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ABSTRACT

In file sharing networks, users can either act for personal gain by
downloading files, or help the network by uploading files. Similar
scenarios are important in many diverse situations where it does
not pay to be nice to others. As a result, self-interested agents
shirk collective behaviour, leading to poor outcomes for everyone.
In response, in this paper we introduce a new metric for social
dilemmas that quantifies the discrepancy between what is rational
for individual agents and what is rational for the group, which we
call the exchange threshold. 1t is the smallest fraction of individual
rewards that need to be shared to make the unique Nash equilibrium
a social welfare optimum. The exchange threshold differs to notions
of altruism or prosocial behaviours because agents are transferring
their rewards in order to induce others to care about their welfare.
We investigate how the exchange threshold of a strategic game
representing a tragedy of the commons varies with the abundance
of resources to provide a deeper understanding of the underlying
incentives.
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1 INTRODUCTION

Social dilemmas are situations in which individuals can either act
selfishly for their personal gain, or act in a prosocial manner to help
the collective, which delivers more benefits overall. The problem
with social dilemmas is that it does not pay to be nice to others;
individuals have incentives to act in ways that undermine socially
optimal outcomes. As a result, self-interested agents will shirk col-
lective behaviour, leading to poor outcomes for everyone. Although
every agent prefers the outcome of mutual collective behaviour
compared to mutual selfish behaviour, individually they are power-
less to bring this about. This tension between collective and indi-
vidual rationality is characterised by agents who engage in selfish
behaviour outperforming agents engaged in collective, prosocial be-
haviour within a group, but prosocial groups outperforming selfish
groups.

For example, suppose a group of farmers has access to an area of
common land, and each farmer benefits from grazing their sheep
on that land. The number of sheep that can be supported by this
area is limited, however, and the land will degrade if overgrazed,
permanently reducing the number of sheep it can support in the
future. The collective does best when the land is used sustainably,
but the individual farmers profit from grazing larger numbers of
sheep. This particular social dilemma represents a common pool
resource, and is known as a tragedy of the commons.
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Social dilemmas are important because they occur in many di-
verse situations, such as in file sharing networks where users can
either act for personal gain by downloading files, or help the net-
work by uploading files. Consequently, methods to resolve such
dilemmas, achieved by causing all agents to prefer to take collective
action, are important. Using an approach from game theory, we
typically represent social dilemmas abstractly as games. We say that
an agent defects when it acts selfishly, and that it cooperates when it
acts to improve social outcomes. Many solutions to social dilemmas
have been developed [1, 10, 11, 22], but they typically have specific
requirements to be applicable, such as requiring agents to have
preferences beyond the game rewards. In addition, solutions should
require only a single agreement between participants, be able to
scale to an arbitrary number of agents, and not require agents to
have private knowledge of, or previous experience with, others. To
our knowledge, only a potential application of trading in shares of
future rewards [24] could meet these criteria.

In this paper, therefore, we propose a solution that resolves social
dilemmas while addressing the issues highlighted above. The key
principle underpinning our approach is that if we sufficiently align
the individual and group incentives, then rational agents maximis-
ing their own rewards will also maximise the group rewards. To
align individual incentives, we introduce the concept of an agent
committing to share a proportion of its future game rewards with
the other agents, a technique that we label reward transfer. By en-
gaging in reward transfer, an agent incentivises the recipients to
help it prosper which, paradoxically, can lead to a net profit for the
transferring agent if it leads to a beneficial behavioural change in
the recipients. We investigate two specific cases of reward transfer,
firstly when a single agent gifts a proportion of its reward, and
secondly when all agents exchange the same proportion of their
reward with each other. In the former case, we are interested in
determining the proportion of reward an agent should commit to
sharing to maximise its resulting game reward. For the latter, we
show that a sufficiently large amount of reward transfer from all
agents is guaranteed to resolve a social dilemma, and we deter-
mine the minimum proportion that must be exchanged to do so.
Concretely, we make the following contributions: we introduce
a metric denoting the optimal proportion of future rewards an
agent should unilaterally commit to sharing; we introduce a sec-
ond metric quantifying the minimum proportion of future rewards
that must be shared by all agents to resolve a dilemma; and we
develop a technique to find these limiting values in games that are
computationally intractable. The effectiveness of our solution is
demonstrated with experiments and results using reinforcement
learning agents in a stochastic game.

The paper is structured as follows. In Section 2 we review existing
work on metrics and solutions applying to social dilemmas, and we
formalise the notion of a social dilemma in Section 3. In Section 4 we
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introduce our reward transfer concept, demonstrate it on normal-
form games, and suggest a method to derive the limiting values in
intractable stochastic games in Section /5. We provide experiments
using our concept with an example social dilemma in Section 6
and present our results in Section 7. Finally, we conclude with a
discussion in Section 8.

