-
search.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

State-of-the-art algorithms such as Deep Counterfactual Regret
Minimization (Deep CFR) [2] and Deep Monte-Carlo (DMC) [13]
have shown impressive results in highly complex multi-agent im-
perfect information games. It is important to note that these modern
methods are often designed to tackle large-scale problems. In con-
trast, Q-Learning is arguably the most well-known and proven RL
algorithm with a rich history of successfully being applied to single-
agent smaller-scale problems [4]. However, achieving such success
in multi-agent games is more challenging. The main challenges for
independent Q-learning agents in multi-agent settings are partial
observability (e.g., by not being able to directly observe the other
agents’ policies or learning algorithms) and the non-stationarity of
the environment due to changes in the policies of the other agents
over time. It could be argued that despite its many strengths, off-the-
shelf Q-Learning is not suitable when applied to multi-agent games
with mixed-strategy equilibria and non-stationary environments
[11].

1.1 Hyper-Q Learning
To address these shortcomings, Tesauro [11] proposes Hyper-Q
learning, an extension to Q-Learning. The idea behind this algo-
rithm is to learn the value of joint mixed strategies (probability
distributions over the joint action space) rather than just base ac-
tions. The agent, therefore, keeps a Q-table over a set of mixed
strategies instead of deterministic actions, including an internal es-
timate of its opponents’ mixed strategies. Formally, we work in the
setting of stochastic games [6]. In a stochastic game with state space
𝑆 , the goal of agent 𝑖 is to find the best mixed strategy ®𝑥𝑖 = ®𝑥𝑖 (𝑠)
for all states 𝑠 ∈ 𝑆 , given the expected mixed strategy ®𝑥−𝑖 (𝑠), where
−𝑖 denotes the average over all agents except 𝑖 . As in Tesauro’s
paper [11], we focus on the two-player case, where for the sake of
notational simplicity the mixed strategy vector of the focal agent
is denoted with 𝑥 , and the internal estimation of the opponent’s
mixed strategy with 𝑦. At each time step 𝑡 , the agent performs a
base action sampled according to its current mixed strategy 𝑥 and
observes a payoff 𝑟 . Next, a new state 𝑠′ is observed and the agent
adjusts its internal estimation of the opponent’s mixed strategy
from 𝑦 to 𝑦′. The iterative process behind updating the Hyper-Q
function 𝑄 (𝑠,𝑦, 𝑥) can then be described as follows:

𝑄 (𝑠,𝑦, 𝑥) ← 𝑄 (𝑠,𝑦, 𝑥) + Δ𝑄 (𝑠,𝑦, 𝑥),

Δ𝑄 (𝑠,𝑦, 𝑥) = 𝛼 (𝑡)
[
𝑟 + 𝛾 max

𝑥 ′
𝑄 (𝑠′, 𝑦′, 𝑥 ′) −𝑄 (𝑠,𝑦, 𝑥)

] (1)

https://alaworkshop2023.github.io/

where 𝛼 (𝑡) is the learning rate and 𝛾 is the discount factor. The
greedy policy 𝑥 , is defined as

𝑥 (𝑠,𝑦) = arg max
𝑥

𝑄 (𝑠,𝑦, 𝑥) (2)

Regarding the convergence of Hyper-Q Learning, Tesauro argues
that for certain types of opponent dynamics, a Finite-Difference
Reinforcement Learning implementation will likely be convergent.
However, this has not been proven formally. Convergence of Hyper-
Q should, similar to Q-Learning, require having visited every state-
action pair, which can be achieved through exploring starts or an
adequate 𝜖-greedy exploration scheme.

Hyper-Q Learning involves estimating the opponent’s strat-
egy. Tesauro [11] describes two different model-free based tech-
niques to achieve this, each producing their own variant of the
Hyper-Q Learning approach. The first way is to use the Exponential
Moving Average (EMA). More concretely, a moving average of the
opponent’s strategy is maintained and updated after every action
observation according to the following formula:

𝑦 (𝑡 + 1) = (1 − `)𝑦 (𝑡) + `®𝑢𝑎 (𝑡) (3)

where ®𝑢𝑎 (𝑡) is the opponent’s discrete action 𝑎 represented in unit
vector form, and ` is a hyper-parameter that influences the speed
at which the strategy of the agent evolves. The second way to esti-
mate the opponent’s strategy is to use Bayesian strategy estimation.
Using Bayes’ rule, we can compute 𝑃 (𝑦 |𝐻), i.e. the probability for
opponent strategy 𝑦 given the history of observed actions 𝐻 . The
formula is stated as follows:

𝑃 (𝑦 |𝐻) = 𝑃 (𝐻 |𝑦𝑃 (𝑦)∑
𝑦′ 𝑃 (𝐻 |𝑦′)𝑃 (𝑦′)

