
RouteChoiceEnv: a Route Choice Library for
Multiagent Reinforcement Learning

Luiz A. Thomasini
Graduate Program in Applied Computing,
Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil
luizalfredo@edu.unisinos.br

Lucas N. Alegre
Institute of Informatics,

Federal University of Rio Grande do Sul
Porto Alegre, Brazil
lnalegre@inf.ufrgs.br

Gabriel de O. Ramos
Graduate Program in Applied Computing,
Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil
gdoramos@unisinos.br

Ana L. C. Bazzan
Institute of Informatics,

Federal University of Rio Grande do Sul
Porto Alegre, Brazil
bazzan@inf.ufrgs.br

ABSTRACT
Multiagent Reinforcement Learning (MARL) has been successfully
applied as a framework for solving distributed traffic optimization
problems. Route choice is a challenging traffic problem in which
driver agents must select routes that minimize their own travel
times, taking into account the effect caused by other drivers. While
MARL algorithms for route choice have been proposed, there is no
library that provides a set of benchmarks and algorithms that can
be used by researchers in the field. In this paper, we fill this gap
by introducing Route Choice Env, a centralized library for MARL-
based route choice research. It follows the PettingZoo API, which
allows us to provide a standard set of environments and agents for
reproducible experimentation. The library is publicly available at
https://github.com/ramos-ai/route-choice-env.

KEYWORDS
Route Choice, Reinforcement Learning, Multiagent Systems, Bench-
marking

1 INTRODUCTION
Reinforcement Learning (RL) [16] addresses sequential decision-
making problems in which an agent learns to maximize a reward
signal by interacting with its environment. In Multiagent Reinforce-
ment Learning (MARL) [18], those problems become more difficult
as many agents share the same environment and must learn to
interact with each other. MARL environments have seen a rise
in popularity as many systems become more intelligent and the
techniques of learning algorithms become more sophisticated [3].
Tackling these types of problems is a challenging task, as much as
designing the environment and designing the algorithms to interact
with it.

Urban traffic engineering is one of the areas that have been
approached with the MARL framework achieving promising re-
sults [2]. Among the various traffic problems tackled with MARL,
in this work, we consider route choice in particular. In route choice,
each driver must travel from an origin to a destination. To do so,
drivers need to choose one out of a set of possible routes to take.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 29-30, 2023, London, UK, https://alaworkshop2023.github.io/ . 2023.

From a system perspective, one may want to assign routes to dri-
vers so as to minimize overall delays and travel times. The drivers,
on the other hand, have their own preferences and operate self-
ishly to maximize their own objectives. Thus, in order to minimize
congestion, the system’s and the drivers’ perspectives are equally
important, though they usually conflict [15]. In fact, the literature
has been concerned with both perspectives either independently
or simultaneously [9].

Running experiments on traffic scenarios typically involves the
use of traffic simulators. Popular traffic simulators like SUMO [5]
and CityFlow [19] are efficient at simulating microscopic traffic
dynamics. However, these simulators are highly specialized and
difficult to set up for research, hindering their use for fast develop-
ment and prototyping of MARL-based route choice algorithms. In
the literature, previous work introduced libraries that provide sets
of benchmark problems for RL and MARL research. The two most
well-known such tools are the OpenAI Gym [3] (now named Gym-
nasium1), and the PettingZoo library [17]. Traffic-specific RL and
MARL libraries have also been proposed, including CityFlow [19]
itself, PyRL [12], and SUMO-RL [1]. Nonetheless, all these works
focus on microscopic traffic simulation, which poses a huge burden
on the simulation complexity, thus hampering the development of
MARL algorithms.