2 RELATED WORK

2.1 Metrics and Contracts

Some metrics, such as the price of anarchy or Pareto optimality [6],
can be used to assess the quality of certain game outcomes, but say
little about how such outcomes are achieved. Other metrics specify
how difficult it is to achieve a certain outcome. For example, the
selfishness level of a game measures the willingness of the players
to cooperate [1]; it is the smallest fraction of the social welfare that
needs to be offered to each player so that a social optimum is realised
in a pure Nash equilibrium. The selfishness level both describes
some aspect of a game and suggests a solution to achieving a social
optimum by providing players with sufficient additional incentives.

In social dilemmas, the key question is how to ensure mutual
cooperation. One option is to use binding agreements, or contracts,
between players. Instead of a commitment to playing certain actions,
Deng and Conitzer propose that a player could alternatively com-
mit to avoid playing certain (possibly mixed) strategies, a method
called disarmament [3, 4]. By removing all non-prosocial actions,
or at least reducing the probability that an agent may play them,
more socially beneficial outcomes can be achieved. While some
social dilemmas cannot be resolved using disarmament, Deng and
Conitzer introduce a negotiation protocol that can lead to improve-
ments in the expected welfare of the participants.

Hughes et al. [10] demonstrate how extending a stochastic game
to include a joint action contract protocol improves outcomes in
social dilemmas. If contracts can include a side payment, then an
agent can be paid to take an action that benefits another. Building
on this, Christoffersten et al. [2] formalised voluntary contracts
for stochastic games to include payments. While it isn’t clear how
much should be transferred, a fixed point about which players of
a two-player game could negotiate the fair value of a joint action,
called the Coco value, has been proposed [27].

An alternative to specifying payments for each particular action
is to take a stake in the future outcomes of an agent through the
trading of reward shares, as suggested by Schmid et al. [24]. Becom-
ing invested in the future rewards of others promotes collective
behaviour, and Schmid et al. demonstrate that this approach can
lead to cooperation in an iterated game and conduct experiments
on its applicability in a stochastic game.

2.2 Reward shaping

By default, an agent only cares about the rewards it receives in a
game, but agent designers can include additional factors beyond
the game reward to influence agent behaviour. For example, in
reinforcement learning, reward shaping modifies a player’s reward
function during training to include auxiliary intrinsic rewards that
encourage certain behaviours.

When an intrinsic reward is proportional to the mean collec-
tive reward [21], it is regarded as a prosocial reward, and has been

shown to help reinforcement learning agents converge to a better
equilibrium in the Stag Hunt social dilemma. McKee et al. [20] gen-
erate different degrees of prosocial rewards in mixed-motive games;
they train populations with homogeneous and heterogeneous pref-
erences and find some evidence that heterogeneous populations
achieve more equal payoffs. Furthermore, they experimentally find
good average prosocial reward coefficients for different environ-
ments. Alternatively, using reward shaping so that agents receive a
negative intrinsic reward when they achieve lower than average
rewards creates an incentive for the group to prefer egalitarian
rewards [11]. This can be an effective approach in social dilemmas
where agents have access to a punishment mechanism: when an
agent benefits from selfish behaviour, the other agents receive lower
than average rewards, and their intrinsic reward motivates them to
punish the selfish agent. In this way, punishment helps to prevent
agents from learning selfish behaviour.

According to Haeri [9], an agent can be considered to have a
relationship with another specific agent if it has a personal reward
term that depends upon the reward of the other agent. In the general
case, a weighted graph can be used to specify the relationships
between all agents; Haeri investigates how different relationship
networks lead to differences in performance. Rather than specifying
the form of the reward shaping by hand, they can be determined via
an optimisation process, for example by using a genetic algorithm
to optimise a reward network [31]. Gemp et al. develop an algorithm
to reduce the Price of Anarchy through reward shaping (here called
loss-sharing), [8]. During training, the players learn a loss sharing
matrix that increases the social welfare of the worst case Nash
equilibrium solution, leading to more cooperative strategies.

While reward shaping has been effective at promoting collective
behaviour in social dilemmas, it requires agents to have intrinsic
motivations. By adjusting behaviour to include factors beyond the
game reward, intrinsic motivations may not be rational for a self-
interested agent to include.

