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ABSTRACT
Balancing exploration and conservatism in the constrained setting

is an important problem if we are to use reinforcement learning

for meaningful tasks in the real world. In this paper, we propose

a principled algorithm for safe exploration based on the concept

of shielding. Previous approaches to shielding assume access to a

safety-relevant abstraction of the environment or a high-fidelity

simulator. Instead, our work is based on latent shielding - another

approach that leverages world models to verify policy roll-outs

in the latent space of a learned dynamics model. Our novel algo-

rithm builds on this previous work, using safety critics and other

additional features to improve the stability and farsightedness of

the algorithm. We demonstrate the effectiveness of our approach

by running experiments on a small set of Atari games with state

dependent safety labels. We present preliminary results that show

our approximate shielding algorithm effectively reduces the rate of

safety violations, and in some cases improves the speed of conver-

gence and quality of the final agent.
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1 INTRODUCTION
Reinforcement learning (RL) [53] has become a principled and pow-

erful tool for training agents to complete tasks in complex and

dynamic environments. While RL promises a lot in theory, it unfor-

tunately comes with no guarantees on worst-case performance. In

safety-critical applications such as healthcare, robotics, autonomous

driving and industrial control systems, it is imperative that decision

making algorithms avoid unsafe or harmful situations [6]. Formal

verification [10] poses as a mathematically precise technique for

verifying system performance and can be used to verify that learned

policies respect safety-constraints during training and deployment.

Recently there has been increasing interest in applying model-

based RL (MBRL) algorithms in the constrained setting. This in-

crease in interest can be attributed in part to exciting developments

in MBRL [30, 31] and the superior sample complexity of model-

based approaches [28, 34]. With better sample-complexity, MBRL

algorithms should in theory commit far fewer safety violations dur-

ing training than their model-free counterparts. This is important

in the problem of safe exploration [6] where collecting experience is
costly and unsafe behaviour can lead to catastrophic consequences

in the real world.

In this work we focus on a method for safe exploration called

shielding [3, 35]. In its original form, shielding forces hard con-

straints on the actions performed by the agent to ensure that the
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agent stays within a verified boundary on the state space. To com-

pute this boundary we typically require a safety-relevant abstrac-

tion of the environment that is compact enough to efficiently per-

form exact verification techniques. Instead we opt to be less restric-

tive and make minimal assumptions about what we have access to

a priori. As in previous work [32], we only assume that there exists

some expert labelling of the states and we do not have access to a

compact model or a safety-relevant abstraction of the environment.

The key motivation for making these minimal assumptions is to

obtain a more general algorithm that can be applied in many real-

life applications where an abstraction is typically not available, as

the system might be too complex or unknown in advance.

Figure 1: Simple grid-world with goal (Eve) in the top right
corner. With a Manhattan distance look-ahead of 2 (blue
squares) Wall-E is forever doomed to fall into the acid during
exploration, as he is unable to determine that the conveyor
belt leads to an unavoidable unsafe state. With safety critics
Wall-E can learn the cost value of the conveyor belt squares
and avoid them without a further look-ahead horizon. *
*
This image was created with the assistance of DALL·E 2

Bounded prescience shielding (BPS) [25] is an approach to shield-

ing that removes the requirement of access to a compact represen-

tation or abstraction of the environment. Instead, BPS assumes

access to a black-box simulator of the environment which can be

queried for look-ahead shielding of the learned policy. Giacobbe

et al. demonstrated that pre-trained state-of-the-art model-free

Atari agents consistently violate safety-constraints provided by

domain experts. And that BPS with a look-ahead horizon of 𝐻 = 5

reduced the rate of several shallow safety properties. In this paper

we use the same state-dependent safety-labels for Atari games pro-

vided by Giacobbe et al., although we note that our approach has

several distinct advantages over BPS: (1) we do not assume access

to a black-box model to assist decision making, (2) we are able to

apply our shielding algorithm during training without substantial
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computational overhead, (3) we are able to look-ahead further into

the future (> 5) with deeper model roll-outs and safety critics.

In a similar fashion to latent shielding [32], we use world models

[27, 28, 30] to learn a dynamics model of the environment for pol-

icy optimisation and approximate shielding. The key differences

between latent shielding and our approach are outlined in Section

3. Most notably we utilise safety critics, which are crucial for ob-

taining further look-ahead ability without explicitly increasing the

shielding horizon, see Fig. 1.

Contributions. Our main contributions are summarised as fol-

lows: (1) we augment latent shielding [32] with safety critics used

to bootstrap the end of imagined trajectories for look-ahead shield-

ing further into the future, (2) we use twin delayed target critics

to reduce the overestimation of expected costs and reduce overly

conservative behaviour, (3) we ground our approach in a logical

formalism, namely probabilistic computation tree logic (PCTL) [10],

(4) we derive PAC-style bounds on the probability of accurately

estimating a constraint violation under the assumption of perfect

transition dynamics, (5) we empirically show that our approach dra-

matically reduces the rate of safety violations on a small set of Atari

games with state-dependent safety labels and in some cases our

algorithm greatly improves the speed of convergence and quality

of the learned policy with respect to accumulated reward.

2 PRELIMINARIES
In this section we describe the relevant background material and

notation required to understand the main results of this paper.

We start by introducing the problem setup and the specification

language used to formalise the notion of safety used throughout

this paper. We then continue with an outline of the world model

components and the policy optimisation scheme.

2.1 Problem Setup
Atari games in the Arcade Learning Environment (ALE) [42] are

built on top of the Atari 2600 Stella emulator. The emulator manip-

ulates 128-bytes of RAM which represent the underlying state of

the game. However, Agents typically only observe 3 × 210 × 160
dimensional tensors representing each of the pixel values of the

screen. Therefore, we model the system as a partially observed

Markov decision processes (POMDP) [47], which in this case is

more appropriate than the traditional MDP formulation.