In this work, we introduce RouteChoiceEnv, a new MARL li-
brary for the route choice problem. RouteChoiceEnv features a
macroscopic simulator that models traffic dynamics by means of
volume-delay functions, which are known to efficiently approxi-
mate real-world traffic conditions [2]. We developed a route choice
environment for our simulator building upon the PettingZoo li-
brary, thus ensuring ease-of-use and facilitating the adherence of
the MARL community. PettingZoo has many environments for
training agents, but no environment is provided in the standard
library or as a third-party environment to simulate the problem of
route choice in traffic scenarios. Our efforts thus represent a first
step towards route choice simulation as a Gym-like environment.
We aim to provide the community with a standard library that
allows for easy experimentation and extensibility in this context.

1https://gymnasium.farama.org/

https://github.com/ramos-ai/route-choice-env
https://alaworkshop2023.github.io/

The main contributions of this work can be summarised as fol-
lows:

• A centralized repository for the community to use as a bench-
mark for the route choice problem in the MARL setting.

• A clean API that allows for the easy design of MARL route
choice experiments.

• A public library and code base that is easy to extend and
experiment with new agents and policies.

The rest of the paper is organized as follows. Section 2 overviews
related work. Section 3 formalizes the route choice problem. Sec-
tion 4 introduces the RouteChoiceEnv library. Section 5 presents
experiments that evidence the correctness of the implemented al-
gorithms. Finally, Section 6 discusses the final remarks.

2 RELATEDWORK
In the context of MARL-based route choice, previous works have
proposed methods for optimizing traffic flow and reducing con-
gestion. Examples include a regret-minimizing MARL algorithm
that converges to the Nash equilibrium [10], a policy gradient RL
algorithm to define optimal tolls [4], and MARL algorithms that are
guaranteed to converge to system-efficient equilibria [11, 13]. The
interested reader is referred to [2, 6, 9] for a more comprehensive
literature overview. Nonetheless, it becomes clear that the litera-
ture on MARL-based route choice fails to make results reproducible.
This is a consequence of the lack of publicly available reposito-
ries collecting the source code of state-of-the-art algorithms and
environments.

Other studies have focused on developing simulation environ-
ments and datasets for evaluating and comparing different RL al-
gorithms. OpenAI Gym [3] introduced an API for defining rein-
forcement learning environments. It became the most used library
among RL researchers. Recently, there has been a growing interest
in developing standardized APIs for multiagent RL, such as Petting-
Zoo [17]. The PettingZoo library provides a unified interface for
defining multi-agent RL environments and interacting with them
using a variety of RL algorithms.

In the context of RL-based traffic optimization, few works have
proposed libraries for RL research. SUMO-RL [1] is a library that
provides reinforcement learning environments for traffic signal
control, which are built using the SUMO simulator [5]. In Zhang et
al. [19], CityFlow is introduced as a novel optimized traffic simulator
that can be used to instantiate MARL environments for traffic signal
control. However, none of these libraries address the problem of
route choice optimization.

To the best of our knowledge, there are currently no publicly
available MARL repositories for route choice that follow a standard-
ized API. In this paper, we introduce RouteChoiceEnv, a new MARL
repository for route choice that is compatible with PettingZoo. Our
repository library provides a set of benchmark environments and
baseline methods for evaluating and comparing different MARL
algorithms for route choice in transportation networks.

3 THE ROUTE CHOICE PROBLEM
The route choice problem consists in determining the best route
for agents in a road network to take from an origin to a destination.
We model this problem in a multiagent setting, meaning that all

drivers in the network must learn which routes to take in order to
reduce their travel costs.

For this work, we make certain simplifying assumptions regard-
ing the route choice problem to make the problem more tractable.
While we acknowledge that real-life drivers have access to real-
time traffic information through modern navigation systems, our
model focuses on agents who rely mainly on their experience. This
assumption allows us to isolate the effects of individual learning
on route choices and investigate the dynamics of the problem.

Although this model is simple, it is also quite general. More-
over, the metrics of optimal results are known in the literature.
Then, these assumptions are reasonable as they build upon the
foundational setting of routing games [14]. Furthermore, this sim-
plified model can serve as a foundation for future research that
incorporates additional real-world factors such as real-time traffic
information, driver’s preference, and departure time.