(4)

where 𝑃 (𝑦) is the prior probability of 𝑦, and 𝑃 (𝐻 |𝑦) can be com-
puted as

𝑃 (𝐻 |𝑦) =
𝑡∏

𝑘=0
𝑦
𝑤𝑘

𝑎 (𝑘) (5)

with𝑤𝑘 the exponent weights which are defined as

𝑤𝑘 = 1 − ` (𝑡 − 𝑘) (6)

The learning algorithms discussed here are in theory applicable
to any multi-agent Reinforcement Learning task. In this work, we
focus on stochastic normal-form games with two agents which
allow for efficient two-dimensional tabular implementations.

1.2 Bayesian Ultra-Q Learning
One particular strength of the Bayesian variant of Tesauro’s Hyper-
Q Learning agent is the ability to update the Q-values of an entire
row of the Hyper-Q table, i.e. of all opponent strategies 𝑦, in one
single iteration. This allows the agent to explore and eventually
converge much more efficiently by using the knowledge that mixed
opponent strategies that are similar are likely to have similar Q-
values.

This line of thought was the inspiration for our Bayesian Ultra-Q
Learning algorithm, which applies a Bayesian update to the columns
of the Q-table as well, which correspond to the agent’s own strate-
gies 𝑥 . The agent, therefore, uses the knowledge that its own similar
mixed strategies are likely to have similar Hyper-Q values as well.
This means that not just one row is updated per iteration, but the

entire Q-table. The learning equation for our Bayesian Ultra-Q
Learning agent then becomes:

Δ𝑄 (𝑦, 𝑥) = 𝛼 ⟨𝑥, 𝑥𝑟𝑒𝑎𝑙 ⟩ 𝑃 (𝑦 |𝐻)
[
𝑟

+ 𝛾 max
𝑥 ′

∑︁
𝑦′

𝑃 (𝑦′ |𝐻 ′)𝑄 (𝑦′, 𝑥 ′) −𝑄 (𝑦, 𝑥)
] (7)

Additionally, Bayesian Ultra-Q Learning introduces a weighting
factor ⟨𝑥, 𝑥𝑟𝑒𝑎𝑙 ⟩ to the learning equation. This is the cosine similar-
ity between the strategy 𝑥 and the strategy that is actually used,
𝑥𝑟𝑒𝑎𝑙 . It enables updating similar strategies in the Q-table more
strongly than dissimilar strategies.

Alternatively, this weighting factor could be replaced with the
probability 𝑃 (𝑎 |𝑥), i.e., the likelihood of playing the action 𝑎 (that
was actually taken) when the mixed strategy 𝑥 would be used. We
noticed that using this factor results in similar agent behaviour but
biases the agent toward playing more polarised mixed strategies.
This approach is therefore discarded in our results.

It should be noted that the learning equation of Bayesian Ultra-
Q no longer tries to solve the original Bellman equation, but a
modified version.

1.3 Contributions
The contributions resulting from our work1 can be summarised
as follows. Firstly, we reproduce Tesauro’s work behind Hyper-
Q Learning applied to the game of rock-paper-scissors, and shed
light on certain aspects that require further clarification, such as
the definition of 𝑦′ in the Bayesian update equation. We present
Bayesian Ultra-Q Learning, an extension of Tesauro’s Bayesian
Hyper-Q Learning agent that takes better advantage of the infor-
mation available to update the entire Q-table at once with each
iteration. Bayesian Ultra-Q also introduces a new weighting fac-
tor in the learning equation, which determines the intensity with
which other similar strategies in the Q-table are updated. Although
Bayesian Ultra-Q and Hyper-Q show similar performances in the
game of rock-paper-scissors, we argue that this game is not a great
fit for benchmarking these agents. The fact that the game’s Nash
equilibrium is characterized by a completely random strategy, i.e.
playing each action with probability 1

3 , means that the agents can-
not truly demonstrate their learning capabilities. We chose a more
interesting game to benchmark these agents on, namely the Sto-
chastic Hill-Climbing game, which is a cooperation game that re-
quires more complex behaviour from an agent for it to be successful.
Our experiments show that Bayesian Ultra-Q strongly outperforms
Hyper-Q in this game.

2 EXPERIMENTS
We investigate the convergence and performance of Bayesian Ultra-
Q agents by benchmarking them in games against Hyper-Q agents
and other, dynamic agents. Two games with an action space of size
3 have been considered: the matrix game of rock-paper-scissors and
a stochastic hill-climbing game. The game of rock-paper-scissors
helps us investigate the behaviour of these agents in an adversarial
zero-sum setting. In contrast, the stochastic hill-climbing game

1https://github.com/WardGauderis/Hyper-Q

https://github.com/WardGauderis/Hyper-Q

gives us insights into how these agents behave in a cooperative
setting where coordination is difficult.