For our purposes we also extend the POMDP tuple with an

additional labelling function [10]. Formally, we define a POMDP

as a tupleM = (𝑆,𝐴, 𝑝, 𝜄𝑖𝑛𝑖𝑡 , 𝑅,Ω,𝑂,𝐴𝑃, 𝐿) where, 𝑆 is a finite set
of states, 𝐴 is a finite set of actions, 𝑝 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the
probabilistic state-action transition function, 𝜄𝑖𝑛𝑖𝑡 : 𝑆 → [0, 1] is the
initial state distribution such that

∑
𝑠∈𝑆 𝜄𝑖𝑛𝑖𝑡 (𝑠) = 1,𝑅 : 𝑆×𝐴→ R is

the reward function, Ω is a finite set of observations,𝑂 : 𝑆×𝐴×Ω →
[0, 1] is the observation probabilistic function, which defines the

probability of an observation conditional on the previous state-

action pair, AP is a set of atomic propositions which maps to the

set of states by an ‘expert’ labelling function 𝐿 : 𝑆 → 2
AP

.

In particular, at each timestep 𝑡 the agent receives an observation

𝑜𝑡 ∈ Ω, a reward 𝑟𝑡 and a set of labels 𝐿(𝑠𝑡 ) ∈ 2
AP
. Given some

state formula Φ, the agent can determine if the underlying state 𝑠𝑡

satisfies Φ with the following relation,

𝑠 |= true for all 𝑠 ∈ 𝑆
𝑠 |= 𝑎 iff 𝑎 ∈ 𝐿(𝑠)

𝑠 |= ¬Φ iff 𝑠 ̸ |= Φ
𝑠 |= Φ1 ∧ Φ2 iff 𝑠 |= Φ1 ∧ 𝑠 |= Φ2

The goal is to find a policy 𝜋 that maximises expected reward, i.e.

𝜋∗ = argmax𝜋 E[
∑∞
𝑡=1 𝛾

𝑡−1𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 ))], while minimising viola-

tions of the state formula Φ (that encodes the safety-constraints)

during training. Here 𝛾 is the discount factor [53].

2.2 Probabilistic Computation Tree Logic
Probabilistic computation tree logic (PCTL) is a branching time

temporal logic that extends CTL with probabilistic quantifiers [10].

PCTL is particularly useful for specifying reachability and safety

properties for discrete stochastic systems which makes it useful for

our purposes. A valid PCTL formula can be constructed as follows,

Φ ::=true | 𝑎 | ¬Φ | Φ ∧ Φ | P𝐽 (𝜙)
𝜙 ::=𝑋Φ | Φ𝑈Φ | Φ𝑈 ≤𝑛Φ

where 𝑎 ∈ 𝐴𝑃 is an atomic proposition, negation (¬) and conjunc-

tion (∧) are the familiar logical operators, 𝐽 ⊂ [0, 1], 𝐽 ≠ ∅ is a

non-empty subset of the unit interval, and next (𝑋 ), until (𝑈 ) and

bounded until (𝑈 ≤𝑛) are temporal operators. We distinguish here

between state formula Φ and path formula 𝜙 which are interpreted

over states and paths respectively.

We write 𝑠 |= Φ to indicate that a state 𝑠 satisfies a state formula

Φ, where the satisfaction relation is defined as before, see [10] for

details. Similarly, we can define the satisfaction relation for path

formula 𝜙 , this is given in the next section for the specific fragment

of PCTL that we require. Also note that the common operators

eventually (♢) and always (□) and their bounded counter parts (♢≤𝑛

and □≤𝑛) can be defined in a familiar way, see [10].

The reason behind using PCTL as our safety specification lan-

guage is because it allows us to meaningfully trade-off safety and

progress by specifying the probability with which we force the

agent to satisfy to a given temporal logic formula.

2.3 Bounded Safety
The notion of bounded safety for Atari agents introduced by Gia-

cobbe et al. can be straightforwardly grounded in PCTL. Consider

some fixed (stochastic) policy 𝜋 : 𝑂 × 𝐴 → [0, 1] and POMDP

M = (𝑆,𝐴, 𝑝, 𝜄𝑖𝑛𝑖𝑡 , 𝑅,Ω,𝑂,𝐴𝑃, 𝐿). Together 𝜋 andM define a tran-

sition system T : 𝑆 × 𝑆 → [0, 1], where ∑
𝑠′∈𝑆 T (𝑠, 𝑠′) = 1. A finite

trace with length 𝑛 of the transition system T , is a sequence of

states 𝑠0 → 𝑠1 → ... → 𝑠𝑛 denoted 𝜏 , the 𝑖th state of 𝜏 is given

by 𝜏 [𝑖]. A trace 𝜏 satisfies bounded safety if and only if all of its

states satisfy the state formula Φ that encodes the safety constraints.

Formally,

𝜏 |= □≤𝑛Φ iff for all 0 ≤ 𝑖 ≤ 𝑛, 𝜏 [𝑖] |= Φ (1)

for some bounded look-ahead 𝑛. Now in PCTL we can say that a

state 𝑠 ∈ 𝑆 satisfies 𝜀-bounded safety as follows,

𝑠 |= P1−𝜀 (□≤𝑛Φ) iff

𝜇𝑠 ({𝜏 | 𝜏 [0] = 𝑠, for all 0 ≤ 𝑖 ≤ 𝑛, 𝜏 [𝑖] |= Φ}) ∈ [1 − 𝜀, 1] (2)



where 𝜇𝑠 is a well-defined probability measure induced by the

transition system T , over the set of traces staring from 𝑠 and with

finite length 𝑛, see [10] for details. We denote 𝜇𝑠 |=𝜙 as shorthand

for the measure 𝜇𝑠 ({𝜏 | 𝜏 [0] = 𝑠, for all 0 ≤ 𝑖 ≤ 𝑛, 𝜏 [𝑖] |= Φ}),
where 𝜙 ::= □≤𝑛Φ is the path formula we care about. By framing

bounded safety in this way, we obtain a meaningful way to trade

off safety and progress with the 𝜀 parameter.