In this section, we introduce basic concepts related to route
choice and present the modeling of the problem as a multiagent
reinforcement learning (MARL) problem.

3.1 Road Network Modeling
A road network can be represented by a directed graph𝐺 = (𝑁, 𝐿),
where nodes 𝑁 represent intersections and links 𝐿 represent the
roads between intersections. Each link 𝑙 ∈ 𝐿 has a cost 𝑐𝑙 : 𝑥𝑙 → R+
associated with traversing it, which is affected by the flow 𝑥𝑙 of
vehicles on it. This implies that highly congested roads have a
higher travel cost. The interested reader is referred to [9] for more
details on how road networks and their elements are modeled.

A path from one node to another is called a route. A route is
formally defined as a set of links between two nodes in the directed
graph. We name these nodes as origin and destination. The cost of
taking a route 𝑅 is the sum of its link’s cost, i.e., 𝐶𝑅 =

∑
𝑙∈𝑅 𝑐𝑙 . We

refer to the minimum time required to complete a route as the free
flow travel time. This is equivalent to the cost of a route when each
of its links has flow 𝑥𝑙 = 0. From a system perspective, the closer a
route’s cost is to its free flow travel time, the less congested that
route is.

Let 𝐷 be the set of drivers in the road network, and 𝑃 be the set
of origin-destination (OD) pairs. Each driver 𝑑𝑘 ∈ 𝐷 is associated
with an OD pair 𝑃𝑖 ∈ 𝑃 . We represent the association of a driver
with an OD pair using a function 𝐴 : 𝐷 → 𝑃 such that 𝐴(𝑑𝑘) = 𝑃𝑖 .
Each driver poses a fixed flow (default is 1) into the road network.
Note that routes in the system can have shared links. Hence drivers
with different OD pairs can have an impact on each other’s travel
cost.

3.2 Problem Modeling
Reinforcement learning problems are typically modeled as Markov
Decision Processes (MDPs). MDPs are composed of states, actions,
a transition function, and a reward function. For this work, we
modeled the environment as a stateless MDP as all actions are
known a priori by the agents and we do not need to define state
transitions.

As mentioned earlier, in our design, we are abstracting real-
time traffic information, driver’s preference, and departure time.
Therefore, we only simulate the drivers’ route choice and system’s

flow dynamics. Incorporating these additional real-world features
may be added to the model in future work.

In our model, each driver has an ID and a discrete action space 𝑁 ,
which is the set of possible routes to take. The learning algorithms
choose an action for each particular driver and the environment
steps, assigning the flow of drivers to the network (thus simu-
lating congestion as drivers are commuting to their destination).
The drivers then experience the reward of the selected action (the
travel time of the selected route). This process repeats for the next
episodes.

All parameters of the road network are defined by their corre-
sponding instances. This includes not only the network topology,
but also the number of vehicles, the cost functions, etc. This is the
common practice in the traffic engineering literature [9], as it offers
enhanced reproducibility.

Although the problem was modeled as stateless MDP, finding
a solution that both satisfies drivers’ preferences and system equi-
librium is not a trivial task due to the multiagent setting. In this
setting, agents must adapt to the non-stationary environment dy-
namics. Next, we formally define the observations and rewards of
our model.

Observation: In the proposed route choice problem, agents op-
erate with minimal information about the environment. Therefore,
system information such as the highest or lowest cost routes is not
available to agents. No observation is provided beside the free flow
travel time of routes. This information serves as a baseline reference
for drivers when initially evaluating different routes. In our case, it
was only used for setting initial values on the first episode of our
algorithm.

To illustrate that, assume that each driver checks an online navi-
gation service before leaving its origin but soon after loses connec-
tion to the online system. In that case, the driver would know the
shortest route, but wouldn’t be aware of real-time traffic updates.

