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ABSTRACT
Deep Q-learning is known to suffer from overestimation of action
values, due to the maximization operation when computing the
target values. Such overestimation can lead to substantial degrada-
tion of reward performance. In this work, we introduce a simple
method based on DQN, named as Deep Value Q-learning, which
regulates the estimation of action values and effectively tackles
over- and underestimation. We evaluate our method on Atari-100k
benchmark and demonstrate that DVQN consistently outperforms
Deep Q-learning, Deep Double Q-learning and Clipped Deep Dou-
ble Q-learning in terms of reward performance. Moreover, our
experimental results show that DVQN serves as a better backbone
network than DQN, when combined with an additional representa-
tion learning objective.

KEYWORDS
Deep Reinforcement Learning, Value Overestimation, Contrastive
Learning

1 INTRODUCTION
Q-learning [23] has been one of the most widely applied reinforce-
ment learning algorithms. Combined with function approximation
through neural networks, deep Q-learning (DQN) [16] shows strong
adaptability to complex discrete control tasks. However, Q-learning
is known to suffer from overestimation bias [20] [8] due to the
maximization operation when computing the temporal difference
target. When the overestimation of the Q-function is uniform over
all actions, the relative preferences among action values remain
unchanged, and therefore the policy remains the same. However,
when overestimations are not uniform, they can be detrimental to
policy learning [20]. This phenomenon is particularly problematic
with deep Q-learning (DQN) [16].

One classic solution to the problem of overestimation is Double
Q-learning[8]. It introduces two independent unbiased Q-functions
to estimate action values. To update the first Q-function, action
with the highest value associated with Q-function one is selected
and evaluated by the Q-function two, it is just the opposite when
updating the second Q-function. Double Q-learning is guaranteed
to underestimate the maximum expected action values. Deep Dou-
ble Q-learning (DDQN) [21] extends this idea to the setting of deep
Q-learning, in that it treats the target Q-function in DQN as the
second independent unbiased action value estimator. DDQN has
been shown to alleviate the overestimation problem and improve
the reward performance in a wide range of domains. However, the
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target Q-function in DQN is introduced to stabilize the training
process and is synchronized with the Q-function regularly. There-
fore, the two Q functions in DDQN are not fully independent, in
some cases DDQN still suffers from overestimation. Clipped Double
Q-learning (CDDQN) [4] addresses this concern by taking the min-
imum between the two independent Q-functions in an actor-critic
setting [18]. CDDQN is applied to tackle overestimation in TD3
[4] and SAC [6], two of the most popular RL algorithms mainly for
continuous control tasks. However, CDDQN is still not a complete
answer, it can effectively suppress the overestimation bias, but also
tends to underestimate at the same time, since the employed mini-
mum operation over action value evaluation is not lower bounded.
In this work, we propose a novel method, Deep Value Q-learning
(DVQN), to regulate the estimation of action values. We introduce
an unbiased state value function learned by a separate neural net-
work, which can be used to regulate over- and underestimation
biases of the action values through a knowledge distillation loss.
We demonstrate with experimental results that DVQN outperforms
DQN, DDQN and CDDQN in terms of reward performance.

While works like DDQN and CDDQN focused on overcoming the
shortcomings of the Q-learning mechanism, several recent meth-
ods instead focus on improving reward performance by training
better state representations with additional representation learning
objectives. For example, Yarats et al. [26] propose using the recon-
struction loss as an auxiliary loss alongside the RL loss. Zhang et al.
[27] learn an invariant representation without reconstruction. In
[15] and [19], momentum contrastive learning objectives are im-
posed on RL algorithms to improve reward and sample efficiency.

We explore and demonstrate that combining DVQN with an ad-
ditional objective for representation learning leads to better perfor-
mance compared to combining such a loss directly with DQN. Our
experimental results support that DVQN can serve as a backbone
architecture to realize the potential of an additional representation
objective. In particular, we apply a temporal contrastive learning
objective to the feature extraction module of DVQN. The temporal
contrastive objective is constructed such that states that are tempo-
rally close to each other share similar representations in a learned
latent space, while those that are temporally far from each other
have dissimilar representations. The temporal contrastive objec-
tive stems naturally from the underlying markov decision process
(MDP). Besides, works like [19, 22, 24] also show that the use of the
underlying structure of the MDP in learning state representations
leads to improvements in convergence and reward performance of
RL algorithms in several domains.