2.4 World Models
To learn a world model for behaviour learning and look-ahead

shielding we leverage DreamerV2 [30], which was used to master

Atari games in the ALE [42]. DreamerV2 is composed of the follow-

ing components: an image encoder 𝑧𝑡 ∼ 𝑞𝜃 (𝑧𝑡 | 𝑜𝑡 , ℎ𝑡 ) that learns
a posterior latent representation conditional on the current obser-

vation 𝑜𝑡 and recurrent state ℎ𝑡 , the recurrent state space model

(RSSM) [29] which is a mixture of deterministic and stochastic

categorical latents, and the image, reward and discount predictors.

The RSSM consists of twomain components: the recurrent model

ℎ𝑡 = 𝑓𝜃 (ℎ𝑡−1, 𝑧𝑡−1, 𝑎𝑡−1), which computes the next deterministic

latents given the past state 𝑠𝑡−1 = (ℎ𝑡−1, 𝑧𝑡−1) and action 𝑎𝑡−1,
and the transition predictor 𝑧𝑡 ∼ 𝑝𝜃 (𝑧𝑡 | ℎ𝑡 ), which is used as the

prior distribution over the stochastic latents conditional on the

deterministic latents.

The image predictor or decoder 𝑜𝑡 ∼ 𝑝𝜃 (𝑜𝑡 | ℎ𝑡 , 𝑧𝑡 ) is trained
to predict the current observation 𝑜𝑡 with a reconstruction loss.

The image predictor provides useful self-supervised gradients that

help the world model learn a structured latent space for effective

policy optimisation [30]. The reward predictor 𝑟𝑡 ∼ 𝑝𝜃 (𝑟𝑡 | ℎ𝑡 , 𝑧𝑡 )
and discount predictor 𝛾𝑡 ∼ 𝑝𝜃 (𝛾𝑡 | ℎ𝑡 , 𝑧𝑡 ), also provide useful self-

supervised gradients. However, they are primarily used to construct

targets for policy optimisation.

All components of the world model are implemented as neural

networks and jointly trained with backpropagation and straight

through gradients [12]. In addition, KL-balancing [30] is used to

stop the prior and posterior being regularised at the same rate to

prevent instability during training.

2.5 Behaviour Learning
In DreamerV2 [30], policy optimisation is performed entirely on

experience ‘imagined’ by rolling out the world model with a fixed

(stochastic) policy. A replay buffer D is used to retain experience

from the real environment. At each training step a batch 𝐵 is sam-

pled from the replay buffer D and the RSSM is used to sample

sequences of compact latent states 𝑠1:𝐻 , using each of the obser-

vations in 𝐵 as a starting point. Here 𝐻 refers to the ‘imagination’

horizon, which is typically set to a relatively small number (𝐻 = 15)

to avoid compounding model errors that are likely to harm the

learned policy.

The task policy 𝜋 task parameterised by𝜓 task
is trained to max-

imise accumulated reward. In addition, a task critic 𝑣 task parame-

terised by 𝜉 task is used to guide the learning of the policy. TD-𝜆

targets [53] are constructed by rolling out the world model with

the task policy 𝜋 task,

𝑉
task,𝜆
𝑡 = 𝑟𝑡 + 𝛾𝑡

{
(1 − 𝜆)𝑣 task (𝑠𝑡+1) + 𝜆𝑉 task,𝜆

𝑡+1 if 𝑡 < 𝐻 ,

𝑣 task (𝑠𝐻 ) if 𝑡 = 𝐻
(3)

The 𝜆 parameter trades of the bias and variance of the estimate,

with 𝜆 = 0.0 giving the high variance n-step Monte-Carlo return

and 𝜆 = 1.0 giving the high bias one-step return. The task critic

𝑣 task is regressed towards the value estimates with the following

loss function,

L(𝜉 task) = E𝜋 task,𝑝𝜃

[
𝐻−1∑︁
𝑡=1

1

2

(𝑣 task (𝑠𝑡 ) − 𝑠𝑔(𝑉 task,𝜆
𝑡 ))2

]
(4)

where the 𝑠𝑔(·) operator stops the flow of gradients to the input

argument. The task policy 𝜋 task is trained with reinforce gradi-

ents [53] and an entropy regulariser to encourage exploration. In

addition, the difference of the TD-𝜆 targets 𝑉 task,𝜆
and the critic

estimates 𝑣 task are used as a baseline to reduce the variance of the

reinforce gradients. This gives the following loss function for the

task policy 𝜋 task,

L(𝜓 task) =

E𝜋 task,𝑝𝜃

[𝐻−1∑︁
𝑡=1

− log𝜋 task (𝑎𝑡 | 𝑠𝑡 )𝑠𝑔(𝑉 task,𝜆
𝑡 − 𝑣 task (𝑠𝑡 ))︸                                                ︷︷                                                ︸

reinforce

−𝜂𝐻 (𝜋 task (· | 𝑠𝑡 ))︸                 ︷︷                 ︸
entropy

]
(5)

3 APPROXIMATE SHIELDING
In this section we introduce our approximate shielding algorithm

for Atari agents. The general idea is to learn a world model for task

policy optimisation, safe policy synthesis and bounded look-ahead

shielding. The world model of choice is DreamerV2 [30] which has

demonstrated state-of-the-art performance on the Atari benchmark.

While our approach is similar to latent shielding [32] we note that

it has following key differences:

• We learn a cost predictor to estimate state dependent costs,

rather than a labelling function 𝐿𝜗 : 𝑆 → {safe, unsafe}.
• We train a safe policy to minimise expected costs, which is

used as the backup policy if a safety-violation is detected.

• We use safety critics to obtain further look-ahead capabilities

without having to roll-out the world model further into the

future.

• We don’t need to use intrinsic punishment [3] or any sort of

shield introduction schedule [32].

• We test our approach in a much more sophisticated domain,

specifically the ALE [42].