2.3 Strategic play

Repeated games and games involving a temporal component can
permit cooperative strategies if they are enforceable via punish-
ment [12]. In the famous example, Tit-For-Tat plays the action
its partner chose in the previous round, and thus reciprocates co-
operation while resisting exploitation from a defecting partner.
Several researchers have approached cooperation with strategic
play for multiagent reinforcement learning agents, in two main
approaches. The first trains an agent with two policies, one for
punishment, (defect) and the other for cooperation, and selects
between them to punish defection and reciprocate cooperation dur-
ing game play [15, 23]. The second permits a range of cooperative
behaviour, such as mirroring the degree of niceness of an opponent,
as determined by the change in the state value attributed to the
actions of the opponent [5], or reciprocating the degree of cooper-
ation displayed by the opponent as estimated by a classifier [32].
Similarly, if agents have the ability to detect violations of social
norms, they are able to respond with sanctions [29].

While strategic play can add cooperative equilibria, because it
only increases the range of strategies available to the players, it
does not remove equilibria that lead to poor outcomes. Additionally,



it can be difficult to detect when an opponent is defecting, and
other players still have an incentive to defect if they can avoid
punishment. Strategic play is therefore difficult in settings with
hidden information.

2.4 Opponent shaping

When training against fixed agents using learning algorithms, sev-
eral methods have been developed that take into account the im-
pact that an agent’s actions have on the learning of their oppo-
nents. These algorithms guide their opponents towards beneficial
behaviours, in an approach known as opponent shaping [7, 12, 16, 17,
22]. Because it considers the full lifetime deployment of the learning
algorithms, rather than focusing on the performance in a single
episode, it deals with the performance of the policies that learning
algorithms converge to, in a similar manner to multi-armed bandit
algorithms.

Instead of shaping opponent behaviour by choosing certain ac-
tions, if agents are able to transfer reward and observe the actions of
their opponents, then they may opt to reward opponents when they
take certain actions to encourage them to learn good behaviour.
Explicitly adding an action that allows a player to gift reward to
their peers has been investigated in a tragedy of the commons sce-
nario [18] and in coordination games [33]. This is potentially more
powerful than opponent shaping, because it can incentivise oppo-
nents to take actions for which they would not normally be able to
receive reward. Yang et al. [36] explicitly optimise the transferred
reward to shape the behaviour of opponents to improve the overall
reward to the gifting agent.

2.5 Discussion

There are several approaches that have been taken to try to ensure
cooperative behaviour, but there remain weaknesses and limita-
tions. For example, while contracts provide assurance of behaviour,
they can be burdensome to specify: Not only must a policy able
to specify the contracts it would enter for all possible states, if it
is costly to write a contract, then agents will incur a cost multiple
times. While reward shaping has proven effective at learning coop-
erative policies in multiagent games, it often does not explain where
the additional rewards come from, relying upon an innate disposi-
tion of the agents themselves. Such techniques may consequently
be of limited value with a group of self-interested, independent
agents. Strategic play and opponent shaping can be effective in
social dilemmas, but because they construct additional equilibria,
they do not exclude the original deficient equilibria, and thus they
do not resolve the social dilemma. Additionally, shaping opponent
behaviour by giving rewards dependent upon the joint action of
all opponents scales poorly as the number of opponents increases.
Additionally, some of these approaches are specific to either two-
player games, or are for only one opponent that is not part of the
team; indeed, it is an open question as to how they can be scaled to
an arbitrary number of players.

3 SOCIAL DILEMMAS

We begin by formalising what it means for a game to be a social
dilemma so that we are then able to demonstrate how our proposed
solution directly addresses their core challenges. We believe that

our formalisation, which focuses on prosocial choices, represents
the underlying dynamics of these dilemmas. While others have
defined social dilemmas previously, there remain limitations and
implications. For example, Macy and Flache [19] consider them to be
normal-form games with payoffs satisfying certain conditions, but
some of their conditions are justified only if players hold particular
beliefs. In turn, Hughes et al. [11] generalises the Macy and Flache
definition to apply to Markov games, but we believe that their
formulation is loose and includes games that could alternatively be
characterised as coordination games.

In short, a social dilemma is a game in which all players have
the option to take prosocial actions (to cooperate) at a (potential)
cost to themselves. That is to say that while the benefit to their
group is higher when players cooperate, the benefit to an individual
player from cooperating is lower than when it defects. The players
therefore face a choice between acting for the benefit of the group
or in their own interests.

Now, in order to define a social dilemma, we need to introduce
the notion of collective good, or social welfare, a metric indicating
the benefit overall to a group. A social dilemma can therefore be
defined as a situation in which, for all agents: (i) the social welfare
of the group is strictly greater when an agent chooses to cooperate
than when it chooses to defect, regardless of the actions of the other
agents; and (ii) each agent does better individually when it defects
than when it cooperates.

