
Heterogeneous Social Value Orientation Leads to Meaningful
Diversity in Sequential Social Dilemmas

Udari Madhushani
Princeton University

udarim@princeton.edu

Kevin R. McKee
DeepMind

kevinrmckee@google.com

John P. Agapiou
DeepMind

jagapiou@google.com

Joel Z. Leibo
DeepMind

jzl@google.com

Richard Everett
DeepMind

reverett@google.com

Thomas Anthony
DeepMind

twa@google.com

Edward Hughes
DeepMind

edwardhughes@google.com

Karl Tuyls
DeepMind

karltuyls@google.com

Edgar A. Duéñez-Guzmán
DeepMind

duenez@google.com

ABSTRACT
In social psychology, Social Value Orientation (SVO) describes an
individual’s propensity to allocate resources between themself and
others. In reinforcement learning, SVO has been instantiated as
an intrinsic motivation that remaps an agent’s rewards based on
particular target distributions of group reward. Prior studies show
that groups of agents endowed with heterogeneous SVO learn
diverse policies in settings that resemble the incentive structure
of Prisoner’s dilemma. Our work extends this body of results and
demonstrates that (1) heterogeneous SVO leads to meaningfully
diverse policies across a range of incentive structures in sequential
social dilemmas, as measured by task-specific diversity metrics; and
(2) learning a best response to such policy diversity leads to better
zero-shot generalization in some situations. We show that these
best-response agents learn policies that are conditioned on their
co-players, which we posit is the reason for improved zero-shot
generalization results.

1 INTRODUCTION
In psychology research, Social Value Orientation (SVO) is a cog-
nitive construct reflecting a person’s preference for resource al-
location between themselves and others [7, 15, 22]. While some
individuals may solipsistically focus on maximizing their personal
success, others demonstrate different motivations, including maxi-
mizing the difference between their own and others’ outcomes (a
competitive orientation), maximizing collective welfare (a prosocial
orientation), or maximizing other peoples’ benefit (an altruistic ori-
entation). In artificial intelligence research, various algorithms draw
inspiration from these insights in their design or implementation
[19, 27]. In reinforcement learning, SVO is an intrinsic motivation
that transforms an agent’s reward based on a parameterized target
distribution between its reward and the reward of others. Recently,
studies have investigated the role of SVO in social dilemmas, sit-
uations where a group of agents or players interact in ways that
involve trade-offs between their self-interest and the collective in-
terest of the group. This research has generated insight into the
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impact of SVO on the emergence of diverse behaviors and cooper-
ation [19, 20], and partner choice [18]. SVO research has focused
primarily on social dilemmas with underlying incentive structures
resembling the Prisoner’s dilemma [26], wherein each player has
an incentive to defect, even though they would be better off if they
both cooperated.

Sequential social dilemmas are a class of social dilemmas in
which the decision-making process of the interacting agents is
temporally and spatially extended [13]. Performing well in a se-
quential social dilemma can be accomplished by considering of
long-term consequences, interdependence, and cooperation among
group members. Sequential social dilemmas have been widely stud-
ied in the context of emergence and maintenance of cooperation
[14, 25], inequity aversion [11], partner choice [4, 18], and general-
ization [1, 20] wherein agents interact with novel co-players in test
scenarios.

While environments provide an extrinsic reward that can be
used to learn a policy, it is often useful to provide agents with
an intrinsic reward to shape their behavior towards a policy with
desirable properties. Intrinsic reward has be used analogously to
social preferences in human decision making. In most research
on sequential social dilemmas, all players either have no intrinsic
reward, or they all have the same function (i.e. they have homoge-
neous social preferences) [14, 31]. However, it has been observed
that having a population of agents who differ in their intrinsic
reward function (i.e. they have heterogeneous social preferences)
can lead to higher levels of cooperation [11]. In [18–20], the au-
thors showed that heterogeneity can produce behavioral diversity
in group dilemmas, and in games with incentive structures similar
to the Prisoner’s dilemma. Other incentive structures have not yet
been explored. In addition, the precise interplay between diversity
in social preferences and in agent policies, particularly on the mech-
anisms that enable generalization to novel social partners, remains
under-explored.