The dynamic opponent agents in question are agents that use
Infinitesimal Gradient Ascent [9], and agents that use Policy Hill-
Climbing [1]. Infinitesimal gradient ascent (IGA) involves carrying
out small changes in the agent’s strategy in the direction of the
gradient of immediate payoff. Strategy updates for IGA are carried
out by updating each action probability of the strategy in question
as follows:

𝑝𝑖, 𝑗 ← 𝑝𝑖, 𝑗 + [
𝛿𝑉

𝛿𝑝𝑖, 𝑗
(8)

where 𝑝𝑖, 𝑗 is the probability that agent 𝑖 plays action 𝑗 , [is the step
size parameter, and 𝛿𝑉

𝛿𝑝𝑖,𝑗
is the partial derivative of the expected

value, which is denoted as 𝑉 . Calculation of this factor requires
perfect knowledge of the strategies of all agents involved.

Policy hill-climbing (PHC) is an extension of Q-learning that can
be applied to mixed strategies. This learning algorithm keeps track
of Q-values and of a policy, each of which is updated at each game
iteration. The Q-values are updated according to the following
formula:

𝑄 (𝑠, 𝑎) ← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′)) (9)

where 𝛼 is a learning rate and 𝛾 is the discount factor. The policy,
meanwhile, is updated according to the following rule:

𝜋 (𝑠, 𝑎) ← 𝜋 (𝑠, 𝑎) +
{
𝛿, if 𝑎 = argmax𝑎′ 𝑄 (𝑠, 𝑎′)
−𝛿
|𝐴𝑖 |−1 , otherwise

(10)

where 𝛿 is another learning rate and 𝐴𝑖 corresponds to the set of
actions available to agent 𝑖 .

For benchmarking purposes, an Omniscient variant of the Hyper-
Q Learning algorithm is implemented and used for comparison
during tests. This agent has perfect knowledge of the opponent’s
strategy and provides insight into how a Hyper-Q agent ought to
behave with perfect information. Finally, we use Monotone agents,
which have a static strategy that involves repeatedly performing
one fixed action indefinitely.

We use the IGA, PHC, and Monotone agents as opponents in our
experiments, as well as the three types of Hyper-Q Learning agents:
Omniscient, Exponential Moving Average (EMA) and Bayesian.

2.1 Agent Implementations
Since the mixed strategies of our Bayesian Ultra-Q agents span
a continuous spectrum, we employ a uniform grid discretisation
of the strategy space containing all pairs (𝑥,𝑦), where 𝑥 is the
agent’s strategy and 𝑦 is the (estimated) opponent’s strategy. A
mixed strategy is represented by its 3 component probabilities for
every action. By discretising the strategy space with a grid of size 𝑛,
every strategy is represented on a simplex grid of size 𝑁 =

𝑛 (𝑛+1)
2 ,

giving us a Q-table of a total size 𝑁 2 for a two-player normal-form
game. We chose a grid size of 𝑛 = 25. The Q-table is implemented
as a one-dimensional array and indexing mathematics are used
to efficiently map every (𝑥,𝑦) pair of mixed strategies to a single
index in the array.

To optimize the performance of each learning algorithm, we
conducted a comprehensive grid search of hyper-parameter values.

By simulating all algorithms against each other over all possible
configurations, we identified and selected the optimal set of hyper-
parameters that resulted in the highest average performance for
each algorithm, similar to Tesauro [11]. For Hyper-Q agents, the
hyper-parameters 𝛼 = 0.01 and 𝛾 = 0.9 were used for all exper-
iments. A value of ` = 0.005 was set for all opponent strategy
estimation methods. The policies of the agents are always greedy,
except for random resets where a random uniform strategy is se-
lected. In the original paper, these resets occur consistently every
1000 iterations, we replace this with a more general 𝜖-greedy ex-
ploration method with 𝜖 = 0.001.

It was noted during initial runs against a Monotone agent that
the implementation details of these random resets have a large influ-
ence on convergence and performance, and these are unfortunately
not discussed in Tesauro’s work [11]. For this reason, we performed
multiple baseline experiments with different restart configurations.
Our first hypothesis was that when both agents randomly restart at
exactly the same iteration, the exploration steps could become too
large, resulting in rewards that are not indicative of the real Q-value
for an estimated strategy. By making the different agents restart
at different random iterations, this could be avoided. However, the
results showed that, except for the Omniscient Hyper-Q Learning
agent, this behaviour does not influence the learning process of the
agents in the long run. We, therefore, made the choice to employ
the more straightforward simultaneous restart method. The experi-
ments also show that although it increases exploration, it is better
for convergence not to restart the strategy estimation methods
randomly. To promote exploration, the Q-tables are initialised with
randomised Q-values instead.