We summarize our contributions as follows:
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(1) We propose a novel method (DVQN) to tackle the over- and
underestimation bias of action values. DVQN outperforms
our baselines in 5 arbitrarily chosen domains of Atari-100k
[12].

(2) Our experiments reveal that the temporal contrastive ob-
jective employed on DVQN leads to equal or greater per-
formance. However, applying the same objective directly to
DQN tends to be non-beneficial or even detrimental.

(3) Our DVQN method is easy to implement and requires little
additional computational cost.

We open source our implementation at https://github.com/xy9485/
DVQN_RL

2 BACKGROUND AND RELATEDWORK
Reinforcement learning (RL) involves the interaction between the
agent and the environment. An RL task can be depicted by aMarkov
Decision Process (MDP) in form of a tupleM = ⟨S,A,P,R⟩, where
S andA indicate the state and action space respectively, P(𝑠′ |𝑠, 𝑎)
and R(𝑠, 𝑎) denote transition probability function and the reward
function. The goal is to learn a policy 𝜋 (𝑠) that maximizes the
expected discounted cumulative reward for any given state. Given
a policy 𝜋 , we can define the discounted accumulative reward when
taking action 𝑎 on state 𝑠:

𝑄𝜋 (𝑠, 𝑎) = E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝜋

]
(1)

where 𝛾 is the discount factor. The goal is to find the optimal value
function 𝑄∗ (𝑠, 𝑎) = max𝜋 𝑄𝜋 (𝑠, 𝑎) so that the optimal policy can
be induced by :

𝜋∗ (𝑎 |𝑠) =

1 if 𝑎 = argmax

𝑎∈A
𝑄∗ (𝑠, 𝑎)

0 otherwise
(2)

𝑄∗ (𝑠, 𝑎) is also the unique solution of Bellmann optimality equation
as:

𝑄∗ (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗
(
𝑠′, 𝑎′

)
(3)

Q-learning is a classic model-free RL algorithm to compute
𝑄∗ (𝑠, 𝑎), which update 𝑄 (𝑠, 𝑎) iteratively by:

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑅
(
𝑠, 𝑎, 𝑠′

)
+ 𝛾 max

𝑎′
𝑄
(
𝑠′, 𝑎′

)
−𝑄 (𝑠, 𝑎)

]
(4)

In Deep Q-learning (DQN) [16], 𝑄 (𝑠, 𝑎) is approximated by a
neural network 𝜙 , which is iteratively updated by minimizing the
loss function below using gradient descent:

L(𝜙) =
[
𝑟 + 𝛾 max

𝑎′∈A
𝑄
𝜙

(
𝑠′, 𝑎′

)
−𝑄𝜙 (𝑠, 𝑎)

]2 (5)

where (𝑠, 𝑎, 𝑠′, 𝑟 ) is sampled from the replay buffer which stores a
fix amount of previous experiences dynamically. 𝜙 indicated the
target Q network which is synchronized with 𝜙 by an interval of
timesteps, using the target network is crucial to stablize the training
of 𝑄𝜙 . Considering the stochasticity and noisy error of the neural
network function approximator, DQN is prone to overestimate
value estimation when evaluating the selected action 𝑎′, due to the
maximization operator.

To tackle the overestimation, Double DQN (DDQN) [21] takes the
target network𝑄

𝜙
(𝑠, 𝑎) as another unbiased action value estimator

to evaluated 𝑎′ selected by 𝑄𝜙 (𝑠, 𝑎), thus its loss function becomes:

L(𝜙) =
[
𝑟 + 𝛾𝑄

𝜙

(
𝑠′, argmax𝑄𝜙 (𝑠′, 𝑎′)

)
−𝑄𝜙 (𝑠, 𝑎)

]2 (6)

However, since 𝜙 is synchronized with 𝜙 regularly, 𝑄𝜙 (𝑠, 𝑎) and
𝑄
𝜙
(𝑠, 𝑎) are not fully independent. Thus, the overestimation cannot

be effectively alleviated.
Clipped Double DQN (CDDQN) [4] improves over DDQN by

employing two independent action value estimators: 𝑄𝜙1 (𝑠, 𝑎) and
𝑄𝜙2 (𝑠, 𝑎). CDDQN was first introduced in an actor-critic setting, it
can be adapted in a critic-only setting by ensuring that the policy
which interact with the environment is induced by𝑄𝜙1 (𝑠, 𝑎). When
computing the target value, action 𝑎′ with the highest value on
𝑠′ is selected according to 𝑄