Diversity in policies has been demonstrated to improve various
aspects of agent performance, such as exploration [33], adaptation
to environmental changes [3], positive group outcomes [19, 30],
generalization to novel co-players [17], and collaboration with hu-
mans [29]. One way to quantify diversity is to examine the reward
an agent obtains when interacting with different co-players (often
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called strategic diversity) [2, 6]. To complement thesemethods, diver-
sity can also be evaluated through state-action variation, whichmea-
sures the distribution of state-action pairs that an agent traverses.
State-action diversity can be assessed by measuring differences
in the state visitation frequency [33], action selection frequency
in a given state [20], or differences between state-action trajecto-
ries starting from a specific state [17]. Defining an environment
agnostic metric based on state-action variation that captures mean-
ingful diversity—that is, diversity that has a broader effect on group
trajectories—can be challenging. An alternative is to instead use
environment-specific measures of diversity, which the researcher
can design using their knowledge of specific environment features.

Zero-shot generalization [9, 10, 12, 20, 29] seeks to develop gen-
eral agents that are capable of successfully interacting with novel
agents during test time (i.e., agents not seen during training). In
such situations, the policies of the novel agents encountered at
test time can be out-of-distribution for the agents, leading to poor
coordination in purely cooperative settings [10, 17], and getting ex-
ploited in competitive settings [24]. In mixed-motive games, failure
to generalize to novel agents can lead to deadweight loss by missing
an opportunity to cooperate [12]. Learning a best response to part-
ners/opponents with diverse policies has emerged as a promising
approach to zero-shot generalization [29]. The intuition behind this
approach is that training with a set of diverse policies decreases
the likelihood of encountering out-of-distribution policies at test
time. Despite this promise these best response techniques have not
yet been applied in a wide range of incentive structures.

In this work, we assess heterogeneous SVO in a range of incentive
structures in sequential social dilemmas. We include temporally
and spatially extended environments with an underlying structure
that resembles several different matrix games: Prisoner’s dilemma;
Chicken, where both players have an incentive to choose a risky
behavior, but where the worst outcome is if both choose the high
risk; and Stag hunt wherein players have a safe choice, and an
incentive to coordinate on a high-reward strategy that carries a risk
of costly miscoordination. Chicken and Stag hunt are equilibrium
selection social dilemmas.

We extend the observation that heterogeneous SVO leads to
diverse policies to the Chicken- and Stag hunt-like incentive struc-
tures. We also show that this diversity, when leveraged via best
response, can improve zero-shot generalization in equilibrium se-
lection sequential social dilemmas. We found that best-response
agents adapted to partners/opponents with diverse behaviors by
learning a conditional policy. However, when the sequential social
dilemma was not an equilibrium-selection problem, the learned
best response collapsed to one unconditional policy, leading to poor
zero-shot generalization

The paper is organized as follows. Section 2 outlines the method-
ology employed in the paper. In Subsection 2.1, we present the
formulation of the 𝑁 -agent partially observable Markov process
used in the paper. Subsection 2.2 describes the Social Value Orien-
tation (SVO) framework and its implementation. In Subsection 2.3,
we discuss the various environments used in the study and their
characteristics. Subsection 2.4 details the procedure for generating
diverse policies in sequential social dilemmas. In Subsection 2.5, we
present the process for training a best response agent with a popula-
tion of agents and evaluating zero-shot generalization performance.

Furthermore, we provide a description of the agent’s architecture
in Subsection 2.5. Section 3 presents the results of the work. In
Subsection 3.1 and 3.2, we present the results obtained from gen-
erating diverse policies in environments with different incentive
structures. In Subsection 3.3, we present the results of zero-shot
generalization performance evaluation. Finally, in Section 4, we
provide additional discussions and conclusions. The section sum-
marizes the main contributions of the work and discuss potential
societal impacts.

2 METHODS

Train diverse 
bots 

Train a best 
response agent

Evaluate ZSG 
performance of BR agent

Train a population of bots 
with heterogeneous SVO 

Train a best response agent 
with diverse bots 

Test with a held out test 
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Training
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Figure 1: Overview of the methodology. Blue shapes show
agents that are actively being trained, whereas gray ones de-
note frozen agents (bots). Circles represent the agents trained
with diverse SVO, triangles denote a best response agent, and
squares denote a held-out set of co-players. Evaluation is
zero-shot, meaning the best response agent is frozen (gray
triangle) and is evaluated against the held-out bots.