Consider a general-sum normal-form game played by n > 2
agents, where each agent faces a single choice to either cooperate, C,
or defect, D. The reward function R('@) returns a tuple of individual
rewards 7 = (ry, ..., ), where r; is the reward received by player
i, and depends only upon the action tuple @ = (ai,...,an), where
a; € {C, D} is the action chosen by player i. For convenience, we
also use R; to represent the function that returns the reward for
player i, and we write a_; as the tuple of actions of all players other
than player i. If we then denote our given social welfare metric as
SW(7), then we can define a social dilemma as follows.

Vi SW(R(R|a; = C)) > SW(R(Z|a; = D)) (1)
Vi Ri(@|a; =D) > Ri(@|a; =C) 2

A partial social dilemma can be said to occur when each agent
might benefit from defecting, depending on what the other agents
play. In this respect, there exists at least one combination of oppo-
nent actions that would lead to an agent preferring to defect. Thus,
while there is always at least some personal cost to cooperation
in a strict social dilemma, there is not always a personal cost to
cooperation in a partial social dilemma. For a partial social dilemma,
the second inequality above can therefore be softened as follows.

Vi 3a_;: Ri(3|ai =D,a_;) > R,~(E’|a,~ =C, a__:)

We also introduce the qualifier of a weak social dilemma when
cooperation does not strictly increase the social welfare in all out-
comes. Here it is sufficient that, for all agents, cooperation only
sometimes leads to greater social welfare, and never reduces it.
For a weak social dilemma, therefore, the first inequality can be
replaced with the following.

Vi SW(R(TIW(ZI = C)) > SW(R(‘a’|al = D))
Vida_; : SW(R(@|a; = C,a—})) > SW(R(dla; = D,a_}))



(b) Chicken

(a) Prisoner’s Dilemma

Table 1: Social Dilemmas

In this paper for social welfare, we use the utilitarian metric, U,
which measures the unweighted sum of rewards obtained by all

players, as follows.
n

U(?) = 3)
i=1

Prisoner’s Dilemma (Table 1a) is an example of a strict social
dilemma, while Chicken (Table 1b) is an example of a partial social
dilemma. We say that a social dilemma is resolved if all the Nash
equilibria of the game maximise the social welfare.

A strict social dilemma is characterised by a unique, pure Nash
equilibrium that is Pareto inferior. This follows from the fact that
defect is a dominant strategy for every agent, and the social welfare

strictly decreases with each defection.

4 REWARD TRANSFER

As discussed above, the core difficulty of social dilemmas is that
prosocial actions are costly, unless agents are sufficiently motivated
to care about others, when collective action becomes more attractive
than selfish behaviours. To address this, an agent needs to provide
some kind of incentive for others to care about its own well-being,
and it can do so by sharing the reward it gains from their combined
actions. Thus, in this section, we introduce a mechanism by which
an agent can transfer a proportion of its reward to other agents.

4.1 Reward gifting

Consider a builder who has been awarded a construction contract,
but lacks the ability to complete the project alone, so offers to
share their income with another builder. Even though the first
builder must transfer some of their payments to the second, both
builders benefit. We refer to this possibility for an agent to donate
a proportion of its rewards to others in a group as reward gifting
and, for simplicity, assume that such a gift is split equally among
the members of the group.

Formally, if an agent i gifts a proportion g; € [0, 1] of its own
reward to others, with the gifts of all agents denoted as § =
(g1, .- gn), then the post-transfer reward to agent i, rlf, is the re-
maining part of the individual reward plus any gifts received from
others, and is given by:

HFF) = (gt — Y g @
J#i

This formulation is similar to the concept of prosocial rewards of
Peysakhovich and Lerer [21], a form of reward shaping in which an
agent modifies only its own reward by including an extra intrinsic
reward term. However, our notion of reward gifting, involves only a
redistribution of the extrinsic game rewards, and allows an agent to
impact the rewards of other agents (in addition to its own reward).

C
D

(a) Prisoner’s Dilemma with g, = %

Table 2: Limiting values for reward gifting

Consider again the Prisoner’s Dilemma of Table 1a, where game
theory tells us that rational players will choose to defect, leading
to a reward of 1 to both players. Suppose now that before playing
the game, the row player commits to sharing a third of its reward
with the column player, so g, = % as shown in Table 2a. The row
player’s individual reward is now % of the original game reward,
which does not change their preferred outcome, so defect remains
a dominant strategy. However, because the column player now
receives a proportion of row’s reward, they are incentivised to
cooperate to increase row’s reward, which increases the gifted
reward they receive.