Since the estimation method used by the Bayesian Hyper-Q
Learning agent does not provide a single point estimate 𝑦 of the
opponent’s strategy but instead provides a probability distribution
𝑃 (𝑦 |𝐻) over all possible (discretised) mixed strategies, the Hyper-Q
Learning equations must also be made Bayesian:

Δ𝑄 (𝑦, 𝑥) = 𝛼𝑃 (𝑦 |𝐻)
[
𝑟 + 𝛾 max

𝑥 ′
𝑄 (𝑦′, 𝑥 ′) −𝑄 (𝑦, 𝑥)

]
(11)

𝑥 = arg max
𝑥

∑︁
𝑦

𝑃 (𝑦 |𝐻)𝑄 (𝑦, 𝑥) (12)

This has the advantage over non-Bayesian methods in the way
that not just one Hyper-Q value is updated per iteration, but the
values of all possible opponent strategies, weighted by their pos-
terior probability. The definition of the greedy policy (12) is now
changed as well because the best action over the expected Q-values
for all opponent strategies is selected. To improve the tractability of
this approach, we estimate the posterior 𝑃 (𝑦 |𝐻) by 𝑃 (𝑦′ |𝐻 ′). For
this reason, the Hyper-Q agent with Bayesian estimation has been
implemented as a separate agent.

One important aspect that the work of Tesauro [11] does not
touch upon, is the definition of 𝑦′ in its update equation (Equation
11). Since the Bayesian estimation does not provide a single-point
estimate of the opponent’s strategy, it is unclear how 𝑦′ is deter-
mined in the original paper. One could opt for a mean or median
strategy over 𝑃 (𝑦 |𝐻), but we have chosen a more principled ap-
proach in the Bayesian spirit, similar to 12, by taking the maximum

expected Q-value over all opponent strategies. Equation 11 becomes:

Δ𝑄 (𝑦, 𝑥) = 𝛼 𝑃 (𝑦 |𝐻)
[
𝑟

+ 𝛾 max
𝑥 ′

∑︁
𝑦′

𝑃 (𝑦′ |𝐻 ′)𝑄 (𝑦′, 𝑥 ′) −𝑄 (𝑦, 𝑥)
] (13)

Regarding the implementation of the opponent agents, the IGA
agent starts off with a randomly generated strategy and, as de-
scribed in equation 8, iteratively updates this strategy using a par-
ticular step-size [. Our step-size parameter has been set to [= 0.01.
As for the PHC agent, it starts off with a randomly generated policy
and iteratively updates this policy according to equation 10, where
the parameters 𝛼 , 𝛿 , and 𝛾 have been set to 𝛼 = 0.05, 𝛿 = 0.01, and
𝛾 = 0.95. According to Bowling and Veloso [1], the convergence
of the PHC algorithm requires a suitable exploration component.
To achieve this, our implementation applies a fixed 𝜖-greedy explo-
ration with 𝜖 = 0.01.

2.2 Game Implementation
As previously mentioned, our research considers both the game of
rock-paper-scissors and a cooperation game. Since the Hyper-Q
agents have the means to estimate their opponent’s strategy, we
investigate whether the agents can use this knowledge in a cooper-
ative setting. We challenge the agents to compete for a common
goal. Agents play together in a stochastic stateless environment
and are required to cooperate together to maximize their shared
reward.

Kapetanakis et al. [5] propose the Stochastic Hill-Climbing Game
as a cooperation game. In this game, two agents are required to
collaborate to obtain a shared reward, which depends on their joint
action. The agents have to learn to select the optimal joint action
while taking into account the probabilities associated with the re-
wards. The two reward matrices and the probabilities associated
with these rewards are described in Table 1. However, this game
is susceptible to the issue of relative overgeneralisation, which oc-
curs when agents learn to repeat an optimal action less frequently
because other agents took the wrong action, leading to a negative
team reward. This problem arises because the agents learn rela-
tive to their opponents’ strategies, rather than learning absolute
policies.

The Stochastic Hill-Climbing Game was used to observe how
independent agents, which are unaware of their opponent’s ac-
tions, learn to cooperate. The authors conclude that Independent
Q-learners (IQLs) do not converge to an optimal Nash equilibrium
and propose a different learning scheme based on reward estima-
tion with a shared action-selection protocol, called the Commitment
agent. Although the independent learners are not able to converge
to an optimal Nash equilibrium, the Commitment learners do con-
verge to the optimal Nash equilibrium.