2.1 𝑁 -agent POMDP
We consider a multi-agent partially observable Markov decision
process defined by the tuple

〈
𝑁,S,A,R, 𝑃,𝛾

〉
,where 𝑁 is the num-

ber of agents, S is the joint state space, A = ×𝑁
𝑖=1A

𝑖 is the joint
action space, 𝑃 is the state transition probability distribution, R is
the reward function and 𝛾 is the discount factor. This can also be
referred to as a partially observable Markov game [16] or a partially
observable stochastic game [28]. At each time step 𝑡 , each agent
𝑖 ∈ 1, . . . , 𝑁 observes a private (local) observation 𝑜𝑖𝑡 and takes an
action 𝑎𝑖𝑡 from a set of actions A𝑖 . The joint action of all agents
at time step 𝑡 is denoted as 𝑎𝑡 = (𝑎1

𝑡 , . . . , 𝑎
𝑁
𝑡 ). The state 𝑠𝑡 is not

observed directly by the agents, instead the partial observation 𝑜𝑖𝑡
depends on the current state of the environment 𝑠𝑡 and the agent’s
observation function. The observation function for agent 𝑖 is de-
noted as 𝑂𝑖 (𝑜𝑖𝑡 |𝑠𝑡 ). Each agent 𝑖 receives a reward 𝑟 𝑖𝑡 which is a
function of the joint action 𝑎𝑡 and the state 𝑠𝑡 of the environment.
The state of the environment transitions according to a probability
distribution 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ).

The objective of each agent 𝑖 is to maximize their cumulative ex-
pected discounted reward, over a given finite time horizon, defined
as 𝐽 𝑖 = E

[∑𝑇
𝑡=0 𝛾

𝑡𝑟 𝑖𝑡

]
, where 𝛾 ∈ [0, 1] balances the importance of

immediate and future rewards. The agents’ policies are defined as
the mapping from the agent’s observation history to an action, i.e.,



𝜋𝑖 (𝑎𝑖𝑡 |𝑜𝑖1, · · · , 𝑜
𝑖
𝑡 ). The policies are updated using a multi-agent rein-

forcement learning algorithm that maximizes the agents’ objective
functions.

2.2 Social Value Orientation
Omitting the dependence on 𝑡 , let 𝑟 𝑖 be the reward of agent 𝑖 . Let
𝑟−𝑖 be the average reward of all the agent except agent 𝑖 . Then we
have

𝑟−𝑖 =
1

𝑁 − 1

𝑁∑︁
𝑗=1, 𝑗≠𝑖

𝑟 𝑗 .

Let 𝜃𝑖 denote the SVO target angle of agent 𝑖 . Following the
definition given in [18], we define the effective reward 𝑟 𝑖 of agent 𝑖
as

𝑟 𝑖 = 𝑟 𝑖 cos(𝜃𝑖 ) + 𝑟−𝑖 sin(𝜃𝑖 ) .
While sometimes intrinsic rewards are temporally smoothed (e.g.[11]),
in this work, effective reward does not include any temporal smooth-
ing. Reintroducing the time step 𝑡 from the previous section the
objective function agent 𝑖 optimizes for is

𝐽 𝑖 = E

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟 𝑖𝑡

]
.

2.3 Environments
We provide a brief description of the environments. For all exper-
iments in this paper, we use environments from Melting Pot 2.0
without modifications [1].

“in the matrix” repeated games: The “in the matrix” repeated
games are a family of sequential social dilemmas in Melting Pot 2.0
where two-players interact. In the beginning of each episode the
environment is initialized according to a given resource layout, and
a set of fixed points where players can spawn. The map consists of
two types of resources which can be distinguished by their colour;
red corresponds to defection and green corresponds to cooperation
(see Figure 3). Players can pick up resources by walking over them,
and these resources go into a player inventory. Players spawn with
one of each resource type in their inventory. After spawning, each
player can move around the map, collect resources, and interact
with the co-player by firing an interaction beam. When players
interact (by one player hitting the other using their interaction
beam), each player gets a reward equal to the expected payoff
calculated from the inventory counts and environment-specific
payoff matrix. The agent who zaps the other agent is considered
as the row player. The inventory count of each player defines a
mixed strategy where the probability of playing each pure strategy
is equivalent to the percentage of the corresponding resource. Let
𝑁 𝑖
𝑟 and 𝑁 𝑖

𝑔 denote the inventory count, number of red resources
and green resources respectively, for agent 𝑖 ∈ 1, 2. For each agent
𝑖 their mixed strategy is given as

𝑝 =

[ 𝑁 𝑖
𝑟

𝑁 𝑖
𝑟 + 𝑁 𝑖

𝑔

,
𝑁 𝑖
𝑔

𝑁 𝑖
𝑟 + 𝑁 𝑖

𝑔

]
Let 𝐴 be the payoff matrix for the game. Let 𝑟𝑟𝑜𝑤 and 𝑟𝑐𝑜𝑙 be the
reward of row player and column player respectively. Let 𝑝𝑟𝑜𝑤 and

𝑝𝑐𝑜𝑙 be the mixed strategy probability vector of row player and
column player respectively. Then the rewards can be defined as

𝑟𝑟𝑜𝑤 = 𝑝𝑇𝑟𝑜𝑤𝐴𝑝𝑐𝑜𝑙 , 𝑟𝑐𝑜𝑙 = 𝑝𝑇
𝑐𝑜𝑙

𝐴𝑇 𝑝𝑟𝑜𝑤

These reward calculations correspond to those used in game theory
for matrix games and iterated social dilemmas [32].

