
A Classification Based Approach to Identifying and Mitigating
Adversarial Behaviours in Deep Reinforcement Learning Agents

Seán Caulfield Curley
University of Galway

Ireland
s.caulfieldcurley1@nuigalway.ie

Karl Mason
University of Galway

Ireland
karl.mason@universityofgalway.ie

Patrick Mannion
University of Galway

Ireland
patrick.mannion@universityofgalway.ie

ABSTRACT
Opponent modelling is an area of significant interest in multi-agent
systems (MAS). It has been shown that an agent can be trained
with an adversarial policy which achieves high degrees of success
against a state-of-the-art DRL victim despite taking unintuitive
actions. This prompts the question: is this adversarial behaviour
detectable through the observations of the victim alone? We find
that widely used classification methods such as random forests are
only able to achieve a maximum of ≈ 71% test set accuracy when
classifying an agent for a single timestep. However, when the clas-
sifier inputs are treated as time-series data, test set classification
accuracy is increased significantly to ≈ 98%. This is true for both
classification of episodes as a whole, and for “live” classification at
each timestep in an episode. These classifications can then be used
to “react” to incoming attacks and increase the overall win rate
against Adversarial opponents by approximately 17%. Classification
of the victim’s own internal activations in response to the adver-
sary is shown to achieve similarly impressive accuracy while also
offering advantages like increased transferability to other domains.

KEYWORDS
Adversarial Reinforcement Learning, Deep Reinforcement Learning,
Opponent Modelling

1 INTRODUCTION
In competitive environments, being able to reason about an oppo-
nent’s past behaviour and using that reasoning to predict what they
might do in the future is a crucial technique for success. However,
if an opponent’s actions seem nonsensical and yet they still win
regularly, it is difficult to predict what they will do in the future
because we don’t even understand what they are doing now. This is
the conundrum experienced by agents facing adversarial perturba-
tions in opponent policies which are designed to confuse the victim
agent to the point of defeat. Adversarial examples are commonly
used in image classifiers to throw off models’ predictions or even
force them to predict some specific class [9, 13].

Naturally generated adversarial observations were first illus-
trated by Gleave et al. [6] in the 3D simulated physics environments
created by Bansal et al. [2]. Gleave et al. [6] demonstrated that an
adversarial agent could learn to reliably beat their victim despite
taking apparently random actions. It was also shown that if the vic-
tim was made blind to the adversary’s movements, the victim would
become immune to the adversarial strategy. This suggested that
the victim’s own observations of the adversary were its downfall.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2023), Cruz, Hayes, Wang,
Yates (eds.), May 9-10, 2023, Online, https://ala2023.github.io/ . 2023.

This prompted the question: can agents learn to detect adver-
sarial behaviour before it conquers them? The results we report
in this paper demonstrate that widely-used supervised learning
models can classify both normal and adversarial behaviour with
very high degrees of accuracy. We also show that adversarial poli-
cies create highly “unusual” activations in the victim agent’s neural
network. These unusual activations can also be successfully used to
classify opponent behaviour. When using a long short-term mem-
ory (LSTM) model for classification, the trained model can also
be adapted for live classification at each time step in an episode.
Despite the LSTM model being trained on entire episodes with a
single output label, after training it can correctly classify timestep-
by-timestep testing data with a high degree of accuracy after only
≈ 35% of the episode’s length. This LSTM allows the “victim” agent
to greatly increase its robustness to adversarial attacks and hence
its win rate.

The contributions of this work are as follows:

(1) We demonstrate the effectiveness of using a victim agent’s
raw observations to determine whether an opponent has
specifically been trained to act in an adversarial manner.
Game state encodings have been used many times in previ-
ous work to classify opponent behaviour, but to the authors’
knowledge this is the first use of raw observations for oppo-
nent classification in a 3D simulated physics environment.

(2) Our work also shows that the activations induced in an
agent during deployment may also be useful for reasoning
about the behaviour of an opponent in the environment. We
found that classifying opponents worked just as well with
activations as input data, as it did with raw observations.
Again, to the best of the authors’ knowledge, this is the
first time that the usefulness of activations for opponent
classification has been demonstrated in a published paper.
This approach could potentially be useful in multi-task or
transfer learning settings in future work, as classifiers for
opponent behaviour could be trained to classify using agent-
specific features (neural network activations) rather than
domain-specific features (observations), thereby improving
transferability.

(3) Our final contribution is the implementation of the classifier
within the “victim” agent to increase its robustness. The
victim’s win rate increases dramatically and visual inspection
of evaluation episodes shows that victim effectively ignores
the adversarial attacks.

Section 2 of this paper outlines the motivation for this work
and gives an insight into previous related studies in adversarial
attacks and opponent modelling. The techniques used to generate
the datasets for classification are explained along with the model

https://ala2023.github.io/


parameters used in Section 3. The results from these classification
approaches are given in the next section. Section 4 also highlights
an area where our approach could potentially be improved and
outlines how an agent that uses our classifiers to “react” performs.
Section 5 concludes the paper and gives a brief outline of the plans
to extend this work.

2 BACKGROUND & RELATEDWORK
Generally in adversarial example generation, perturbations are
added directly to the inputs of a machine learning model which re-
sults in unintended or undesirable behaviour at the output. Szegedy
et al. [13] were the first to show that making seemingly minor
changes to images caused them to be misclassified by state-of-the-
art image classification models. It was shown by Papernot et al.
[9] that a specific target label could be predicted with fine-tuning
of the perturbation. Huang et al. [7] applied these techniques to
reinforcement learning by altering the network’s input of the last 4
images from Atari games.