We challenged each opponent estimation strategy of Hyper-Q
(i.e. Bayesian, EMA, and Omniscient) against itself. Each agent used
the same parameters as in the rock-paper-scissors game described
above, except the exploration parameters are different. Instead of
𝜖-greedy, we observed slightly better results by applying random
restarts every 1000 timesteps. Furthermore, the agents’ Q-tables are
initialised optimistically to 10 to encourage exploration, rather than

𝑏0 𝑏1 𝑏2
𝑎0 0.4 : -3.5, 0.6 : 4 0.25 : -46, 0.75 : -38 0.6 : -6, 0.4 : -16
𝑎1 0.25 : -46, 0.75 : -38 0.8 : -5, 0.2 : 5 0.8 : -5, 0.2 : 0
𝑎2 0.7 : -4, 0.3 : -17 0.6 : -6, 0.4 : -16 0.8 : -6, 0.2 : -1

Table 1: Stochastic Hill-Climbing Game. ‘a : x, b : y’ means
probability ‘a’ of getting payoff ‘x’, and probability ‘b’ of
getting payoff ‘y’.

the random initialisation in the rock-paper-scissors game. Each
pair of agents played for a total of 600,000 steps. We repeated the
experiment twenty times.

3 RESULTS
We present the results of the experiments outlined in Section 2 for
the game of rock-paper-scissors first, and the cooperation game
second.

3.1 Results for the Rock-Paper-Scissors Game
All performance results are obtained by taking the average result
across 20 experiments. We start by comparing each agent’s reward
against a Monotone (static) agent. The Monotone agent has a fixed
strategy, meaning it will always play the same action. Figure 1
displays the average reward for each agent when playing against
the Monotone agent. An average reward of 1 corresponds to always
winning, while an average reward of -1 corresponds to always
losing against the Monotone agent. As expected, all agents perform
well and converge to a near 100% win rate (with occasional errors
due to forced exploration). We have also tested each agent against a
random agent. This random agent is equivalent to aMonotone agent
with fixed strategy (1

3 ,
1
3 ,

1
3). In this case, each agent converges to an

average reward of zero, indicating it has found the Nash equilibrium
and cannot exploit the random agent any further.

We now present the performance results of the Hyper-Q agents
when they are challenged against the IGA agent. The performance
results of our own experiments are provided in Figure 2.

We observe that the average return for all agents hovers between
-0.01 and 0.01. This means that all the agents seem to obtain an
average reward of approximately 0, and no agent clearly wins
against the IGA agent. This is in contrast to the original findings
of Tesauro [11], where the three Hyper-Q agents play slightly better
than the IGA agent. Regarding our own results, we cannot clearly
distinguish a better Hyper-Q agent from our experiments. This
could be explained by the fact that our hyperparameters for the
IGA agent most likely differ from those used by Tesauro, since
hyperparameter values are not disclosed there. A direct look at
the policies of our agents reveals that the IGA agent converges
to the mixed strategy Nash equilibrium play of (1

3 ,
1
3 ,

1
3), making it

impossible for the Hyper-Q agents to beat the IGA agent. Hyper-Q
agents correctly respond to this with the same mixed strategy to
sustain the Nash equilibrium. Finally, our own Bayesian Ultra-Q
agent performs on par with the other Hyper-Q estimation strategies,
which is to be expected since it cannot beat the Nash equilibrium
either.

Figure 1: Performance of the different Hyper-Q agents, IGA,
and PHC vs Monotone in the game of rock-paper-scissors.
The results are smoothed over a rolling window with a win-
dow size of 5,000 across all figures.

Figure 2: Average reward per time-step for Hyper-Q vs IGA
and PHC. The left axis represents the average reward per
time-step forHyper-Q against IGA in the game of rock-paper-
scissors. The right axis represents the average reward per
time-step for Hyper-Q against PHC. The axes have different
scales.

Let us now consider the performance against PHC agents. Ac-
cording to Tesauro [11], the average rewards of the Omniscient and
EMAHyper-Q variants are similar, converging to approximately 0.1.
Meanwhile, Tesauro’s Bayesian agent made strong improvements,
converging to an average reward of 0.17. The author mentions that
he cannot explain why the Bayesian agent outperforms the Omni-
scient agent. This is indeed unexpected since the Omniscient agent
has perfect information, giving it a considerable advantage over
the Bayesian agent.