4 0

2 2

3 2

5 0

3 0

5 1

Stag hunt Chicken Prisoner’s dilemma

Figure 2: Payoff matrices for Stag hunt, Chicken and Pris-
oner’s dilemma. The values shown correspond to the payoff
of the row player. The payoff of the column player is the
transpose of the shown matrix (i.e. the games are symmetric
games). Cooperation corresponds to the first row and column.
Defection corresponds to the send row and column.

The payoff matrices 𝐴 used are given in Figure 2. After inter-
acting, players receive their reward from interaction, freeze for 16
steps, and have their inventory counts reset (to one of each resource
type). And the end of the 16 steps players disappear and get re-
spawned after 5 steps. Players can have multiple interactions within
an episode. Once a resource is picked up, it begins to regenerate
after a delay of 10 steps, with a 20% chance of regenerating on each
subsequent step. As is standard in Melting Pot 2.0, in each game,
there is a 10% chance that the episode will end after every 100 steps,
with a minimum of 1000 steps per episode.
Externality mushrooms: Externality mushrooms is a sequential
social dilemma where players are immediately affected from proso-
cial or antisocial behaviors of their co-players. This is a 5-player
game where players eat mushrooms in order to receive rewards.
Four types of mushrooms grow (in different amounts) on the map:
red, green, blue, and orange. Eating a red (“fize”: full internality
zero externality) mushroom gives a reward of 1 to the player who
consumed the mushroom. Eating a green (“hihe”: half internality
half externality) mushroom gives a total reward of 2/5 to all players.
Eating a blue (“zife”: zero internality full externality) mushroom
gives a total reward of 3/4 divided equally among all players exclud-
ing the player who consumed it. Eating an orange (“nize”: negative
internality zero externality) mushroom causes red fize mushrooms
to be destroyed, each with probability 0.25, and gives a reward
of −0.1 to the player who consumed it. After eating a mushroom,
the player who consumed it freezes for the mushroom’s digestion
time: 0 (red), 10 (green), 15 (blue), and 15 steps (orange). After
spawning, a mushroom is removed from the map after its perishing
time, i.e. the time it takes for the mushroom to disappear: 200 (red),
100 (green), and 75 steps (blue). Orange mushrooms never perish.
Mushrooms respawn from spores depending on consumption of
other mushrooms. Eating a red, green, or blue mushroom releases 3
spores for red mushrooms, each spore will spawn a mushroom with
probability 0.25. Eating a green or blue mushrooms also releases



Figure 3: “In the matrix” repeated games. This is a 2-player
game where agents can gather 2 types of resources (green
corresponding to cooperation, red corresponding to defec-
tion). When agents interact (using an interaction beam) they
get rewards according to their inventory counts and a game
specific payoff matrix. The payoff matrix can be Stag hunt,
Chicken or Prisoner’s dilemma type payoff matrix

3 spores for green mushrooms which spawn with probability 0.4.
Eating a blue mushroom also releases a blue spore which spawn
with probability 0.6. Eating an orange mushroom releases a spore
for a new orange mushroom which spawns with probability 1. Sim-
ilar to “in the matrix“ repeated games, in Externality mushrooms
each episode runs for at least 1000 steps. Following that the episode
terminates with probability 0.2 at every 100 steps.

Externality mushrooms has an incentive structure similar to
Chicken, where reward is maximized selfishly by consuming red
mushrooms while the others are consuming blue or green mush-
rooms. But if everyone else is eating red mushrooms, the selfish
strategy is to eat green mushrooms, as otherwise all mushrooms
would be eventually depleted.