Reward: The reward signal is the travel time of taking a route,
which is the objective the agents want to optimize. The agents can
transform the reward with a utility function that is best appropriate
to its learning dynamics.

4 THE ROUTECHOICEENV LIBRARY
In this section, we detail how the library is structured and how it
can be used for reproducible MARL experimentation.

4.1 Agent-Environment Interaction
By using the PettingZoo API, we were able to separate the environ-
ment from the learning agent. The interaction occurs when every
agent chooses an action, and we step through the environment. In
this phase, the environment assigns the flow of the drivers to the
flow distribution matrix and calculates the travel time on every
route to return as the reward signal for the agents.

We are using the Parallel API in our design, as all agents choose
a route and commute at the same time. For future work, we could
also implement different departure times for drivers using the AEC
model from PettingZoo.

The following interaction can be seen in the code snippet below:

from route_choice_env.route_choice import RouteChoicePZ

Initialize environment
env = RouteChoicePZ(net_name="OW")

for _ in range(ITERATIONS):

Query for action from each agent's policy
action_n = {d_id: drivers[d_id].choose_action() for

d_id in env.agents}

Step environment
obs_n, reward_n, terminal_n, truncated_n, info_n =

env.step(action_n)

Update strategy (Q table)
for d_id in drivers.keys():

drivers[d_id].update_strategy(obs_n[d_id],
reward_n[d_id], info_n[d_id], alpha=ALPHA)

Update global learning rate (alpha)
ALPHA = ALPHA * DECAY if ALPHA > MIN_ALPHA else

MIN_ALPHA

env.reset()

To create an instance of the environment we need to specify the
network. It is also possible to specify howmany vehicles each agent
is controlling through the ‘agent-vehicles-factor‘ parameter, so that
each learning agent can control a higher number of vehicles. The
idea of this parameter is to control the granularity of the simulation,
so that it can be sped up by such factor.

The environment is composed of the following:

• A road network. Which in itself is composed of a set of OD
pairs and, each OD pair, a set of routes.

• A set of drivers. Each is assigned to an OD pair and has a
discrete set of actions to choose from (available routes for
that OD pair).

Note that running this setting for 𝑁 iterations requires the envi-
ronment to reset at the end of the episode. This is necessary as the
problem was modeled as a stateless MDP. After stepping through
the environment every driver has reached its destination, so we
need to reset in order to recreate the drivers.

RouteChoiceEnv allows the user to extract different information
from the simulation. Here we define each of them and discuss how
each can be used for research:

Free flow travel times: As discussed in Section 2, we expect
each route to have a minimum cost for completing it. This may
be used mainly as a baseline to acknowledge how much a road
increased its cost due to congestion.

Flow distribution: This property is a special data structure in
our library. Say that a network has |𝑃 | origin-destination pairs and
each OD pair has 𝐾 possible routes to take. Our distribution then
is a matrix of size |𝑃 | × 𝐾 . The flow of drivers is assigned to the
matrix after the environment steps (after agents choose a route). It
can be accessed at every episode of the experiment to display the
distribution of drivers in the road network.

Also, the flow distribution can be used as intuition for perfor-
mance. That If you are training learning agents, when the flow

distribution remains constant for a few episodes, it could mean that
agents stopped exploring and found an optimal strategy to follow.

Another way one could use this property is to measure conges-
tion patterns in the network topology. Aligning the flow distribution
with the average travel time, one could infer that when the flow
of drivers increases in route 𝑘1, the average travel time is affected
positively or negatively.