When row gifts % of its reward, column is ambivalent between
cooperate and defect, but for any greater value, column strictly
prefers to cooperate because the received gifted reward outweighs
the benefit of defecting. As long as row gifts less than %, they receive
more reward from the resulting outcome of (D, C) compared to
(D, D) without reward gifting.

Note that not all social dilemmas afford the opportunity for an
agent to benefit from unilateral reward gifting. For example, with
Chicken, in order to make column weakly prefer to cooperate, row
must gift g = % (Table 2b). It isn’t clear whether row benefits from
this, because although row can now expect column to cooperate,
and consequently row can defect and earn a reward of 2 in the
outcome (D, C), there is no dominant strategy in Chicken for either
player and therefore no particular expected outcome. It is also
possible to construct a social dilemma without opportunities to
benefit from reward gifting.

We have seen that a player can sometimes increase its overall
reward by engaging in unilateral reward gifting. We define the
gifting optimum, denoted g* € [0, 1], for symmetric, non-negative
social dilemmas, as the amount of unilateral reward gifting that
leads to the highest reward for the gifting player. If there is no
opportunity to benefit, then g* = 0.

4.2 Reward exchange

Prisoner’s Dilemma cannot be resolved with only one player gifting
reward, because defecting remains dominant for the gifting agent.
In order to change the situation so that mutual cooperation is
dominant, both agents must engage in reward gifting. When all
players gift the same proportion of their rewards, e € [0, 1], so that

Vi g; = e, we call it reward exchange. Equation 4 then reduces to:
H(Fe) = (-on+——r )

j#i

Consider again Prisoner’s Dilemma, in which the players agree
to exchange e = % of their payoffs, as shown in Table 3a. Cooper-
ation is weakly dominant for both players, so the social dilemma
is resolved. However, for any values of e < A—ll, the dilemma would



(a) Prisoner’s Dilemma with e = % (b) Chicken with e = %

Table 3: Exchange threshold for PD and Chicken

not be resolved as both players would prefer to defect; we call this
limiting value the exchange threshold of a game, denoted e*. In the
context of the tragedy of the commons, this is the smallest propor-
tion of reward that the farmers must share such that no farmer has
an incentive to graze more sheep than the land can support, and
consequently the land is used sustainably. The exchange threshold
for Chicken is e* = % and is shown in Table 3b.

Formally, the exchange threshold, of a game is the minimum
reward exchange proportion e that resolves the social dilemma. If
NE denotes the set of Nash equilibria:

e* =min : NE = {Vi q; = C} (6)
(4

The exchange threshold of a game is invariant to scalar multipli-
cation of the game rewards and exists for all social dilemmas using
the utilitarian metric, which follows from the fact that when every
player exchanges "T_l of their rewards, Equation 5 reduces to:

n
L n—-1_ 1 1,
r; (7, = - ri=-=U(r 7
(P == Y= U(P) )

Jj=0

Consequently, each player wants to maximise the utilitarian metric,
and cooperation increases the social welfare, so there is a unique
social welfare maximum of all cooperate. We therefore expect that,
everything else being equal, increasing the number of players of a
game will increase its exchange threshold.

The exchange threshold of a game can be viewed as a measure of
the willingness of the players to cooperate; it quantifies the dispar-
ity between the individual and group incentives. A low exchange
threshold indicates that the players need to care little about each
other to achieve a socially optimal outcome, whereas a high ex-
change threshold suggests that the players have strong incentives
to shirk prosocial behaviour. Importantly, if we can determine the
exchange threshold, we may also be able to find a way to resolve
social dilemmas, through agents exchanging the proportion of their
rewards specified in this way.

5 COMPLEX GAMES AS SOCIAL DILEMMAS

While normal-form games are effective for modelling some kinds
of dilemmas, others are more complex, as our running example
shows. First, the farmers are not restricted to either cooperate or
defect, and can take a range of actions, such as adding or removing
sheep from the land. Second, the impact of their actions plays out
over time rather than being immediately apparent, and depends on
circumstances, such that adding one sheep to an empty field has
different consequences to adding an extra sheep to an overcrowded
field. We therefore generalise our representation of social dilemmas
to include games with: (i) a temporal component, (ii) a larger action
space and (iii) a larger state space. We do this by extending our
definition of a social dilemma to apply to Markov games. Then, in

order to determine the gifting optimum and exchange threshold
of a Markov game, we describe a technique that uses multiagent
reinforcement learning.