2.4 Generating diverse policies in sequential
social dilemmas

In the beginning of the training process we define distinct SVO
angles for each agent. Each environment has a fixed number of
players. We train the agents in a distributed asynchronous manner
by initializing ’arenas’ to train a population of agents. Arenas run
in parallel and each arena is a copy of the environment with the
number of players specified for that environment. This is a multi-
agent version of A3C [21] that is commonly used for multi-agent
reinforcement learning [1]. The Melting Pot evaluation protocol
requires sampling of policies with replacement. Training in pure
self-play introduces skewed reward incentives by playing with
copies of oneself. To alleviate this issue, we set players in each
arena to play the game for one episode either in self-play or in

Figure 4: Externality Mushrooms. This is a 5-player sequen-
tial social dilemma game with immediate feedback. Agents
instantaneously share rewards with others depending on the
mushroom they are picking.

population-play (with equal probability). During population-play
we sample agents without replacement. We train each agent for
109 learner frames.

2.5 Training a best-response agent and
zero-shot generalization performance
evaluation

We train a selfish naive learner without intrinsic reward, to best
respond against the policies generated using heterogeneous SVO.
In order to avoid confusion we use the term best-response agent
for the training agent, and SVO bots for the pre-trained diverse
agents trained with heterogeneous SVO values. In each episode the
best-response agent plays with a set of SVO bots sampled with-
out replacement. We train the best-response agent for 109 learner
frames.

Melting Pot 2.0 [1] provides a protocol for evaluating generaliza-
tion to novel social partners, which are packaged with the suite as
a held-out set of co-players in a suite of test scenarios. We measure
the performance of the best-response agent using the Melting Pot
test protocol.

We use the Melting Pot test scenarios for evaluation in Stag hunt,
Chicken, Prisoners’ dilemma “in the matrix “ repeated games and
Externality mushrooms. Test scenario details are provided below.

Test scenarios for “in the matrix” repeated.
Focal player (our best response agent) encounters:

S0: (cooperator + defector) either a cooperator or a defector
with 0.5 probability each

S1: (cooperator ) a cooperator

S2: (defector) a defector

S3: (grim strike 1) a player who starts by cooperating and
defect for the rest the episode when focal player defects once



S4: (grim strike 2) a player who starts by cooperating and
defect for the rest the episode when focal player defects
twice

S5: (tit-for-tat) a player who plays tit-for-tat

S6: (tit-for-tat tremble) a player who a player who plays
tit-for-tat and occasionally unconditionally defect. (noisy
tit-for-tat)

S7: (flipping) a player who cooperate during the first 3 inter-
actions and defect for the rest of the episode

S8: (corrigible tit-for-tat) a player who starts with defection
and switch to tit-for-tat strategy when best-response agent
defects

S9: (corrigible tit-for-tat tremble) a player who starts with
defection and switch to noisy tit-for-tat strategy when best-
response agent defects

Test scenarios for Externality mushrooms:
Focal player (our best response agent) encounters:

S0: (visiting cooperators) 4 cooperators

S1: (visiting defectors) 4 defectors

2 focal players (in our case 2 copies of best response agent) en-
counter:

S2: (resident cooperators) 3 cooperators

S3: (resident cooperators) 3 defectors

We provide an overview of the end to endmethodological pipeline
in Figure 1.

2.6 Agent architecture
We trained the agents using the well-established Actor-Critic base-
line algorithm proposed in [5], building on the earlier work in [21]
named Asynchronous Advantage Actor Critic or A3C.

The neural network of the agent consists of two convolutional
layers, a two-layer perceptron, and an LSTM—all separated by ReLU
activation functions. The convolutional layers have 16 and 32 output
channels, kernel shapes of 8 and 4, and strides of 8 and 1. The
perceptron layers are 64 neurons each, and the LSTM layer has 128
units. The policy and baseline for the critic are created by multilayer
perceptrons (256 hidden units with ReLU activations) connected to
the output of the LSTM.

Representation shaping is achieved through the use of an auxil-
iary loss and contrastive predictive coding [23], which is used to
differentiate between nearby time points via LSTM state represen-
tations. PopArt [8] is used to adjust for the different reward scales
of the different environments. The optimization method used is
RMSProp with a learning rate of 4 × 10−4, epsilon of 10−5, zero
momentum, decay of 0.99, and batch size of 256. The baseline cost
for the critic is 0.5, and the entropy regularization cost for the policy
is 0.003.
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Figure 5: “In the matrix” repeated games. Diversity of policies
of selfish-baseline bots and SVO bots. Each subfigure shows
average inventory counts during evaluation for 4 agents,
trained with 50% self-play and 50% population play. The bot-
tom row corresponds to SVO bots with 𝜃𝑖 ∈ {−15°, 0°, 60°, 75°}
and the top row corresponds to selfish-baseline bots. Green
and red represents cooperative and defective resource counts
respectively. Error bars show the standard deviation of re-
sults over 3 random seeds.