Average travel time: This important property from the road
network can be defined as follows: let |𝑃 | be the number of origin-
destination pairs, and 𝐾𝑖 be the number of routes for the 𝑖-th origin-
destination pair. Let 𝐶𝑖 𝑗 represent the cost of the 𝑗-th route for the
𝑖-th origin-destination pair, and 𝐹𝑖 𝑗 represent the flow on this route.
Then, the total cost 𝑇𝐶 can be calculated as:

𝑇𝐶 =

𝑃∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

𝐶𝑖 𝑗𝐹𝑖 𝑗

Let 𝐹 represent the total flow of the network. The average cost
𝐴𝐶 can be calculated as:

𝐴𝐶 =
𝑇𝐶

𝐹

This property is the primary metric we are concerned with opti-
mizing.

Routes cost sum: Let 𝐶𝑡
𝑖 𝑗
represent the cost of the 𝑗-th route

for the 𝑖-th origin-destination pair at iteration 𝑡 .
The routes costs sum, denoted as 𝑆𝑖 𝑗 , is the accumulated sum of

the costs for the 𝑗-th route of the 𝑖-th origin-destination pair up to
the current iteration:

𝑆𝑖 𝑗 =

iteration∑︁
𝑡=1

𝐶𝑡𝑖 𝑗

Routes cost min: The routes costs min, denoted as 𝑀𝑖 , is the
minimum average cost for the 𝑖-th origin-destination pair up to the
current iteration:

𝑀𝑖 =
min1≤ 𝑗≤𝐾𝑖

𝑆𝑖 𝑗

iteration

4.2 Networks
The RouteChoiceEnv library is compatible with Maslab’s specifica-
tion of road networks. As such, it can be tested with any instance
available in the transportation networks repository2. The available
networks include, but are not restricted to:

• B1, .., B7: the B𝑝 network has 2𝑝 + 2 nodes, 4𝑝 + 1 link, 4200
drivers and a single origin-destination (OD) pair.

• BB1, BB3, BB5, BB7: expansions of the Braess graphs. The
BB𝑝 network has two OD pairs, 2𝑝 + 6 nodes, 4𝑝 + 4 links,
and 4200 drivers.

• OW: network with 13 nodes, 48 links, 4 OD pairs, 1700 dri-
vers, and overlapping routes.

• Sioux Falls: abstraction of the Sioux Falls city, USA, with
|𝑁 | = 24 nodes, |𝐿 | = 76 links, 528 OD pairs, 𝑑 = 360,600
drivers, and with highly overlapping routes.

2Available at https://github.com/maslab-ufrgs/transportation_networks.

4.3 Agents
In our library, each driver is controlled by an independent agent.
An agent, in turn, implement an RL algorithm. Currently, the Route-
ChoiceEnv library provides the following agents:

• RMQ-learning. This agent implements the Regret-Minimising
Q-learning algorithm [8], a tabular MARL algorithm that
employs action regret as reinforcement signal. To do so, each
agent keeps a history of experienced rewards for each action
taken on every time step. After taking an action, the agent
then estimates how much better or worse it performed, on
average, up to time 𝑇 for not taking only the best action
regarding its experience. Agents using RMQ-learning are
guaranteed to converge to Nash equilibrium in the limit.

• TQ-learning. This agent implements the Toll-basedQ-learning
algorithm [11]. Such an algorithm changes the reward defi-
nition by considering not only the travel time, but also the
monetary expenses of the route. Such expenses are formal-
ized by means of tolls. In particular, this algorithm employs
the concept of marginal-cost tolls, which are computed a
posteriori by each agent using only local information. This
algorithm is known to align the equilibrium to the system-
optimum, thus reducing the Price of Anarchy.

RouteChoiceEnv also enables different action selection schemes
to be used. However, in its current form, only 𝜖-greedy strategy is
available.

4.4 Extending the Library
To facilitate extending the library, we provided a module that de-
fines core interfaces. Inside the core module there is a DriverAgent
class and a Policy class, both of which are abstract objects that
define attributes and functions needed to implement new agents
and policies to interact with the environment.

5 EXPERIMENTS
Before diving into the experiments and results, let us further explore
and build some intuition on the route choice problem.