In what follows, we describe the notable components used in our

approach, followed by a precise description of the shielding pro-

cedure and an outline of the full learning algorithm. However, we

will first present some PAC-style bounds on the probability of ac-

curately predicting a constraint violation using our the shielding

procedure. It should then become clear in what sense our algorithm

approximate. Specifically, ‘approximate’ comes from the fact that

we use a learned approximation of the true environment dynamics

and we use Monte-Carlo estimation to predict constraint violations.



3.1 Probabilistic Guarantees
Recall that to ensure 𝜀-bounded safety we are interested in verify-

ing PCTL formula of the form P1−𝜀 (□≤𝑛Φ), where Φ is the state

formula that encodes the safety-constraints. To do so we fix the

task policy 𝜋 task and the learned world model 𝑝𝜃 to obtain an ap-

proximate transition system T̂ : 𝑆 ×𝑆 → [0, 1]. Even with the ‘true’

transition system T : 𝑆 × 𝑆 → [0, 1], exact PCTL verification is

𝑂 (poly(𝑠𝑖𝑧𝑒 (T )) · 𝑛 · |Φ|), which is much too big for Atari games.

Instead we rely on Monte-Carlo estimation of the measure 𝜇𝑠 |=𝜙
by sampling traces 𝜏 from the approximate transition system T̂ .

Proposition 3.1. Given access to the ‘true’ transition system T ,
with probability 1 − 𝛿 we can estimate the measure 𝜇𝑠 |=𝜙 up to some
approximation error 𝜖 , by sampling𝑚 traces 𝜏 ∼ T , provided,

𝑚 ≥ 1

2𝜖2
log

(
2

𝛿

)
(6)

Proof. The proof is a straightforward application of Hoeffding’s

inequality. We can estimate 𝜇𝑠 |=𝜙 by sampling𝑚 traces ⟨𝜏 𝑗 ⟩𝑚𝑗=1 from
T . Let 𝑋1, ..., 𝑋𝑚 be indicator r.v.s such that,

𝑋 𝑗 =

{
1 if 𝜏 𝑗 |= □≤𝑛Φ,
0 otherwise

(7)

Let,

𝜇𝑠 |=𝜙 =
1

𝑚

𝑚∑︁
𝑗=1

𝑋 𝑗 , where ET [𝜇𝑠 |=𝜙 ] = 𝜇𝑠 |=𝜙 (8)

Then by Hoeffding’s inequality,

P
[
|𝜇𝑠 |=𝜙 − 𝜇𝑠 |=𝜙 | ≥ 𝜖

]
≤ 2 exp

(
−2𝑚𝜖2

)
Bounding the RHS from above with 𝛿 and rearranging completes

the proof. □

With these probabilistic guarantees we can set𝑚 appropriately

for some domain specific requirements. In the following proposition,

we demonstrate how we may be sure that a given state 𝑠 satisfies

𝜀-bounded safety given our estimate 𝜇𝑠 |=𝜙 .

Proposition 3.2. Suppose we have an estimate 𝜇𝑠 |=𝜙 ∈ [𝜇𝑠 |=𝜙 −
𝜖, 𝜇𝑠 |=𝜙 + 𝜖], if 𝜇𝑠 |=𝜙 ∈ [1 − 𝜀 + 𝜖, 1] then it must be the case that
𝜇𝑠 |=𝜙 ∈ [1 − 𝜀, 1] and that 𝑠 |= P1−𝜀 (□≤𝑛Φ).

Note that 𝜀 is the bounded safety parameter used to trade-off

exploration and progress and 𝜖 is the approximation error from

Proposition 3.1.

Proof. Suppose 𝜇𝑠 |=𝜙 ∈ [𝜇𝑠 |=𝜙−𝜖, 𝜇𝑠 |=𝜙 +𝜖], 𝜇𝑠 |=𝜙 ∈ [1−𝜀+𝜖, 1]
and 𝜇𝑠 |=𝜙 ∉ [1 − 𝜀, 1]. Then 𝜇𝑠 |=𝜙 − 𝜇𝑠 |=𝜙 > 𝜖 which contradicts

𝜇𝑠 |=𝜙 ∈ [𝜇𝑠 |=𝜙 − 𝜖, 𝜇𝑠 |=𝜙 + 𝜖]. This implies that indeed 𝜇𝑠 |=𝜙 ∈
[1 − 𝜀, 1] and that 𝑠 |= P1−𝜀 (□≤𝑛Φ) by Eq. 2. □

It is important to note that checking the condition 𝜇𝑠 |=𝜙 ∈ [1 −
𝜀 + 𝜖, 1] could lead to overly conservative behaviour, if 𝜖 is not

very small. This is because for 𝜇𝑠 |=𝜙 ∈ [1 − 𝜀, 1 − 𝜀 + 𝜖] we may

falsely predict that 𝑠 ̸ |= P1−𝜀 (□≤𝑛Φ) with some probability up to

1 − 𝛿 . Instead we could check that 𝜇𝑠 |=𝜙 ∈ [1 − 𝜀 − 𝜖, 1], although
this may lead to overly permissive behaviour. In words, the former

configuration admits no false positives and the latter admits no

false negatives (with probability 1 − 𝛿). Either configuration can be

used, although we opt for the former.

To get similar bounds for the approximate transition system

T̂ we can try to get a bound on the total variation (TV) distance

between T̂ and T . However, this is left for future work.

3.2 RSSM with Costs
We augment the RSSM of DreamerV2 [30] with a cost predictor

𝑐𝑡 ∼ 𝑝𝜃 (𝑐𝑡 | ℎ𝑡 , 𝑧𝑡 ) used to predict state dependent costs and a

safety-discount predictor 𝛾 safe𝑡 ∼ 𝑝𝜃 (𝛾 safe𝑡 | ℎ𝑡 , 𝑧𝑡 ) which is used to

help improve the stability of the safety critics.