5.1 Markov social dilemmas

A Markov game is one with a finite set of states S, played by n
players. The game is parameterised by sets of available actions for
each player A = {Aq, ..., A}, and a stochastic transition function
T :SxA — A(S), mapping from joint actions at each state to a
discrete probability distribution over states. We say that a Markov
game is symmetric if, for any joint policy, the rewards to each player
are unchanged by permutation of their indices.

Now, to extend the definition of social dilemmas to Markov
games, we use empirical game theoretic analysis [28, 30, 34, 35]
to reduce a Markov game to normal form. Here, the players are
restricted to a choice between a policy representing cooperate or
a policy representing defect. The players receive the total reward
obtained by their chosen policy averaged over a large number of
game roll-outs. A Markov game can then be defined as a social
dilemma if the expected player rewards obtained by the combina-
tion of policies satisfies the inequalities in Section 3. Formally, an
n-player Markov social dilemma is a tuple of a Markov game M and
two disjoint sets of policies, that implement cooperate and defect
respectively, with expected rewards satisfying inequalities 1 and 2.

5.2 Gifting optima and exchange thresholds of
Markov social dilemmas

Recall that a social dilemma is resolved if all the Nash equilibria of
the game maximise the social welfare. However, it is generally not
tractable to compute the equilibria of a Markov game, so we modify
our notion and say that a Markov social dilemma is resolved when
the equilibrium joint policy found by an optimisation technique
maximises the social welfare.

Learning algorithms such as multiagent reinforcement learning
(MARL) can be used to find equilibrium policies. However, indepen-
dent reinforcement learning algorithms in MARL treat opponents
as static and do not take account of their ability to respond via their
own policy updates. This typically results in so-called naive learners
falling into suboptimal equilibria [17]. In response, recent work
has addressed the challenge of learning collective action policies in
social dilemmas [11, 14, 22, 23, 32], with many applying techniques
from game theory to increase cooperation between independent
learners, leading to increases in performance.

In our solution, each agent i independently learns a policy 7; (a;s),
with state s € S, to maximise the long-term y-discounted sum of
their individual reward given by their reward function R;(d,s),
which depends upon the joint action and state:

[e9)
V(so) =BLY | y'Ri(@,sela; ~ )]
t=0

where 7 is the joint policy of all players. When training converges,
the policies are an approximate best response to their opponents.
When using MARL with reward transfer, we find policies to max-
imise the post-transfer reward r’, given by Equations 4 or 5.
Despite the issue above of falling into suboptimal equilibria, for
a symmetrical game MARL should learn policies to maximise the



Figure 1: Commons Harvest

utilitarian metric (see Equation 7) when we set e = "T_l However,
it may be possible to use smaller values of e and still find equilibria
that achieve the same utilitarian metric. We estimate the exchange
threshold (Equation 6), e*, of a Markov social dilemma by finding
the smallest value of reward exchange, e, such that the equilibrium
joint policy given e, ;f , found by independent learning algorithms
achieves the same utilitarian metric value as the equilibrium joint
policy explicitly trained to maximise the utilitarian reward.

n—-1

e = min s DRG0 = ) (R ) =)

0< n

n 1 14

Our approach is to train policies with e = ”T_l so that each player
maximises the social welfare, and then we use an optimisation
method to find the smallest value of e that leads to joint policies
that achieve this same social welfare value. For the gifting optimum,
we are only interested in the post-transfer reward obtained by the
gifting agent, and the task is to estimate the value of 0 < g < 1
that maximises this. Note that while finding optimal joint policies
likely increases in complexity as the number of players increases,
because we only need to sweep over the possible values of g or e,
the task of finding these limiting reward transfer values does not
increase in complexity. This contrasts with methods that transfer
reward conditional upon opponent actions.

6 EXPERIMENTS

In this section, we demonstrate the techniques of Subsection 5.2
with MARL to find the gifting optimum and exchange threshold of
a complex game, and show that sufficient reward exchange leads
independent learners to converge to a social welfare optimum.

6.1 Commons Harvest

Commons Harvest is a sequential social dilemma [14] describing a
group of agents harvesting a supply of apples. It represents a tragedy
of the commons, in which the agents should harvest sustainably to
avoid depleting the environment. We have configured a simplified
version, illustrated in Figure 1 (with 5 X 5 squares and two players),
using the Melting Pot library [13].

Two agents move around the grid-world environment and re-
ceive rewards for harvesting apples. At each timestep the agents can
move one square (north, south, east, or west), or they may remain
stationary. If an agent moves into a square containing an apple, it
collects the apple and receives a reward of 1, but cannot receive
further reward in the square until the apple regrows. Harvested
apples regrow with a fixed probability if they are horizontally or
vertically adjacent to an uncollected apple. In this way, as long as

at least one apple remains, all apples will regrow given enough
time. An apple may regrow if an agent is on its square, in which
case the agent automatically collects the apple. Commons Harvest
terminates after 500 timesteps.