𝜙1
(𝑠′, 𝑎′) and then evaluated by the

minimum between 𝑄
𝜙1
(𝑠′, 𝑎′) and 𝑄

𝜙2
(𝑠′, 𝑎′). The loss function

optimized by CDDQN is given as:

L(𝜙𝑖 ) =
[
𝑟 +𝛾 min

𝑖∈{1,2}
𝑄𝜙𝑖

(
𝑠′, argmax

𝑎′
𝑄
𝜙1
(𝑠′, 𝑎′)

)
−𝑄𝜙𝑖

(𝑠, 𝑎)
]2 (7)

While CDDQN overcomes the overestimation problem it is still
prone to underestimation [2], since the target value is not lower
bounded. Improving over both DDQN and CDDQN, our approach
tackles simultaneously over- and under-estimations by introducing
a novel regularization term based on a value function approximation
for states. The estimated value function behaves like a baseline
which is used in a knowledge distillation framework to regulate
the Q-values.

3 METHODOLOGY
3.1 Deep VQ-learning
To overcome the overestimation problem in deep Q-learning with-
out resorting to underestimation, we propose Deep VQ-learning
network (DVQN). We present the pseudocode for DVQN in Algo-
rithm 1. In particular, along with the original Q function 𝑄𝜙 (𝑠, 𝑎),
we learn additionally a state value function𝑉𝜃 (𝑠) according to tem-
poral difference and use it to regulated the estimation of 𝑄𝜙 (𝑠, 𝑎).
The rationale behind estimating an addition state value function is
that it is not vulnerable to overestimation since unlike in Q-function
estimation, no maximization operation is required to calculate the
temporal difference target.

Specifically, in lines 13-16 of Algorithm 1, 𝑉𝜃 (𝑠) is updated ac-
cording to its own TD-loss, sharing the same data with the update
to 𝜙 . In lines 18-22 of Algorithm 1, we construct the loss with
respect to 𝜙 with two terms: the original Q-learning loss and the
difference between 𝑉𝜃 (𝑠) and 𝑄𝜙 (𝑠, 𝑎) weighted by an additional
factor 𝛼 .

The former L𝑄 ensures the learning is still towards the opti-
mal policy and the latter prevents 𝑄𝜙 (𝑠, 𝑎) from deviating too far
from 𝑉𝜃 (𝑠). More specifically, when 𝑄𝜙 happens to overestimate
on (𝑠𝑡 , 𝑎𝑡 ) and results in an arbitrarly large 𝑦𝑞 (line 18 in Algorithm
1), in comparison, 𝑉𝜃 (𝑠𝑡 ) is more likely to estimate a rational state
value, thus 𝑉𝜃 (𝑠𝑡 ) is more promising for 𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) to approach in
this case. On the other hand, when the target 𝑦𝑞 for 𝑄𝜙 (𝑠, 𝑎) is
rationally estimated without overestimation, 𝑉𝜃 (𝑠) will not deviate
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too much from 𝑄𝜙 (𝑠, 𝑎) since the training data is shared between
updates of both values function. Moreover, when the 𝑄𝜙 (𝑠, 𝑎) un-
derestimates due to noisy error of the function approximator,𝑉𝜃 (𝑠)
plays a role of cross validation to regulate the error.

To clarify more regarding L𝑉𝑄 (line 20 of Algorithm 1), it only
updates parameters of 𝑄𝜙 (𝑠, 𝑎). This ensures that the parameters
of 𝑉𝜃 (𝑠) will not be polluted by potential overestimation errors of
Q values. The form of L𝑉𝑄 is related to knowledge distillation loss
[11] where 𝑄𝜙 (𝑠, 𝑎) is allowed to distill knowledge from 𝑉𝜃 (𝑠) by
approaching the estimation of𝑉𝜃 (𝑠), but not the other way around.
The effect of this knowledge distillation can be adjusted by a factor
𝛼 .

During the training of DVQN the data is collected by the 𝜖-policy
determined by𝑄𝜙 (𝑠, 𝑎), which evolves towards the optimal Q func-
tion𝑄𝜙∗ (𝑠, 𝑎) propelled by the loss term 𝐿𝑄 (line 19 of Algorithm 1).
On the other hand,𝑉𝜃 (𝑠) is also learned over the same training data
and thus 𝑉𝜃 (𝑠) will also evolve towards the optimal value function
𝑉𝜃 ∗ (𝑠). Therefore,𝑉𝜃 (𝑠) plays a role as a stable baseline for𝑄𝜙 (𝑠, 𝑎)
to reference along the whole training process.