In the same fashion as the reward predictor 𝑟𝑡 ∼ 𝑝𝜃 (𝑟𝑡 | ℎ𝑡 , 𝑧𝑡 )
the cost predictor 𝑐𝑡 ∼ 𝑝𝜃 (𝑐𝑡 | ℎ𝑡 , 𝑧𝑡 ) parameterises a Gaussian

distribution. We construct targets for the cost predictor as follows,

𝑐𝑡 =

{
0, if 𝑠𝑡 |= Φ

𝐶, otherwise

(9)

where 𝑠𝑡 refers to the true underlying state of the environment, Φ
is the state formula that encodes the safety-constraints, and 𝐶 > 0

is an arbitrary hyperparameter that determines the cost incurred

at a violating state. Using a cost predictor in this way allows the

agent to distribute its uncertainty about a constraint violation over

several consecutive states.

The safety-discount predictor 𝛾 safe𝑡 ∼ 𝑝𝜃 (𝛾 safe𝑡 |ℎ𝑡 , 𝑧𝑡 ) is a binary
classifier trained, in a similar way, to predict if a state is violating

or not. We construct targets for the safety-discount predictor as

follows,

𝛾 safe𝑡 =

{
𝛾, if 𝑠𝑡 |= Φ

0, otherwise

(10)

The key purpose of the safety-discount factor is to reduce the over-

estimation of the expected costs by the safety critics. Using the

safety-discount predictions 𝛾 safe𝑡 to construct targets for the safety

critics, instead of the usual discount predictions 𝛾𝑡 , effectively trans-

forms the MDP into one where violating states are terminal states.

This means the safety critics should always be upper bounded by

𝐶 . The full RSSM loss function can now be written as follows,

L(𝜃 ) = Limage + Lreward
+ L

discount
+ Lcost

+ L
safe-discount

+ LKL-B (11)

3.3 Safe Policy
The safe policy 𝜋safe is used as the backup policy if we detect that

the task policy 𝜋 task is likely to commit a safety violation in the

next 𝑇 steps. Since we have no access to an abstraction of the

environment we cannot synthesise a shield before training and so

the safe policy must be learned.

The safe policy 𝜋safe is only concerned withminimising expected

costs and so we use the cost predictor 𝑐𝑡 ∼ 𝑝𝜃 (𝑐𝑡 |ℎ𝑡 , 𝑧𝑡 ) to construct
TD-𝜆 targets as follows,

𝑉
safe,𝜆
𝑡 = 𝑐𝑡 + 𝛾𝑡

{
(1 − 𝜆)𝑣safe (𝑠𝑡+1) + 𝜆𝑉 safe,𝜆

𝑡+1 if 𝑡 < 𝐻 ,

𝑣safe (𝑠𝐻 ) if 𝑡 = 𝐻
(12)



The safe critic 𝑣safe parameterised by 𝜉safe is regressed towards the

TD-𝜆 targets with a similar loss function as before,

L(𝜉safe) = E𝜋 safe,𝑝𝜃

[
𝐻−1∑︁
𝑡=1

1

2

(𝑣safe (𝑠𝑡 ) − 𝑠𝑔(𝑉 safe,𝜆
𝑡 ))2

]
(13)

The safe policy 𝜋safe parameterised by 𝜓 safe
is also trained with

biased reinforce gradients and an entropy regulariser as before,

L(𝜓 safe) = E𝜋 safe,𝑝𝜃

[𝐻−1∑︁
𝑡=1

log𝜋safe (𝑎𝑡 | 𝑠𝑡 )𝑠𝑔(𝑉 safe,𝜆
𝑡 − 𝑣safe (𝑠𝑡 ))︸                                             ︷︷                                             ︸

reinforce

−𝜂𝐻 (𝜋safe (· | 𝑠𝑡 ))︸                 ︷︷                 ︸
entropy

]
(14)

Note that the sign is flipped here, so that the safe policy 𝜋safe

minimises expected costs rather than maximises them.

3.4 Safety Critics
Safety critics estimate the expected costs under the task policy

𝜋 task. They give us an idea of how safe specific states are under

the task policy state distribution. Additionally, we can use them to

bootstrap the end of ‘imagined’ trajectories for further look-ahead

capabilities.

To estimate the expected costs under the task policy 𝜋 task we

use two safety critics 𝑣𝐶
1
and 𝑣𝐶

2
parameterised by 𝜉𝐶

1
and 𝜉𝐶

2
re-

spectively. To prevent overestimation, the safety critics are jointly

trained with a TD3-style algorithm [23] to estimate the following

quantity,

E𝜋 task,𝑝𝜃

[ ∞∑︁
𝑡=1

(𝛾 safe𝑡 )𝑡−1 · 𝑐𝑡

]
(15)

Each of the two safety critics 𝑣𝐶
1
and 𝑣𝐶

2
, has its own target critic

𝑣𝐶
1

′
and 𝑣𝐶

2

′
, that are updated periodically with slow updates. The

TD-𝜆 targets are constructed by taking a minimum of the two target

critics 𝑣𝐶
1

′
and 𝑣𝐶

2

′
as follows,

𝑉
𝐶,𝜆
𝑡 = 𝑐𝑡+𝛾 safe𝑡

{
(1 − 𝜆)min{𝑣𝐶

1

′ (𝑠𝑡 ), 𝑣𝐶
2

′ (𝑠𝑡 )} + 𝜆𝑉𝐶,𝜆
𝑡+1 if 𝑡 < 𝐻 ,

min{𝑣𝐶
1

′ (𝑠𝐻 ), 𝑣𝐶2
′ (𝑠𝐻 )} if 𝑡 = 𝐻

(16)

Both safety critics 𝑣𝐶
1
and 𝑣𝐶

2
are regressed towards the TD-𝜆 targets

with the following loss function,

L(𝜉𝐶 , 𝑣𝐶 ) = E𝜋 task,𝑝𝜃

[
𝐻−1∑︁
𝑡=1

1

2

(𝑣𝐶 (𝑠𝑡 ) − 𝑠𝑔(𝑉𝐶,𝜆
𝑡 ))2

]
(17)

where (𝜉𝐶 , 𝑣𝐶 ) ∈ {(𝜉𝐶
1
, 𝑣𝐶

1
), (𝜉𝐶

2
, 𝑣𝐶

2
)}.