Our own reproduction shows that, on average, the Bayesian
Hyper-Q agent is indeed the best-performing agent of all the Hyper-
Q variants. Despite this, however, the Bayesian Hyper-Q agent

converges at an average reward of -0.10 against the PHC agent,
meaning that, on average, Hyper-Q agents lose against PHC agents.
This finding strongly contradicts the findings of Tesauro [11]. The
EMA Hyper-Q agent converges to an approximate average reward
of -0.15, and our own Bayesian Ultra-Q agent converges to an aver-
age reward of approximately -0.20. Lastly, the Omniscient Hyper-Q
agent performs the worst of all Hyper-Q agents, similar to Tesauro’s
findings. Our reasoning behind this result is that the PHC agent
learns to change its strategy drastically at every step. This means
that the strategy that the Omniscient agent observes from the PHC
agent after one iteration is meaningless because the PHC agent will
use a very different strategy in the next iteration. The Omniscient
agent is not able to counter this behaviour and therefore performs
the worst.

3.2 Results for the Cooperation Game
The reward matrix portrayed by Table1 shows that good cooper-
ation skills are needed to excel since an error can result in severe
punishments for both agents. For instance, the optimal Nash equi-
librium, corresponding to joint actions (𝑎0, 𝑏0) corresponds with an
expected reward of 0.4 ∗ −3.5 + 0.6 ∗ 4 = 1. When agent 1 explores
action a1 for example, the joint action pair becomes (a1, b0) which
has an expected reward of 0.25 ∗ −46 + 0.75 ∗ −38 = −40, resulting
in a large penalty for both agents.

The average reward for each agent is shown in Figure 3. In our
experiments, we observed that the two Omniscient agents both
converged to the non-optimal joint strategy ((0, 0, 1), (0, 0, 1)),
which corresponds to the strategy that is least punishing towards
non-cooperation. This is a similar behaviour to what one can expect
from the traditional independent Q-learners. Similar to when two
independent agents play with each other, the agents have no means
of communication, and thus the agents are forced to play a sub-
optimal, but less punishing strategy. This results in an average
reward of 0.8 ∗−6+ 0.2 ∗−1 = −5. This indicates that although each
Omniscient agent has perfect knowledge of their opponent, the
agents are unable to use this information to coordinate effectively
and achieve a better outcome. For reference, two random agents
playing the cooperation game result in an expected reward of −13.2.

In figure 3 we observe that the EMA and Bayesian Hyper-Q
agents demonstrate considerably worse cooperation than the other
Hyper-Q agents, obtaining average rewards around -12. When ob-
serving the evolution of the mixed strategies, the agents started
from random strategies (1

3 ,
1
3 ,

1
3), and evolved to the mixed strat-

egy joint strategy (3
10 ,

3
10 ,

4
10) after 600,000 steps. These are small

changes after a large number of timesteps. The inaccurate conver-
gence of Hyper-Q agents can be explained by two aspects. First
of all, the Exponential Moving Average (EMA) Hyper-Q agent’s
estimation of its opponent’s strategy is based on an average of
the opponent’s previous 200 mixed strategies, which is a signif-
icant delay that can lead to inaccurate estimations. By the time
the EMA Hyper-Q agent’s estimate is formed, the opponent may
have already changed strategy. Secondly, due to the large Q-table
corresponding to all possible mixed strategies of the opponent and
its own strategies, the convergence simply happens very slowly.
These two factors contribute to inaccurate resulting convergence.

Figure 3: Average reward per timestep for Hyper-Q agents
in the cooperation game. Each time an agent plays against
its own kind. The rewards are identical for both agents in a
single game.

In Figure 3, we observe that the Bayesian Ultra-Q agent out-
performs the Hyper-Q variants significantly, getting substantially
closer to the optimal expected reward of 1, which corresponds to
the optimal joint actions (𝑎0, 𝑏0). To understand this, recall that any
Q-learning agent contains a Q-table where each value represents
an estimated expected reward for a particular state. After each en-
vironment interaction, the Q-learning agent updates the Q-value
corresponding to that state. If a particular state has been explored
multiple times and has a low Q-value, a typical Q-learning agent is
not likely to exploit the corresponding action even if it suddenly re-
ceives a high reward. The Bayesian Ultra-Q agent works differently:
if it encounters a state that has previously resulted in low rewards
but suddenly receives a high reward, results show that it is more
likely to repeat that action in the future. This behaviour is beneficial
in difficult cooperation games where relative overgeneralisation is
often problematic.

This behaviour is observed at timestep 300,000 in figure 3, where
the two Bayesian Ultra-Q agents coincidentally explore a more
successful strategy and immediately become more likely to select
it again. This behaviour can also be seen in Figures 4, which shows
the strategic evolution of a single Bayesian Ultra-Q agent against
its equivalent counterpart over 600,000 timesteps. The strategy evo-
lution of the Bayesian Ultra-Q counterpart agent is almost identical,
so we only show the strategies for the first agent.