3 RESULTS
3.1 Experiment 1: Generating diverse policies in

“in the matrix” repeated games
Experimental setup: We consider Stag hunt, Chicken and Pris-
oners’ dilemma “in the matrix” repeated games. For each game we
average the results over 3 random seeds. We train four agents with
SVO values of −15°, 0°, 60°, and 75°, respectively. These values were
chosen to cluster around the incentives of competition (−15°), self-
ishness (0°) and pro-sociality (60°, 75°). The “in the matrix” repeated
games are 2-player games. In addition to SVO bots we also train
and freeze a set of selfish-baseline bots (i.e., no intrinsic reward)
using the same procedure for comparison.
Finding 1: Heterogeneous SVO bots learn meaningfully di-
verse policies

We use the inventory count of the bots at the time of interaction
as an environment-specific diversity measure. Since the inventory
counts define the mixed strategy probability vectors, sufficiently
distinct ratios of inventory counts indicate distinct mixed strategies.
During evaluation agents play in population-play.

Figure 5 shows the inventory counts for the 4 bots averaged
over 500 interactions during evaluation after the completion of
training. Top and bottom rows correspond to resource counts of
selfish-baseline bots and SVO bots respectively. Figures 5(a), 5(b)
and 5(c) correspond to Stag hunt, Chicken and Prisoners’ dilemma
respectively. The error bars presented in the figure correspond to
the average results of 3 independent runs. The results demonstrate
that in each game, all 4 selfish-baseline bots have comparable in-
ventory count ratios, suggesting that their policies lack diversity.
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Figure 6: Externality mushrooms. Diversity of policies of
selfish-baseline bots and SVO bots. Each plot shows average
fraction of mushrooms consumed by 5 agents during evalua-
tion, trained with 50% self-play and 50% population play in
Externality mushrooms dense game. The bottom row corre-
sponds to SVO agents with 𝜃𝑖 ∈ {−15°, 0°, 60°, 75°, 90°} and the
top row corresponds to selfish-baseline agents. Error bars
show the standard deviation of results over 3 random seeds.

Conversely, the 4 SVO bots exhibit varied inventory count ratios, in-
dicating diverse behaviors. For each “in the matrix“ repeated game,
resource counts correspond to SVO bots with 𝜃 = [−15°, 0°, 60°, 75°],
where 𝜃𝑖 = 𝜃 [𝑖], for 𝑖 ∈ {1, 2, 3, 4}. We denote the cooperative re-
source counts and defective resource counts using green and red
respectively. As the SVO angles increase from −15° to 75°, the ratio
between the red and green resource counts increases, indicating
more altruistic behavior.

3.2 Experiment 2: Generating diverse policies in
Externality Mushrooms

Experimental setup: Similar to the training process in “in the
matrix“ repeated game we average the results from 3 random seeds.
For each seed we train 5 agents with SVO values of −15°, 0°, 60°, 75°,
and 90°, respectively in 50% self-play and 50% population-play. In
addition to SVO bots we also train a set of selfish-baseline bots,
using the same procedure for comparison.
Finding 2: The results extends to multi-player games with
more than 2 players

We show that our method scales to games with more than 2
players. Figure 6 shows that in Externality Mushrooms, agents
trained using heterogeneous SVO learn diverse policies. We use the
count of mushrooms consumed of each type as the environment-
specific diversity metric. The selfish-baseline bots tend to consume

mushrooms at similar ratios across different types, whereas the
SVO bots consume varying ratios of different mushroom types
exhibiting meaningfully diverse behaviors. Agents with low (or
negative) SVO consume the selfish mushroom (red), and even the
spiteful mushroom (orange), whereas those with high SVO, tend to
consume more of the prosocial mushrooms (green and blue).

3.3 Experiment 3: Zero-shot generalization
evaluation

We evaluate the zero-shot generalization performance of a learned
best response to the SVO bots trained using heterogeneous SVO.
Baselines:We compare the performance of a learned best response
policy for SVO bots with a best response to selfish-baseline bots,
Fictitious co-play (FCP, a type of best response that includes also
earlier checkpoints of the agents to best respond to) [29], and ex-
ploiters (i.e., a best response agent trained on the test scenario
directly) [1]. We train one exploiter for each test scenario. To train
FCP agents we train a naive learning agent with 3 checkpoints for
each bot from a bot population. Here we use the first checkpoint,
mid checkpoint and last checkpoint. The mid checkpoint is the time
during training where the agent first obtains half of its final reward,
of the policies of the bots. We report results for FCP applied to the
heterogeneous SVO bots FCP(SVO), as well as to selfish baselines
FCP(selfish-baseline). To evaluate zero-shot generalization, we also
compare the performance of best response agents with the perfor-
mance of selfish-baseline agents and random agents.