3.5 Algorithm
The full learning algorithm is split into two distinct phases: world

model learning and policy optimisation (including safe policy syn-

thesis and safety critic learning). To generate experience for world

model learning we need to interact with the real environment and

to mitigate safety violations in the real environment we pick actions

with the shielded policy,

𝜋shield (· | 𝑠) =
{
𝜋 task (· | 𝑠) if 𝜇𝑠 |=𝜙 ∈ [1 − 𝜀 + 𝜖, 1]
𝜋safe (· | 𝑠) otherwise

(18)

To estimate 𝜇𝑠 |=𝜙 we roll-out the world model 𝑝𝜃 with the task

policy 𝜋 task to generate a batch of𝑚 sequences of compact latent

states ⟨𝑠 (𝑖 )
1:𝐻
⟩𝑚
𝑖=1

. For each trace 𝜏 (𝑖 ) = 𝑠 (𝑖 )
1
, ..., 𝑠

(𝑖 )
𝐻

we compute the

discounted cost as follows,

cost(𝜏 (𝑖 ) ) =
𝐻∑︁
𝑡=1

(𝛾 (𝑖 )𝑡 )
𝑡−1 · 𝑐 (𝑖 )𝑡 (19)

Proposition 3.3. Under the ‘true’ transition systemT if cost(𝜏) <
𝛾𝐻−1 ·𝐶 then necessarily 𝜏 |= □≤𝐻Φ

Proof. The proof is a straightforward argument. By construc-

tion 𝑐𝑡 = 𝐶 if and only if 𝜏 [𝑡] ̸|= Φ, therefore cost(𝜏) < 𝛾𝐻−1 · 𝐶
implies that ∀ 1 ≤ 𝑡 ≤ 𝐻 𝑐𝑡 = 0 which implies that ∀ 1 ≤ 𝑡 ≤
𝐻 𝜏 [𝑡] |= Φ. □

Using this idea, our estimate 𝜇𝑠 |=𝜙 ≈ 𝜇𝑠 |=𝜙 is then computed as

follows,

𝜇𝑠 |=𝜙 =
1

𝑚

𝑚∑︁
𝑖=1

1

(
cost(𝜏 (𝑖 ) ) < 𝛾𝐻−1 ·𝐶

)
(20)

If we train safety critics then we can use the bootstrapped costs

instead,

b-cost(𝜏 (𝑖 ) ) =
(
𝐻−1∑︁
𝑡=1

(𝛾 (𝑖 )𝑡 )
𝑡−1 · 𝑐 (𝑖 )𝑡

)
+min

{
𝑣𝐶
1
(𝑠 (𝑖 )
𝐻
), 𝑣𝐶

2
(𝑠 (𝑖 )
𝐻
)
}
(21)

And we can estimate 𝜇𝑠 |=𝜙 with a larger horizon 𝑇 > 𝐻 , since

the safety critics should capture the expected costs from 𝑠
(𝑖 )
𝐻

and

beyond,

𝜇𝑠 |=𝜙 =
1

𝑚

𝑚∑︁
𝑖=1

1

(
b-cost(𝜏 (𝑖 ) ) < 𝛾𝑇−1 ·𝐶

)
(22)

After several environment interactions with the shielding policy

𝜋shield, a batch of data 𝐵 is sampled from the replay buffer D, for

world model learning, task policy optimisation, safe policy optimi-

sation and safety critic learning. The full algorithm is presented on

the following page.

4 EXPERIMENTS
In this section we conduct a simple analysis and compare our algo-

rithm, DreamerV2 with shielding, to DreamerV2 without shielding.

We present results for two Atari games with state dependent labels:

Assault and Seaquest (see Fig. 2). We start by giving a summary

of the environments, followed by the experimental results and an

accompanying discussion.

4.1 Assault
Assault is a fixed shooter game similar to Space Invaders. The goal
is to shoot and destroy alien ships continuously deployed by a

mothership. The smaller ships shoot lasers at the player which

the player must avoid, otherwise they loose a life. In addition, the

player’s weapon can overheat if they fire too often, which also



Algorithm 1 DreamerV2 [30] with Shielding

Initialise: replay buffer D with 𝑆 random episodes.

Initialise: 𝜃 ,𝜓 task
,𝜓 safe

, 𝜉 task, 𝜉safe, 𝜉𝐶
1
, 𝜉𝐶

2
, 𝜉𝐶

1

′
, 𝜉𝐶

2

′
randomly.

while not converged do
// World model learning
Sample 𝐵 ∼ D.

For every 𝑜𝑡 ∈ 𝐵 compute sequences 𝑠𝑡 :𝑡+𝐻 with RSSM.

Update RSSM parameters 𝜃 with Eq. 11

// Task policy optimisation
From every 𝑜𝑡 ∈ 𝐵 imagine sequences 𝑠𝑡 :𝑡+𝐻 with 𝜋 task.

Compute TD-𝜆 targets with Eq. 3.

Update task critic parameters 𝜉 task with Eq. 4.

Update task policy parameters𝜓 task
with Eq. 5.

// Safety critic optimisation
Compute safety critic targets with Eq. 16.

Update safety critic parameters 𝜉𝐶
1
and 𝜉𝐶

1
with Eq. 17.

For 𝑖 ∈ [1, 2] 𝜉𝐶
𝑖

′ ← 𝜈𝜉𝐶
𝑖
+ (1 − 𝜈)𝜉𝐶

𝑖

′
(soft update [23]).

// Safe policy optimisation
From every 𝑜𝑡 ∈ 𝐵 imagine sequences 𝑠𝑡 :𝑡+𝐻 with 𝜋safe.

Compute TD-𝜆 targets with Eq. 12.

Update safe critic parameters 𝜉safe with Eq. 13.

Update safe policy parameters𝜓 safe
with Eq. 14.

// Environment interaction
for 𝑘 = 1, ..., 𝐾 do

Observe 𝑜𝑡 from environment and compute 𝑠𝑡 = (𝑧𝑡 , ℎ𝑡 ).
From 𝑠𝑡 sample𝑚 sequences ⟨𝑠 (𝑖 )

1:𝐻
⟩𝑚
𝑖=1

with 𝜋 task.