In order to harvest the largest number of apples, the agents need
to maximise the number of apples that regrow. If the central apple
is harvested, then only the central apple can regrow in the next
timestep, assuming at least one peripheral apple remains. If the cen-
tral apple is present, however, all the peripheral apples are eligible
to regrow. Therefore, to maximise the number of harvested apples,
the central apple should be left, and peripheral apples collected as
quickly as possible.

6.2 Training

Deep reinforcement learning, in particular proximal policy optimisa-
tion [26] with entropy regularisation and generalised advantage esti-
mation [25], was used to train policy pairs to play Commons Harvest
with different values of reward gifting and reward exchange. In or-
der to experimentally determine the gifting optimum and exchange
threshold, we used a grid search over unilateral reward gifting
g € [0,0.1,..., 1] and reward exchange values e € [0,0.05,...,0.5].
Note that for reward exchange it is sufficient to incrementally de-
crease e from the maximum value until the social welfare falls, but
we trained over the full range to better understand the dynamics
of the environment. For each value of e and g, pairs of agents were
trained for 4000 episodes, and evaluated over 30 episodes, for five
different seeds. During evaluation, each agent took its maximum
likelihood action, rather than sampling from its action probability
distribution as in training.

To gain an understanding of the characteristics influencing the
cooperative incentives, we varied the features of the game and anal-
ysed how the gifting optimum and exchange threshold changed in
response: we repeated each experiment with different probabilities
of apples regrowing, G € {0.05,0.15, 0.45}, to investigate how the
abundance of resources impacts these values. For high reward ex-
change values, we encountered behaviour where one of the agents
would learn to sit in a corner instead of harvesting apples. This
is known as the lazy agent problem, often occurring in coopera-
tive games. With e = 0.5, it is clear that a joint policy including a
lazy agent is not optimal because both agents could achieve higher
rewards if both harvested.

It is important that we find optimal joint strategies, otherwise
we are instead measuring the deficiencies of the deployed learning
algorithms rather than an intrinsic property of the environment.
To avoid the lazy agent problem, we pre-trained the agents with
self-play for 2000 episodes in the reward exchange experiments, so
that each agent separately learns to harvest apples. However, with
reward gifting, each agent prefers to collect the apples themselves,
so no pre-training was needed.

The code for the training can be found at https://github.com/
Muff2n/meltingpot/.

7 RESULTS

We observe that the policies in a two-player game of Commons Har-
vest typically converge to one of the following distinct behaviours.
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Table 4: Approximate social welfare of behaviours for differ-
ent apple regrowth probabilities

Behaviour 0.05 0.15 045
Unsustainable harvesting 5 N/A N/A
Centre camping 25 65 155
Cooperative harvesting 90 220 425

Unsustainable harvesting Both agents harvest all the apples
immediately.

Centre camping Both agents rush to the central apple. One
agent reaches the centre first (with probability 0.5, due to the
mechanics of the environment) and then camps at the centre
by not moving. The other agent continually tries to move
onto the centre square, but fails because it is occupied.1 This
behaviour leads to unequal episode rewards, because the
agent that gains the central square harvests the central apple
when it periodically regrows, while the other agent receives
no rewards.

Cooperative harvesting The agents harvest the peripheral
apples together.

The values of the utilitarian metric associated with these be-
haviours for different probabilities of apple regrowth is detailed in
Table 4.

7.1 Reward gifting

The results of the reward gifting experiments are shown in Figure
2. The dashed vertical line is the gifting optimum, chosen to be
the argmax of reward to the gifting player. For regrowth probabil-
ity G = 0.05, we observe that as the gifting proportion increases,
the overall behaviour transitions from unsustainable harvesting,
through centre camping, to cooperative harvesting. Once coop-
erative harvesting is induced, there is no reason to gift a greater
fraction of reward. At the gifting optimum, the gifting player has
improved their rewards from ~ 3 to = 25, while the receiving agent
achieves ~ 65. This happens because the gifting agent harvests
around 50 apples, but must share g* = 0.5 of them with the receiver,
who harvests around 40 apples. G = 0.15 starts with centre camping
and transitions to cooperative harvesting. G = 0.45 never learns
cooperative harvesting behaviour, however, and the gifting player
does not increase its reward at any value attempted, so the gifting
optimum is g* = 0. Although the gifting player received larger
average rewards when g = 0.1, this results from the stochasticity
of training and evaluation.?