Experimental setup:We train best-response agents for the selfish-
baseline bots and SVO bots. Recall that we trained each type of
bots, i.e., selfish-baseline or SVO, for 3 random seeds in this setup.
We train a best-response agent for bots from each seed. For each
type of test bots we show the average performance evaluation runs
correspond to these 3 training runs.
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Figure 7: Comparing how well best-response agents learn con-
ditional policies in Stag hunt in the matrix.

Finding 3: Best-response agents learn a conditional behaviour
In order to get a better understanding about the learned policies
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Figure 8: Comparing how well best-response agents learn con-
ditional policies in Chicken in the matrix.

of the best-response agents we analyze the behaviour of the best-
response agents during test time. For each test bot, Figures 7 and
8 show the fraction of interactions where the best-response agent
cooperated with a bot with respect to the fraction of interactions
where the bot cooperated with the best-response agent. Figure 7
corresponds to Stag hunt “in thematrix“ repeated and 8 corresponds
to Chicken “in the matrix” repeated.

In this analysis we define the best-response agent’s interaction
as a cooperation when they have higher number of cooperative
resources than defective resources in their inventory at the time of
interaction. In Stag hunt in the matrix, both agents cooperating, i.e.,
both agents playing Stag, yields a higher reward, but it is a riskier
strategy. Defecting, yields a secure payoff. Both agents cooperating
or both defecting are Nash equilibria, that is, there is no incentive
to unilaterally deviate from that strategy. An agent who cooper-
ates with a defector gets 0 reward. When trained in Stag hunt in
the matrix, selfish-baseline bots learn to defect. The best response
to unconditional defectors is defecting. Hence the best-response
agents trained with selfish-baseline bots learn to unconditionally
defect. In contrast the heterogeneous SVO bot population consists
of both defectors and cooperators with different levels of cooper-
ation and defection. Best-response agents training with SVO bots
encounter both cooperators and defectors and subsequently learn
a conditional policy that tends to cooperate with cooperators and
defect with defectors.

In Chicken in the matrix, the two Nash equilibria are for one
agent to cooperate (swerve) and the other agent to defect (straight).
In this case selfish-baseline agents learn to do both defection and
cooperation. Hence the best-response agents trained with selfish-
baseline bots also learn to defect and cooperate. However in Figure
8 we see that this behaviour is not conditional. In contrast best-
response agents training with SVO bots encounter mostly coop-
erative and mostly defective bots, leading to best-response agents
learning a conditional behavior where they tend to cooperate with
defectors and defect against cooperators.

Finding 4: Failure case with Prisoner’s dilemma In Prisoner’s
dilemma in the matrix, the Nash equilibrium is both agents de-
fecting, as a result selfish-baseline agents learn to unconditionally
defect. Thus, the best response agents that are trained with self-
ish agents also learn to defect. Moreover, defection is also a best
response to unconditional cooperation. Because SVO bots learned
only unconditional strategies (either cooperate or defect), the best
response to SVO bots is also to unconditionally defect. Figure 9 il-
lustrates this showing that all the best-response agents are learning
to defect regardless of the level of cooperation of their partners.
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Figure 9: Comparing how well best-response agents learn con-
ditional policies in Prisoner’s dilemma in the matrix.

Finding 5: Best response agents perform better in zero-shot
generalization Zero-shot generalization performance of the best
response agents, selfish-baseline agent, random agent, and exploiters
are given in Table 1. Each agent type is run on each test scenario and
their average returns are calculated. The score is normalized across
agents for each scenario where the best agent receives a score of
1, and the worst a score of 0. The final score of an agent is their
average over all scenarios. This is the same method used in Melting
Pot [1]. The exploiters and random agent are intended to provide
approximate upper and lower bounds for performance across all en-
vironments. As expected the table shows that the exploiters achieve
the best performance, while the random agent performs the worst.
Across all environments at least one best response agent performs
better than the selfish-baseline agent indicating that learning a best
response improves zero-shot generalization.