Estim. 𝜇𝑠 |=𝜙 ≈ 𝜇𝑠 |=𝜙 with safety critics, Eq. 21 and Eq. 22.

Play 𝑎 ∼ 𝜋shield (𝑎 | 𝑠𝑡 ) and observe 𝑟𝑡 , 𝑜𝑡+1 and 𝐿(𝑠𝑡 ).
Construct 𝑐𝑡 with Eq. 9 and 𝛾 safe𝑡 with Eq. 10.

Append ⟨𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑐𝑡 , 𝛾safe𝑡 , 𝑜𝑡+1⟩ to D.

end for
end while

results in them loosing a life. The state dependent formula Φ that

the agent aims to satisfy at each timestep is given as follows,

Φ = ¬hit ∧ ¬overheat (23)

where hit = true iff the player is hit by a laser and overheat =

true iff the player’s weapon overheats. We chose this environment

because Giacobbe et al. demonstrated state-of-the-art agents only

concerned with reward overheat the weapon frequently and that

BPS [25] alleviated the issue to some degree. The idea is that when

the task policy 𝜋 task is about to overheat the weapon the shield

kicks in and the safe policy 𝜋safe prevents the agent from firing the

weapon while avoiding any incoming lasers.

4.2 Seaquest
Seaquest is an underwater shooter in which the player controls a

submarine equipped with an infinite supply of missiles. The goal is

to rescue divers, shoot enemy sharks and submarines, while man-

aging a limited supply of oxygen and resurfacing when necessary.

The player receives points and a full supply of oxygen when they

surface with a diver on board and if they surface with six divers

they are awarded additional points based on the amount of oxygen

(a) Assault

(b) Seaquest

Figure 2: Screenshots from the two Atari environments.

they have left. However, surfacing without any divers is not per-

mitted and results in the player loosing a life. The state formula Φ
for Seaquest is a little more involved and is defined as follows,

Φ = (surface⇒ ((diver∧low-oxygen)∨very-low-oxygen∨
six-divers)) ∧ ¬out-of-oxygen ∧ ¬hit (24)

where surface = true iff the submarine surfaces, diver = true iff

the submarine has at least one diver on board, low-oxygen = true

iff the players oxygen supply < 16, very-low-oxygen = true iff

the players oxygen supply < 4, six- divers = true iff the submarine

has six divers on board, out-of-oxygen = true iff the player runs

out of oxygen and hit is defined similarly as before.

In words, it is only permissible to surface if the agent has a diver

and is low on oxygen, has six divers or has very low on oxygen

(with or without a diver). Surfacing with a diver when oxygen

supplies are plentiful is deemed unsafe since it makes the game

unnecessarily harder.

With Seaquest the agent needs to balance multiple objectives at

once which is why it is a useful environment to test our approach.

In our experiments we demonstrate that the learned safe policy

𝜋safe is able to deal with a slightly more complex set of constraints

and prevent the agent from making costly mistakes during training.

4.3 Training Details
The agents are trained on a single Nvidia Tesla A30 (24GB RAM)

GPU and a 24-core/48 thread Intel Xeon CPU with 256GB RAM.

Due to time constraints and limited compute resources all agents

are trained on one seed and for precisely 40M frames on Atari

environments provided by the ALE [11, 42].

All the hyperparameters for DreamerV2 are set as their default

values for Atari games, which are given in [30]. Notably, for all



experiments we set the imagination horizon 𝐻 = 15, TD-𝜆 discount

𝜆 = 0.95 and discount factor 𝛾 = 0.999.

The cost and safety-discount predictors are implemented as neu-

ral networks with identical architectures to the reward and discount

predictors used in DreamerV2. The safe policy, critic and safety

critics are also implemented as neural networks in the same way

that the task policy and critic are implemented in DreamerV2. See

[30] for all details. The shielding hyperparameters are also fixed in

all experiments as follows, specifically we set the bounded safety

parameter 𝜀 = 0.1, number of samples 𝑚 = 512, approximation

error 𝜖 = 0.091, shield horizon 𝑇 = 30 (2 seconds in real time) and

safety critic smooth parameter updates 𝜈 = 0.005.

4.4 Results
We evaluate our algorithm by comparing the performance of Dream-

erV2 [30] with and without shielding. Specifically, we compare the

reward curves during training, the best episode return and the

cumulative violations during training. Table 1 presents the best

episode scores and total violations during training for DreamerV2

and DreamerV2 with shielding. In addition, Fig. 3 displays the learn-

ing curves for both algorithms.

Table 1: Best episode scores and cumulative violations for for
DreamerV2 [30] and DreamerV2with approximate shielding.

Env

DreamerV2 DreamerV2 w/ Shielding

Best Score # Violations Best Score # Violations

Assault 34753 11726 57504 8579

Seaquest 11400 15697 7040 4889

Discussion. As seen in Table 1 and Fig. 3 our approximate shield-

ing algorithm reduces the rate of safety violations for both Assault
and Seaquest. In terms of reward, our shielding procedure has dra-

matically improved the speed of convergence for Assault and main-

tained comparable performance for Seaquest. We must note that

these results are far from complete as we have not these run exper-

iments over multiple random seeds or for the typical 200M frames,

which is used as a common benchmark [30]. Nevertheless, we claim

that our results provide compelling evidence that something is

going on, which should motivate further investigation.

5 RELATEDWORK
In this section we provide a discussion on the three main areas of

research that our contribution is based on: world models, safe RL,

and shielding.