In our later experiments, we used the OW network. As described
in section 4.2, there are 4 origin-destination pairs, 1700 drivers, and
overlapping routes in this example scenario. Figure 1 depicts the
available routes for an agent assigned to drive from node𝐴 to node 𝐿
in the OW network. The set of 8 routes was made available through
the parameter 𝐾 mentioned later. This one agent is also competing
with another 599 agents that are assigned to this OD, in addition to
the other 1100 drivers that are assigned to other origin-destination
pairs, but the links between nodes are overlapping. The interested
reader may refer to Exercise 10.1 from Ortúzar & Willumsen [7]
for more information on this experiment.

For simplicity, we are omitting important information on this
setting. Other origin-destination pairs such as A|M, B|L, and B|L are
not being displayed. Neither we are presenting the free flow of these
routes or their links’ cost function. Table 1 presents a summary of
the results obtained in the OW network. From the table, one can
build some intuition onwhat a good solution is. As seen, when using
a random policy, route selection of agents remained too sparse. By
contrast, when using a learning algorithm, the agents converged to
more direct routes in order to avoid overlapping with agents from

https://github.com/maslab-ufrgs/transportation_networks

A

B

C

D

E

F

G

H

I

J

K

L

M

Route A
A

B

C

D

E

F

G

H

I

J

K

L

M

Route B

A

B

C

D

E

F

G

H

I

J

K

L

M

Route C
A

B

C

D

E

F

G

H

I

J

K

L

M

Route D

A

B

C

D

E

F

G

H

I

J

K

L

M

Route E
A

B

C

D

E

F

G

H

I

J

K

L

M

Route F

A

B

C

D

E

F

G

H

I

J

K

L

M

Route G
A

B

C

D

E

F

G

H

I

J

K

L

M

Route H

Figure 1: Set of 8 routes available in the RMQ-learning exper-
iment for agents assigned to the A|L origin-destination pair.

different origins. Overall, this strategy has led to lower average
travel time, which implies in less congestion over the network.

Then, in order to assess the correctness of our implementation,
we performed some experiments to compare the results obtained
by our implementation against the ones reported in the papers
of the original algorithms [10, 11]. We ran experiments with both
algorithms described in Section 4.3. Though these experiments are
not intended to bring novel results, they still provide evidence of the
correct implementations of the agents. As such, our experiments can
be seen as benchmarks for the route choice problem in multiagent
settings.

We selected the OW network and configured the RMQ-learning
and TQ-learning agents with the same hyper-parameters reported
in [10, 11], as presented in Table 2. We replicated each experiment
30 times. For each algorithm, we wanted to validate that our library
can produce results that are consistent with the original ones.

Table 3 shows the results obtained by our and the original im-
plementations of the algorithms. As can be observed, our results
are consistent with the original ones. Nonetheless, we account that
some differences can occur when reproducing experiments due to
the setting and some randomness.

Additionally, we also plotted the average learning curves and
standard deviation obtained by all algorithms in Figures 2 and 3.
Again, as seen, the results show that the RouteChoiceEnv imple-
mentation of the algorithms is consistent with the original ones. We
remark that we did not want to see an improvement in the learning

0 200 400 600 800 1000
Episode

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Av
er

ag
e

tra
ve

l t
im

e

RMQ-learning (Original implementation)
RMQ-learning (Our implementation)
User Equilibrium

Figure 2: Comparison of the average learning curves obtained
by the original and our implementations of RMQ-learning
in the OW network.

0 2000 4000 6000 8000 10000
Episode

70

75

80

85

90
Av

er
ag

e
tra

ve
l t

im
e

TQ-learning (Original implementation)
TQ-learning (Our implementation)
System Optimum

Figure 3: Comparison of the average learning curves obtained
by the original and our implementations of TQ-learning in
the OW network.

performance of our algorithms, but in the simplicity of running
these experiments and to make it easily reproducible for anyone
doing research in this area.