In practice, as shown in Figure 1, 𝑉𝜃 (𝑠) and 𝑄𝜙 (𝑠, 𝑎) are sharing
the same feature extractor (CNN), referred to as Encoder. 𝑉𝜃 (𝑠′)
and 𝑄𝜙 (𝑠, 𝑎) are both Multi-Layer Perceptron (MLP) modules. The
former has a single output, and the latter has an output size equal
to the action space. SG indicates stop gradient so that Q Net can
approach the output of V net, but not vice versa. As an easy-to-
implement extension of DQN, it does not sacrifice sample effiency
since updates to 𝑉𝜃 and 𝑄𝜙 use the same data sampled from the
replay buffer.

We show that our method outperforms DQN, Double DQN and
Clipped Double DQN as baselines in section 4.2.1.

Figure 1: Architecture of DVQN. The encoder is shared be-
tween the V Net and the Q Net to improve training efficiency.
V Net is learned on its own temporal difference loss, Q Net
is learned by minimizing the original Q loss along with the
discrepancy between estimations of V Net and Q Net in form
of Knowledge Distillation. SG denotes stop gradient

.

3.2 Combine DVQN with Temporal Contrastive
Learning

Based on the architecture of DVQN, we impose an additional tempo-
ral contrastive learning objective to the feature extraction (encoder)
module of DVQN to investigate its effect on reward performance.

Contrastive learning [1, 7, 9, 17] involves generating achor, pos-
itive and negative samples in an unsupervised way and ensuring

Algorithm 1 DVQN
1: Initialize replay buffer D
2: Initialize 𝑄 net parameters 𝜙 , 𝑉 net parameters 𝜃
3: Initialize target networks 𝜙 ← 𝜙, 𝜃 ← 𝜃

4: Initialize weighting factor 𝛼 , replay period 𝑛, update target
networks period𝑚

5: Initialize the environment
6: for 𝑡 = 1 to 𝑇 do
7: Select action 𝑎 given state 𝑠 (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦)
8: Observe reward 𝑟 and next state 𝑠′
9: Store transition (𝑠, 𝑎, 𝑠′, 𝑟 ) to replay buffer D
10: if 𝑡 mod 𝑛 then
11: Sample a batch of transitions 𝐵 = (𝑠, 𝑎, 𝑠′, 𝑟 ) from D
12: # Compute loss for 𝑉𝜃 :
13: 𝑦𝑣 (𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾𝑉

𝜃
(𝑠′)

14: L𝑉 = 1
|𝐵 |

∑
(𝑠,𝑎,𝑠′,𝑟 ,𝑑 ) ∈𝐵 (𝑉𝜃 (𝑠) − 𝑦𝑣 (𝑟, 𝑠′, 𝑑))2

15: Update 𝑉𝜃 by one step of gradient descent:
16: ∇𝜃L𝑉
17: # Compute loss for 𝑄𝜙 :
18: 𝑦𝑞 (𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾 max𝑎′ 𝑄𝜙

(𝑠′, 𝑎′)

19: L𝑄 = 1
|𝐵 |

∑
(𝑠,𝑎,𝑠′,𝑟 ,𝑑 ) ∈𝐵

(
𝑄𝜙 (𝑠, 𝑎) − 𝑦𝑞 (𝑟, 𝑠′, 𝑑)

)2
20: L𝑉𝑄 = 1

|𝐵 |
∑
(𝑠,𝑎,𝑠′,𝑟 ,𝑑 ) ∈𝐵

(
𝑟 + 𝛾𝑉𝜃 (𝑠′) −𝑄𝜙 (𝑠, 𝑎)

)2
21: Update 𝑄𝜙 by one step of gradient descent:
22: ∇𝜙 (L𝑄 + 𝛼L𝑉𝑄 )
23: if 𝑡 mod𝑚 then
24: Update target netowrks:
25: 𝜙 ← 𝜙

26: 𝜃 ← 𝜃

the anchor matches the positive samples more than the negative
samples in a latent representation space. In practice, instead of sam-
pling negative examples explicitly, we sample batches of data with
anchor-positive pairs, and each anchor takes the positive samples
corresponding to other anchors as its negative samples. We denote
𝑞𝑖 , 𝑘𝑖 as the codes of an achor and its positive sample respectively
in a training batch B and K = {𝑘1, 𝑘2, 𝑘3 ...}. The discrimination
objective is in practice achieved by optimizing the InfoNCE loss
[17] as:

L = −E𝑞𝑖 ∈B

[
log

exp (𝑠𝑖𝑚(𝑞𝑖 , 𝑘𝑖 ))∑
𝑘 𝑗 ∈K exp

(
𝑠𝑖𝑚(𝑞𝑖 , 𝑘 𝑗 )

) ] (8)

where 𝑠𝑖𝑚(𝑞𝑖 , 𝑘𝑖 ) denotes the similarity measured by bilinear prod-
uct [10]: 𝑞𝑇

𝑖
𝑊𝑘𝑖 .