World Models were first introduced by Ha and Schmidhuber

[27] in a paper of the same name, although their inspiration is

much more deeply rooted in psychology [55] and Bayesian theories

of the brain [22]. Dyna – “an integrated architecture for learning,

planning and reacting” – proposed in [52], introduced the idea of

not only utilising reward signals to learn good policies, but also

1
The gives us roughly 𝛿 = 0.1, using a tighter bound than Eq. 6 which bounds the

probability of overestimating 𝜇𝑠 |=𝜙 .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Step 1e7

0

10000

20000

30000

40000

Re
tu

rn

(a) Training reward curve for Assault
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(b) Training reward curve for Seaquest
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(c) Cumulative violations for Assault
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(d) Cumulative violations for Seaquest
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Figure 3: Training curves for DreamerV2 [30] and DreamerV2
with approximate shielding (ours).*
*
The reward curves are smoothed with simple exponential smoothing with

𝑤 = 0.6.



learning a dynamics model through observed transitions [52]. In

theory, planning with the learned dynamics model could speed

up convergence of the policy, but many early approaches suffered

from model bias [9]. Gaussian processes (GPs) [57] were quickly

used as the stand-in dynamics model for the Dyna architecture as

they reduced model bias by quantifying their own uncertainty [18].

However, GPs struggle in high-dimensional settings and so the use

neural architectures has been increasingly explored instead.

More recently, with the neural architecture Dreamer [28], Hafner

et al. demonstrated that policies can be learnt purely from imagined

experience and transfer well to the original environment. Addition-

ally, DreamerV2 [30] and DreamerV3 [31] demonstrated state-of-

the-art performance in a variety of domains including the Atari

benchmark [11, 42] and MineRL [26] both of which have been

notorious challenges for MBRL.

Once a world model is learned it can be used in a flexible manner

for policy optimisation [28], online planning schemes [29, 33, 59],

risk measures [62], and defining intrinsic rewards for improved

exploration [38, 49]. As a result world model have been applied in

a variety of domains, such as robotics [58], imitation learning [19],

continual learning [36] and safe RL [8].

Safe RL is typically categorised as the problem of maximising

reward, while maintaining some reasonable system performance

during learning and deployment of the agent [24]. This definition

has been interpreted in many different ways, stemming from differ-

ent objectives in different domains. For example, reward hacking

[6, 51] refers to an agent ‘gaming’ or exploiting a misspecified

reward function, which can lead to undesired outcomes. Robusti-

fying policies to distributional shift [7, 46, 56] and the alignment

problem [20, 48] are also important areas of research in safe RL.

However, we tackle the problem of safe exploration [24, 45] which

can be described as the problem of minimising the violation of

safety-constraints during the exploratory phase of training and

beyond.

The constrained Markov decision process (CMDP) [4] is a widely

used framework formodeling decision-making problemswith safety

constraints. In addition tomaximising expected reward, agentsmust

satisfy a set of constraints encoded as a cost function that penalises

unsafe state-action pairs. In the tabular case, linear programs can

be used to solve CMDPs [4]. In the non-tabular case, a variety

of model-free algorithms with function approximation have been

proposed [1, 15, 17, 39, 60].

Model-based approaches for safe RL utilise a variety of differ-

ent techniques for dynamics modelling and policy optimisation.

Berkenkamp et al. use GPs to quantify model uncertainty in a princi-

pled way to safely learn neural network policies. Other approaches

use ensembles of neural networks (NNs) to quantify uncertainty

and either deploy MPC [40, 54], perform policy optimisation within

a certified region of the state space [41], or use constrained policy

optimisation with Lagrangian relaxation [61] to learn safety-aware

policies. Notable work by As et al. leverages Dreamer [30] and

stochastic weight averaging Gaussian (SWAG) [43] to obtain a

Bayesian predictive distribution over possible world models that

explain the dynamics of the environment. As et al. also stress the im-

portance of policy optimisation with safety critics over shortsighted

MPC schemes.

Shielding for RL has been introduced as a correct by con-

struction reactive (shield), which prevents the learned policy from

entering unsafe states defined by some temporal logic formula [3].

The shield itself can be applied before the agent picks an action (pre-

emptive), modifying the action space of the agent. Alternatively, the

shield can be applied after the agent picks an action (post-posed),

overriding actions proposed by the agent if they lead to a viola-

tion. Both types of shield require the ability to construct and solve

a safety game [14] on a relatively compact representation of the

MDP. Similar to control barrier functions (CBFs) [5] from optimal

control theory [37], the shield projects the learned policy back into

a verified safe set on the state space.

Recent work on shielding includes generalising it to partially

observed [16] and multi-agent [21] settings, as well as resource

constrained partially observed MDPs [2]. Many of these methods

still require a suitable abstraction of the environment or sufficient

domain knowledge for synthesising a shield. However, these strong

assumptions come hand in hand with strong guarantees on safety

of the learned policy, specifically [3] show that by construction

their shield synthesis procedure guarantees safety with minimal

interference.

Learning a shield online is an alternative approach to shield-

ing RL policies without requiring significant prior knowledge. For

example, Shperberg et al. propose tabular and parametric shields

which are learning online to prevent agents from repeating cat-

astrophic mistakes in the partially observed setting [50]. Other

online shielding approaches include latent shielding [32] and BPS,

both of which have substantially influenced our work. For a more

complete review of reactive methods based on shielding we refer

the interested reader to [44].

6 CONCLUSIONS
In this paper we presented an approximate shielding algorithm

for safe exploration of Atari agents and more general RL policies.

Building on DreamerV2 [30] and previous work, such as, latent
shielding [32] and BPS [25], we propose a more general algorithm

that uses safety critics and policy roll-outs to perform look-ahead

shielding in the latent space of a learned world model.

In contrast to previous work, we are able to successfully apply

our approximate shielding algorithm with minimal hyperparameter

tuning and no shielding introduction schedules. While we loose the

benefit of strict and formal guarantees obtained by earlier shielding

approaches [3], we are able to derive some probabilistic guarantees,

although this is incomplete and further work should be done to

derive bounds for the approximate transition system.

Nevertheless, our empirical results are promising and provide

some good evidence that general RL agents can benefit from shield-

ing in certain settings, not only in terms of complying with safety

specifications, but also in terms of improved performance. The aim

of this research is to shed light on the promise of this approach and

we hope this opens the door to further investigation.
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