Similar to traditional Q-learning agents, the Bayesian Ultra-Q
agents initially converge to joint actions (𝑎2, 𝑏2). However, after
300,000 iterations, they coincidentally explore joint strategies {(1,
0, 0), (1, 0, 0)} and are rewarded with a large payoff. As a result of
this event, the Bayesian Ultra-Q agents become more inclined to
choose this particular strategy and other similar strategies, due to
their sensitive nature. This preference drives the agents towards
convergence to a joint action that returns a higher average reward
over time.

Figure 4: The strategy evolution of one of the two agents in
the cooperation game where both agents are Bayesian Ultra-
Q agents. Initially, action 𝑎2 has the highest probability, but
after a while, the agent recognizes that 𝑎0 is a better option
and goes for that action more frequently.

4 DISCUSSION
Tesauro [11] proposed Hyper-Q Learning, where agents learn to
estimate the value of joint mixed strategies rather than simple
deterministic actions. This means that the Hyper-Q table corre-
sponds to a large grid where each joint mixed strategy is evaluated.
This approach is beneficial for games with no pure-strategy Nash
equilibria, such as the game of rock-paper-scissors. However, the
downside of the approach lies in the fact that one must work with a
much larger Q-table, resulting in significantly slower convergence.

In this paper, we introduced our Bayesian Ultra-Q agent, which
tackles the slow convergence of the Hyper-Q agents by using addi-
tional knowledge about the Hyper-Q values of similar strategy pairs
to update the entire Hyper-Q table instead of one single entry at
every iteration. As a possible measure of similarity, we employ the
cosine similarity. We also addressed open questions and irregular re-
sults from Tesauro’s original work that required more clarification.
We provide a clearer definition of the opponent’s mixed strategy
estimation 𝑦′ in the Bayesian update equation, revise the results
from Tesauro’s Hyper-Q agents against PHC and IGA agents, ex-
plain the poor performance of Tesauro’s Omniscient agent against
PHC, and present hyperparameter settings for reproducibility.

We tested all agents in a second setting, distinct from the rock-
paper-scissors game in Tesauro’s paper, due to the ease of achiev-
ing the mixed-strategy equilibrium in that setting. The stochastic
hill-climbing game provided a more nuanced and challenging en-
vironment for the agents, where clearer distinctions between the
different algorithms emerged, with our Ultra-Q learners performing
the best.

When Hyper-Q agents play against IGA agents, the IGA agents
converge toward the mixed strategy (1

3 ,
1
3 ,

1
3) for the competitive

rock-paper-scissors game. This makes it very hard for Hyper-Q
agents to exploit the IGA agents, resulting in an average reward

of nearly zero. When the Hyper-Q agents are challenged against
the PHC agent, the Omniscient agent performs the best. This is
to be expected since the agent has perfect knowledge of the oppo-
nent’s mixed strategy. The EMA agent performs the worst, which
is caused by the fact that the estimation of the opponent’s strategy
lags behind the actual opponent’s strategy. Indeed, the moving
average estimation simply cannot keep up with the continuous
changes in the opponent’s strategy. The Bayesian Hyper-Q agent
performs better than the EMA Hyper-Q agent. Whereas the EMA
agent makes a simple estimate of what the opponent’s mixed strat-
egy is, the Bayesian agent will instead consider a discrete range
of different possible mixed strategies, and then attribute a proba-
bility distribution across that range of mixed strategies. At every
iteration, the Hyper-Q agents observe a reward as a result of their
action based on their own mixed strategy. The agents then learn
from this observation by updating their Q-tables to better estimate
the expected reward for that mixed strategy. However, the Hyper-Q
agents only update the Q-table for that particular state (the com-
bination of its mixed strategy and its opponent’s mixed strategy),
without taking into account that similar strategies will most likely
result in similar rewards. Our Bayesian Ultra-Q agent attempts to
leverage this feature by also updating the Q-values for all similar
joint mixed strategies inside the Q-table, resulting in more efficient
convergence to the Nash equilibrium.

The improved performance of the Bayesian Ultra-Q agents in
a cooperative setting can be explained by two factors. Firstly,
Bayesian Ultra-Q displays greater sensitivity to changes in the re-
wards compared to the other Hyper-Q agents. We hypothesize that
the ability of the Ultra-Q agent to update the entire Q-table for each
interaction with the environment, may explain this phenomenon,
but further research is necessary to confirm this hypothesis. In a
cooperative game in general, agents will most likely not perform
cooperative actions at the same time during exploration, resulting
in bad average rewards for those cooperative actions. However, by
chance, agents will sometimes perform these cooperative actions
together, resulting in a very positive reward. The sensitive nature
of Bayesian Ultra-Q Learning helps in picking up on these sudden
increases in rewards, drastically increasing the likelihood of trying
those cooperative actions again and converging towards the optimal
joint strategy. This is in contrast to traditional Q-learners, where
these occasional high rewards will not have enough impact on the
Q-table, causing the agents to converge to sub-optimal equilibria.
Secondly, a Bayesian Ultra-Q agent has the ability to simultaneously
update Q-values over all possible opponent strategies and over all
strategies of its own. This means that the agent, besides immedi-
ately adjusting the Q-values for all possible opponent strategies
responsible for the cooperative incident, also adjusts the Q-values
for its own strategies that could have led to this cooperative event.
This guides both agents simultaneously in adjusting their behaviour
towards a more promising cooperative strategy.