We utilize two consecutive states in one transition as an anchor-
positive pair to learn a rich temporal-level representation. Note
that temporal similarity reflects the topological similarity in the
Markov Decision Process describing the task. Hence, such a tempo-
ral contrastive learning objective can serve as an ideal task-agnostic
auxiliary objective.

Figure 2 illustrates the framework of our temporal contrastive
learning. It involes three learnable components: encoder 𝑓 , pro-
jection head 𝑔 and transformation matrix𝑊 . Before input to the
encoder, state 𝑠𝑡 is first augmented by random shift [13, 14], which



Figure 2: Network structure of temporal contrastive learning,
𝑓 and 𝑔 are encoder and projection head respectively, 𝑓 and 𝑔
are momentum conterparts. 𝑠𝑡 and 𝑠𝑡+1 are batch data sam-
pled from the replay buffer, they are preprocess by random
shift as data augmentation. Only encoder 𝑓 is shared with
DVQN. 𝑔 is employed to prevent the output of the encoder
from being overwhelmed by the discrimination objective and
ignoring task-related knowledge.

has been testified to be a simple yet effective method to improve
sample effciency and robustness of RL learning. The usage of pro-
jection head g can help avoid features from being tightly clustered
[5], called feature collapse. More specifically, without the projection
head, features learning tends to be overwhelmed by the contrastive
objective and ignore task-related knowledge. Besides, since the data
in RL settings is generated and stored dynamically, to stablize the
temporal contrastive learning, we applied momentum encoder and
momentum projection head [9, 15] to process 𝑠𝑡+1. 𝑓 and 𝑔 are syn-
chronized with 𝑓 and 𝑔 respectively by a fix interval of timesteps.
The encoder 𝑓 is shared with the encoder in DVQN.

To facilitate a comparative analysis, we also apply the same
objective to the encoder of DQN and illustrate with experimental
results that the temporal contrastive learning objective applied to
our method results in a better reward performance than the one
applied to DQN.

The temporal contrasitive objective we use shares similarity
with ATC[19] by sampling contrastive data pairs from temporally
close states. However, we use projection heads for both anchor and
positive samples, whereas ATC only uses one projection head for
the anchor sample.

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Setup
In our experiments, we evaluate our method on Atari 100k[12],
which is a sample-constrained benchmark for algorithms dealing
with visual (raw pixel) inputs and discrete control. The agent is
allowed to interact for 100k steps with the environment, roughly
equivalent to 2 hours of gameplay by human.

Due to the complex observation space and constrained amount of
data, there has been a number of works that conduct experiments
on Atari 100k to evaluate data efficiency. For example, in [12],
Kaiser et al. proposed a model-based method which is compared
with Rainbow DQN and humen-level performance. CURL [15] and
ATC [19] applied momentum contrastive learning to the feature
extraction of RL agent to improve sample effcieny on Atari 100k.
[13] and [25] achieves effective data efficiency improvement on the
same benchmark by applying data augmentation.

Evaluation. Our experimental evaluation is divided into two
parts. The first part involves comparing ourmethod to DQN, DDQN,
and CDDQN in terms of reward performance and value estimation
control. In the second part, we analyze the extent to which our
method can benefit when an additional temporal contrastive loss
is applied to the feature extraction part of the network. We also
compare it when DQN is combined with the same loss. Our exper-
imental results are averaged across 15 random seeds along with
confidence interval for one standard deviation.