6 CONCLUDING REMARKS
This paper introduced RouteChoiceEnv, an extensible library for
route choice simulation and experimentation with MARL algo-
rithms. Our objective was to draw attention of the MARL commu-
nity to this important problem as a benchmark for developing new
algorithms.

In future work, we plan to implement other features to our
simulator, such as net revenue and tolling schemes for the system,
and real-life features, such as real-time information, departure times
and drivers’ preference (such as time and monetary preference).

Table 1: Flow distribution for over A|L routes and average travel time in the OW network. Reported results correspond to the
last episode of experiments of a random policy versus RMQ-learning.

Algorithm Route A Route B Route C Route D Route E Route F Route G Route H Average travel-time

Random policy 71 75 85 65 59 70 83 92 81.78
RMQ-learning 6 97 429 0 0 0 110 0 67.14

Table 2: Parameter configuration for each algorithm used
when reproducing the experiments.

Algorithm Network Episodes 𝐾 𝜆 𝜇

RMQ-learning OW 1000 8 0.995 0.995
TQ-learning OW 10000 12 0.999 0.999

Table 3: Comparison of the results obtained by our and
the original implementations of the RMQ-learning and TQ-
learning algorithms in the OW network. RMQ-learning re-
sults approximate the Nash equilibrium. TQ-learning results
approximate the system optimum. In all cases, the closer to
1 the better.

Network Original Implementation Our Implementation

RMQ-learning 0.99975 0.99966
TQ-learning 0.99968 0.99965

Additionally, we plan to add novel networks and algorithms that the
user can select for route choice experiments. Another interesting
direction is to integrate our framework with other traffic simulators
such as SUMO and CityFlow.

ACKNOWLEDGMENTS
This research was partially supported by Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Fi-
nance Code 001, Conselho Nacional de Desenvolvimento Científico
e Tecnológico - CNPq (grants 140500/2021-9 and 304932/2021-3),
Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul -
FAPERGS (grant 19/2551-0001277-2), and Fundação de Amparo à
Pesquisa do Estado de São Paulo - FAPESP (grant 2020/05165-1).

REFERENCES
[1] Lucas N. Alegre. 2019. SUMO-RL. https://github.com/LucasAlegre/sumo-rl.
[2] Ana L. C. Bazzan and Franziska Klügl. 2013. Introduction to Intelligent Systems

in Traffic and Transportation. Synthesis Lectures on Artificial Intelligence and
Machine Learning, Vol. 7. Morgan and Claypool. 1–137 pages. https://doi.org/
10.2200/S00553ED1V01Y201312AIM025

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv preprint
arXiv:1606.01540.

[4] Haipeng Chen, Bo An, Guni Sharon, Josiah Hanna, Peter Stone, Chunyan Miao,
and Yeng Soh. 2018. DyETC: Dynamic Electronic Toll Collection for Traffic
Congestion Alleviation. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18). AAAI Press, New Orleans, 757–765.

[5] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. 2018. Microscopic traffic simulation using sumo.
In 2018 21st international conference on intelligent transportation systems (ITSC).
IEEE, 2575–2582.

[6] Mohammad Noaeen, Atharva Naik, Liana Goodman, Jared Crebo, Taimoor Abrar,
Behrouz Far, Zahra S H Abad, and Ana L. C. Bazzan. 2021. Reinforcement
Learning in Urban Network Traffic Signal Control: A Systematic Literature
Review. https://doi.org/10.31224/osf.io/ewxrj

[7] Juan de Dios Ortúzar and Luis G. Willumsen. 2011. Modelling transport (4 ed.).
John Wiley & Sons, Chichester, UK.

[8] Gabriel de O Ramos, Bruno C da Silva, and Ana LC Bazzan. 2017. Learning
to minimise regret in route choice. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems. 846–855.