On average in the Stag hunt in the matrix scenarios, BR(SVO)
outperforms other agents. From Figure 7 we see that BR(SVO) and
FCP(SVO) cooperate with unconditional defectors with a small
probability. However, in Stag hunt in the matrix, an agent coop-
erating with a defector or defecting with a defector receives the
same reward. Thus when encountering defectors and test bots that
are more likely to defect BR(SVO), FCP(SVO) receives comparable
rewards to BR(selfish-baseline) and FCP(selfish-baseline). When
encountering more cooperative test bots, best response agents that



BR(SVO) FCP(SVO) BR(selfish-baseline) FCP(selfish-baseline) selfish-baseline random exploiter
Stag hunt ITMR 0.876 0.830 0.856 0.847 0.850 0.000 0.988
Chicken ITMR 0.696 0.668 0.745 0.723 0.723 0.000 0.958
Prisoner’s dilemma ITMR 0.738 0.702 0.777 0.783 0.754 0.000 1.000
Externality mushrooms 0.619 0.764 0.612 0.846 0.660 0.000 0.900

Table 1: Zero-shot generalization performance of best response agents, selfish-baseline agent, random agent and exploiter. The
score is calculated by first re scaling the rewards received by each agent such that in each scenario the agent with highest(lowest)
reward gets score 1(0) and then averaging over all scenarios for each environment.

are able to adapt to partner behaviours and cooperate with cooper-
ators receive a higher reward. This leads to the higher score of the
BR(SVO) agent in Stag hunt in the matrix.

Table 1 shows that in Chicken in the matrix scenarios, BR(selfish-
baseline) outperforms other agents. Note that in Chicken in the
matrix, an agent cooperating with a defector receives a higher re-
ward than an agent defecting against a defector. From results in
Figure 8 we see that when test bots defect with a probability close
to 1 all the best response agents cooperate with similar probabili-
ties. Thus in scenarios where test bots are unconditionally defect-
ing all the best response agents obtain comparable performance.
However, when test bots are cooperating with about 0.4 probabil-
ity, BR(selfish-baseline) and FCP(selfish-baseline) cooperate with a
higher matching probability compared to BR(SVO) and FCP(SVO)
thus leading to better performance for BR(selfish-baseline) and
FCP(selfish-baseline). In scenarios where best response agents en-
counter unconditional cooperators BR(SVO) and FCP(SVO) defect
with a probability close to 1 obtaining better performance compared
to BR(selfish-baseline) and FCP(selfish-baseline). Since most of the
test scenarios consist of defectors or test bots that are more likely
to defect, this leads to BR(selfish-baseline) outperforming BR(SVO)
and BR(FCP) agents.

Recall that Figure 9 illustrates that all the best-response agents
are defecting against all test bots. Thus we expect the performance
score of best response agents for Prisoner’s dilemma in the matrix
given in Table 1 to be similar. However, surprisingly BR(selfish-
baseline) and FCP(selfish-baseline) perform better than BR(SVO)
and FCP(SVO). We leave investigating this as future work.

In Externality mushrooms, FCP type best response agents per-
form better than best response agents trained with only final poli-
cies of the co-players. This indicates that best response agents that
encounter less proficient agents as well as more proficient agents
perform better than the best response agents that only encounter
proficient agents during training time.

4 DISCUSSION
In this paper we investigated the impact of heterogeneous Social
Value Orientation on different incentive structures in sequential
social dilemmas. We tested whether the presence of heterogeneous
SVO leads to diverse policies and if learning a best response to these
policies improves zero-shot generalization. The study found that
the presence of heterogeneous SVO does indeed lead to measurable
diversity in policies, and this diversity sometimes results in better
zero-shot generalization for agents that best respond to them.

The best-response agents achieve better performance by learn-
ing a conditional policy that adapts to novel agents during test time.
The study also revealed that when the sequential social dilemma
is not an equilibrium-selection problem, this method still gener-
ates meaningful diversity in policies, but it fails to achieve better
zero-shot generalization performance. This occurs because the best
response to a diverse set of policies collapses to one unconditional
policy that performs poorly when encountering conditional policies
during test time.

Our findings have implications for understanding how heteroge-
neous SVO impacts incentive structures and policy diversity, and
how agents can learn to adapt to diverse policies during test time to
achieve better zero-shot generalization performance. Our findings
provide new insights into the behavior of agents in sequential social
dilemmas and highlights the importance of considering the role of
heterogeneity in SVO in the design of incentive structures.

We observed that SVO agents were able to learn cooperative
policies in all of the environments we tested. This hints at the
potential value of using SVO to capture at least some of the aspects
necessary to align agents with human values.
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