4.2 Result Analysis
4.2.1 DVQN improves over DQN, DDQN, CDDQN. In Figure 3, the
performance of the reward against time steps is evaluated. DVQN
(our method) outperforms DQN, DDQN, and CDDQN in all 5 Atari
domains. This indicates that DVQN regulates the Q-value estima-
tion in a positive way. At the same time, Figure 4 illustrates a
comparison of the Q value estimations between DVQN and those
of DQN, DDQN and CDDQN. As expected, DQN estimates𝑄𝜙 (𝑠, 𝑎)
the highest and performs the worst. On the contrary, DVQN consis-
tently suppresses overestimation in all 5 Atari domains by keeping
𝑄𝜙 (𝑠, 𝑎) not far from the estimation of 𝑉𝜃 (𝑠). CDDQN estimates
higher than DVQN in three domains. In Pong and Breakout, CD-
DQN estimates lower than DVQN, which is also in our expectation,
since the estimation of CDDQN is not lower bounded. However,
DVQN is superior to CDDQN in reward performance in all domains,
this supports that DVQN can tackle both over- and underestima-
tion. CDDQN tends to be either too aggressive or too conservative
when suppressing overestimation, as a result, errors of either over-
estimation or underestimation are still being backpropagated to
some extent. In addition, as discussed in Section 2 that DDQN alle-
viates the overestimation but still suffers from it, our experiments
demonstrate that DDQN tends to be conservative in reducing the
overestimation across all domains. As a result, it leads to equal or
slightly better reward performance compared with DQN.

Moreover, DVQN demonstrates consistently lower-level noise
in value estimation across all domains when compared to other
methods. This characteristic could benefit DVQN, as it achieves the
highest reward performance in our evaluations.

Furthermore, DVQN addresses the problem of overestimation
on the granularity of individual state-action pairs, while DDQN
and CDDQN concentrate on introducing an additional Q function
to mitigate the problem on the level of the entire action value
function. Additionally, DVQN can also regulate underestimated Q
values, which is not possible with DDQN and CDDQN.

4.2.2 Effect of contrastive learning. Due to the fragility of RL algo-
rithms [3], it is possible that incorporating an extra representation
objective into an RL algorithm and learning it end-to-end could



(a) Asterix (b) Pong

(c) Boxing (d) Riverraid

(e) Breakout

Figure 3: Reward performance against timesteps on 5 atari
domains

have a negative impact. This is also observed in our experimen-
tal results. As DVQN helps alleviate the negative impact caused
by overestimation or underestimation errors on network updates,
we aim to investigate the impact on reward performance when
an extra representation learning objective is introduced to DVQN.
To be more precise, we utilize DVQN and DQN as the backbone
architecture and incorporate an extra temporal contrastive learning
objective (TC) to the feature extraction (encoder). The temporal
contrastive loss ensures that states that are temporally close to each
other should have similar representations in a learned latent space,
and those that are far apart should have dissimilar representations.
As shown in Figure 5, the combination of DVQN with TC results
in improved reward performance in three domains compared to
DVQN alone, while maintaining equivalent reward performance in
the other two domains. In comparison, combining DQN with TC

(a) Asterix (b) Pong

(c) Boxing (d) Riverraid

(e) Breakout

Figure 4: Estimation of Q-value against timesteps on 5 atari
domains

leads to a significant degradation in reward performance in two
domains and no improvement in one domain. Despite enhancing
reward performance in the Riverraid and Breakout, it still underper-
forms DVQN with TC. Based on the presented results, we conclude
that DVQN is a better backbone network than DQN for leveraging
the potential benefit of TC objective. We attribute it to the fact that
DVQN provides a circumstance with reduced noisy error caused
by over-and underestimation, thereby allowing for more efficient
learning of temporal-level knowledge.

We also conducted experiments incorporating the contrastive
objective introduced by Curl [15] to DVQN and DQN. Curl involves
using two random augmentations of a single state as a contrastive
pair. We find in our results that training DVQN and DQN along
with the Curl loss results in inferior reward performance compared



to using backbone networks alone. Eventhough DVQN with Curl
is superior than DQN with Curl in reward performance.

(a) Asterix (b) Pong

(c) Boxing (d) Riverraid

(e) Breakout

Figure 5: Reward evaluation against timesteps of DVQN and
DQN combined with temporal contrastive objective

5 CONCLUSION
Our work introduces a new network, DVQN, designed to address
the issues of over- and underestimation of action values by learning
an additional state value function to regulate the original Q-function
in DQN. We provide empirical evidence that our method surpasses
DQN, DDQN, and CDDQN in terms of reward performance. More-
over, our experiments incorporating a temporal contrastive loss
demonstrate that using DVQN as the backbone network allows
for realizing greater potential benefits of the contrastive loss than
when using DQN. Our method is easy to implement and increase
limited computational cost. In particular, the additional state value

function shares the same data with the Q-function to learn, thus
it does not sacrifice data efficiency compared with DQN. In the
future, it would be worthwhile to explore the adaption of DVQN in
actor-critic settings and evaluate its effect.
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