7.2 Reward exchange

Reward exchange results are shown in Figure 3 in which the dashed
vertical line is the exchange threshold, chosen to be the smallest
value of e that produces the same social welfare as e = % To assess
the harvesting distribution, we also plot the mean Gini value of

I This behaviour is learned because agents sample actions stochastically during training.
The agent at the centre has some probability of moving away, in which case the second
agent will gain the centre, and the process continues with reversed roles.

2For a two-player non-negative game, the recipient should never obtain lower rewards
when receiving a higher proportion of gifted reward.

the pre-transfer rewards. For G = 0.05 and G = 0.15 we observe
the same sharp transition between centre camping and cooperative
harvesting as with reward gifting. For G = 0.45, we now observe co-
operative harvesting, but there is a range of cooperative behaviours,
as shown by a number of policies returning a social welfare between
centre camping and cooperative harvesting.

We expected increasing the scarcity of resources by lowering
the apple regrowth probability to lead to higher reward gifting
and exchange thresholds, because a scarcity of resources typically
leads to greater conflict. The exchange threshold indeed decreases
when the regrowth probability increases from 0.05 to 0.15, but is
highest for G = 0.45. For the lower regrowth probabilities, the
learned policy pairs jump from centre camping (a selfish behaviour)
to cooperative harvesting (a fully cooperative behaviour), with
few policy pairs returning social welfare values between these
two equilibria (Table 4). For G = 0.45, the impact of harvesting
the central apple is smaller, because it regrows faster. It may be
that for environments where apple regrowth is low, cooperative
policies avoid harvesting the central apple due to the high cost, but
when apples regrow sufficiently quickly, a range of cooperative
behaviours are possible, with the propensity for an agent to harvest
the apple decreasing as e increases.
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Figure 2: Reward gifting
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Figure 3: Reward exchange

7.3 Discussion

As mentioned above, pre-training the agents with self-play was
needed to alleviate the lazy agent problem, as illustrated in Figure 4,
where high values of e produced lower social welfare and a more
unequal reward distribution, because one of the agents avoided
harvesting. However, we note that at the exchange threshold of the
game, the lazy agent problem does not manifest, because each agent
has retained sufficient incentive to harvest apples, and the social
welfare is maximised without requiring pre-training. Therefore, an
additional benefit of the training with reward exchange equal to the

exchange threshold may be that it is easier to train optimal agents.

A key question here is whether our configuration of Commons
Harvest satisfies the Markov social dilemma constraints introduced
in (Sections 3 and 5.1). In order to reduce Commons Harvest to a
normal-form game, the players are restricted to a binary choice
between deploying a learning algorithm without reward gifting, or
using one that gifts a proportion of its reward equal to the gifting
optimum of the game. Choosing the non-gifting policy represents
defect and choosing the gifting policy represents cooperation. If we
take G = 0.05, where g* = 0.5, then we get the payoff matrix shown
in Table 5. This game is a weak partial social dilemma (the social
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Figure 4: Training from scratch, G = 0.15

Table 5: Approximate empirical game of Commons Harvest

| ge=05 gc=0
gr =05 | 4545 25,65
gr=0 | 6525 3,3

welfare does not strictly increase as the number of cooperators
increases and cooperation is not always costly).

8 CONCLUSION

In this paper we have introduced: the notion of an exchange thresh-
old of a social dilemma, a metric to measure the alignment between
individual and group incentives; and the gifting optimum, which
measures the optimal proportion of reward an agent should offer
to unilaterally transfer to other agents. We described a method to
determine these metrics for normal-form and Markov games, and
demonstrated it experimentally, analysing how the metrics vary
with respect to resource scarcity. If the players of a social dilemma
can mutually commit to transfer at least the exchange threshold of
a game, then they can resolve any social dilemma.

While this work is a similar mechanism to that of Schmid et
al. [24], our approach involves players choosing to donate their
rewards rather than acquiring an interest in the rewards of the
other players. Perhaps more importantly, we additionally provide
a consideration of the limiting values of reward transfer that are
required to resolve a social dilemma. This provides our work with
a descriptive element; if reward transfer is expensive, it minimises
costs by identifying the smallest amount to be transferred. We also
consider the unilateral case, where it may be individually rational
(not requiring collective action) to donate a share of reward. From
a descriptive perspective, the work of Apt and Schafer [1] is closest,
because the selfishness level of a game is an equivalent metric for
describing the alignment between individual and group rewards,
but as a normative method it does not explain where the additional
reward that incentivises collective action originates.
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