[9] Gabriel de Oliveira Ramos. 2018. Regret Minimisation and System-Efficiency in
Route Choice. Ph.D. Dissertation. Universidade Federal do Rio Grande do Sul,
Porto Alegre. http://hdl.handle.net/10183/178665

[10] Gabriel de O. Ramos, Bruno C. da Silva, and Ana L. C. Bazzan. 2017. Learning to
Minimise Regret in Route Choice. In Proc. of the 16th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2017), S. Das, E. Durfee,
K. Larson, and M. Winikoff (Eds.). IFAAMAS, São Paulo, 846–855. http://ifaamas.
org/Proceedings/aamas2017/pdfs/p846.pdf

[11] Gabriel de O. Ramos, Bruno C. da Silva, Roxana Rădulescu, Ana L. C. Bazzan,
and Ann Nowé. 2020. Toll-based reinforcement learning for efficient equilibria
in route choice. The Knowledge Engineering Review 35 (2020), e8. https://doi.org/
10.1017/S0269888920000119

[12] Gabriel de O. Ramos, Liza Lunardi Lemos, and Ana L. C. Bazzan. 2017. Developing
a Python Reinforcement Learning Library for Traffic Simulation. In Proceedings
of the Adaptive Learning Agents Workshop 2017 (ALA2017) (ALA2017), T. Brys,
A. Harutyunyan, P. Mannion, and K. Subramanian (Eds.). São Paulo. http:
//www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2017ala.pdf

[13] Gabriel de O. Ramos, Roxana Rădulescu, Ann Nowé, and Anderson R. Tavares.
2020. Toll-Based Learning for Minimising Congestion under Heterogeneous
Preferences. In Proc. of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fal-
lah Seghrouchni, and G. Sukthankar (Eds.). IFAAMAS.

[14] Tim Roughgarden. 2007. Routing games. Algorithmic game theory 18 (2007),
459–484.

[15] Tim Roughgarden and Éva Tardos. 2002. How bad is selfish routing? J. ACM 49,
2 (2002), 236–259.

[16] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning: An intro-
duction (second ed.). The MIT Press.

[17] Justin K. Terry, Benjamin Black, Ananth Hari, Luis S. Santos, Clemens Dieffendahl,
Niall L. Williams, Yashas Lokesh, Caroline Horsch, and Praveen Ravi. 2020. Pet-
tingZoo: Gym for Multi-Agent Reinforcement Learning. CoRR abs/2009.14471
(2020). arXiv:2009.14471 https://arxiv.org/abs/2009.14471

[18] K. Tuyls and G. Weiss. 2012. Multiagent Learning: Basics, Challenges, and
Prospects. AI Magazine 33, 3 (2012), 41–52.

[19] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou,
Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. 2019. Cityflow: A multi-
agent reinforcement learning environment for large scale city traffic scenario. In
The world wide web conference. 3620–3624.

https://github.com/LucasAlegre/sumo-rl
https://doi.org/10.2200/S00553ED1V01Y201312AIM025
https://doi.org/10.2200/S00553ED1V01Y201312AIM025
https://doi.org/10.31224/osf.io/ewxrj
http://hdl.handle.net/10183/178665
http://ifaamas.org/Proceedings/aamas2017/pdfs/p846.pdf
http://ifaamas.org/Proceedings/aamas2017/pdfs/p846.pdf
https://doi.org/10.1017/S0269888920000119
https://doi.org/10.1017/S0269888920000119
http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2017ala.pdf
http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2017ala.pdf
https://arxiv.org/abs/2009.14471
https://arxiv.org/abs/2009.14471

	Abstract
	1 Introduction
	2 Related Work
	3 The Route Choice Problem
	3.1 Road Network Modeling
	3.2 Problem Modeling

	4 The RouteChoiceEnv Library
	4.1 Agent-Environment Interaction
	4.2 Networks
	4.3 Agents
	4.4 Extending the Library

	5 Experiments
	6 Concluding Remarks
	Acknowledgments
	References