In conclusion, the Bayesian Ultra-Q learning agent could present
an interesting approach to learning mixed strategies in multi-agent
games while addressing the issue of relative overgeneralisation.
There are multiple possibilities for further research in this direction.
To enhance the agent’s performance even further, it may be ben-
eficial to analytically derive a more effective weighting factor. By
doing so, the agent would be able to accurately solve the original

Bellman equation, while still leveraging the similarities between
strategies. Additionally, to improve the performance of the Bayesian
Ultra-Q agent, it would be interesting to investigate the use of more
efficient exploration strategies. A concrete example would be to
use an intrinsic reward [3] approach proposed by Chentanez et al..
The intrinsic reward will reward the agent for exploring new states
or actions. This will enhance the exploration capabilities of the
Bayesian Ultra-Q agent, especially in complex tasks. Finally, explor-
ing the applicability of the Bayesian Ultra-Q agent in other game
settings and investigating its scalability to larger games with more
complex strategies could also be interesting for future research.

REFERENCES
[1] Michael Bowling and Manuela Veloso. 2001. Rational and Convergent Learning

in Stochastic Games. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence - Volume 2 (Seattle, WA). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 1021–1026.

[2] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. 2019. Deep coun-
terfactual regret minimization. In International conference on machine learning.
PMLR, 793–802.

[3] Nuttapong Chentanez, Andrew Barto, and Satinder Singh. 2004. Intrinsically
Motivated Reinforcement Learning. In Advances in Neural Information Pro-
cessing Systems, L. Saul, Y. Weiss, and L. Bottou (Eds.), Vol. 17. MIT Press,
Cambridge, MA. https://proceedings.neurips.cc/paper_files/paper/2004/file/
4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf

[4] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook Kim.
2019. Q-Learning Algorithms: A Comprehensive Classification and Applications.
IEEE Access 7 (2019), 133653–133667.

[5] Spiros Kapetanakis, Daniel Kudenko, and Malcolm J. A. Strens. 2005. Learning to
Coordinate Using Commitment Sequences in Cooperative Multi-agent Systems.
In Adaptive Agents and Multi-Agent Systems II, Daniel Kudenko, Dimitar Kazakov,
and Eduardo Alonso (Eds.). Springer Berlin Heidelberg, Berlin, 106–118.

[6] Michael L. Littman. 1994. Markov games as a framework for multi-agent rein-
forcement learning. In Machine Learning Proceedings 1994, William W. Cohen
and Haym Hirsh (Eds.). Morgan Kaufmann, San Francisco, CA, 157–163.

[7] Martin J Osborne et al. 2004. An introduction to game theory. Vol. 3. Oxford
University Press, New York, New York, NY.

[8] Christos H. Papadimitriou. 2007. The Complexity of Finding Nash Equilibria.
Cambridge University Press, Cambridge, 29–52.

[9] Satinder Singh, Michael Kearns, and Yishay Mansour. 2000. Nash Convergence of
Gradient Dynamics in General-Sum Games. In Proceedings of the Sixteenth Con-
ference on Uncertainty in Artificial Intelligence (Stanford, CA). Morgan Kaufmann
Publishers Inc., San Francisco, CA, 541–548.

[10] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press, Cambridge, MA.

[11] Gerald Tesauro. 2003. Extending Q-Learning to General Adaptive Multi-Agent
Systems. In Advances in Neural Information Processing Systems, S. Thrun, L. Saul,
and B. Schölkopf (Eds.), Vol. 16. MIT Press, Cambridge, MA, 871–878.

[12] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

[13] Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and
Ji Liu. 2021. Douzero: Mastering doudizhu with self-play deep reinforcement
learning. In International Conference on Machine Learning. MIT Press, Cambridge,
MA, 12333–12344.

https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf

	Abstract
	1 Introduction
	1.1 Hyper-Q Learning
	1.2 Bayesian Ultra-Q Learning
	1.3 Contributions

	2 Experiments
	2.1 Agent Implementations
	2.2 Game Implementation

	3 Results
	3.1 Results for the Rock-Paper-Scissors Game
	3.2 Results for the Cooperation Game

	4 Discussion
	References