The foundation of this paper will be a follow on to the work of
Gleave et al. [6] who demonstrated that an agent in a multi-agent
environment can induce natural adversarial observations which sig-
nificantly affect the performance of its opposing agent. Rather than
directly modifying the “victim” agent’s observations, the attacker
was trained to take actions which induced abnormal activations in
the victim, causing it to perform poorly. Lin et al. [8] also applied
adversarial techniques to multi-agent systems, focusing on a single
victim agent in a Starcraft 2 team. In both studies, the attackers
trick the victim agent into taking sub-optimal actions by naturally
creating adversarial observations. To date, the only improvement
on Gleave’s adversaries was made by giving the attacker access to
the actions and observations of the victim [17]. This access allowed
the attacker to target specific features of the victim’s observations
to induce maximum distance from the optimal policy. None of the
above papers involved any modelling of the adversarial agent.

There have also been studies attacking agents in simulated real-
world MAS using another agent. Pierpaoli et al. [10] showed that
autonomous UAVs can be forced to fly in a path determined by a
third party by using other UAVs to continuously threaten collision.
Behzadan and Munir [3] outlined how autonomous vehicle agents
can be trained to find an “optimal” policy leading to direct collision
with another vehicle. Wachi [15] demonstrated that adversarial
autonomous vehicles can be trained to induce failures (accidents or
long delays) in victim autonomous vehicles without making any
contact.

Opponent modelling is a popular area of research in which re-
searchers aim to determine some properties of other agents in a
multi-agent environment [1]. However, most studies of opponent
classification rely on encodings of the game state to model oppo-
nent behaviour. For example, Weber and Mateas [16] predicted
the opponent’s strategy in Starcraft 2 using a feature vector of the
timestamps of unit production. Spronck and Teuling [11] used 25
features including number of cities, number of units and popula-
tion size to model the “preferences” of players in Civilization IV.
A significant amount of opponent modelling research has focused
on the domain of robot soccer. This is an environment with con-
tinuous states and actions similar to ours but studies have to-date

inputted a representative feature vector rather than the raw game
state [4, 12]. To the authors’ knowledge, this is the first paper to
classify opponent behaviour solely using the raw observations of
the environment and of the other agent. It is also the first to use
an agent’s own activations as input to a classifier for opponent
behaviour.

3 METHODOLOGY

Figure 1: The KickAndDefend environment from Bansal et al.
[2] which the adversarial agents were evaluated in.

All experiments in this paper were performed in the zero-sum
multi-agent competition environments created by Bansal et al. [2].
We consider two types of classifier inputs: activations and observa-
tions. In the remainder of this paper, those terms will be used to
represent the following:

(1) Observations: A vector with 384 entries, comprising the
proprioceptive observations of the adversarial agent’s joint
angles/velocities/positions, the ball’s positioning and other
values such as actuator forces

(2) Activations: The outputs from each of the 128 nodes of the
victim agent’s trained neural network when an observation
is fed into the input layer

Activations and observations were generated by simulating 500
episodes with already trained agents in the KickAndDefend envi-
ronment (Figure 1) and outputting the “victim” agent’s observation
and the resulting activation at every timestep. Both Adversarial
and regular (Zoo) goalkeeper agents were used. This was repeated
for 3 different seeds per agent leading to 3𝑣𝑖𝑐𝑡𝑖𝑚𝑠 × 3𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠 ×
500𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 4500𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 for both the Adversarial and Zoo cases.
The pre-trained Zoo agent models are those provided by Bansal
et al. [2], while the pre-trained adversarial agents are those provided
by Gleave et al. [6]. In all cases, the goalkeeper is the opponent
agent (which can be Adversarial or Zoo) and the victim agent is
the “kicker”.

3.1 Instantaneous Classification
Each timestep’s activations for an episode were labelled according
to the type of opponent that induced them (Adversarial or Zoo).
The activations dataset was split into a training set 70% of the size
of the original set and validation and test sets comprising 15% of
the original set each.



A number of classification algorithms were evaluated; namely
random forest, k-nearest neighbours, Gaussian naive Bayes and
logistic regression. Grid search cross validation was performed on
each model to determine their most effective hyperparameters and
to ensure a fair comparison between models.

3.2 Time-series Classification
Activations/observationswere grouped by episode and each episode
(or time-series) was given a single label corresponding to the op-
ponent agent’s behaviour. Episodes were padded to the maximum
length of 500 timesteps and feature values were normalised to the
range [0, 1]. Normalising was particularly important for observa-
tions as the ranges of different features varied widely e.g., angles
between joints could fall in the range [−120, 120] while the root
coordinates were bounded by the range [−1, 1].

Both activations and observations were classified using a net-
work comprised of a masking layer, an LSTM layer of 100 units and
a single dense output layer. The default Keras hyperparameter val-
ues were used throughout this proof-of-concept experiment as they
displayed promising results immediately. The output was passed
through a sigmoid activation layer to achieve binary classification.
Both networks were trained for 10 epochs.

One point illustrated by Gleave et al. [6] is that the adversar-
ial activations were dispersed evenly around the parameter space,
in and amongst both Zoo and Random activations. Furthermore,
visually analysing the episodes (Appendix A) makes it clear that
the differences between an agent acting randomly and one acting
adversarially are imperceptible to the human eye. Therefore, testing
sets consisting of activations or observations of an agent acting ran-
domly were generated to analyse the impact of random activations
and observed behaviours on the performance of the classifier.

Finally, although training will involve classification of an entire
episode, the goal of the final implementation will be to classify the
opponent’s behaviour live, during an episode. Thus, an experiment
was performed where timesteps were inputted one by one with
the classifier predicting its output at each step. Essentially, each
sequence of timesteps until the last was then treated as its own
sub-episode.

4 RESULTS
4.1 Instantaneous Classification
Table 1 outlines the 5-fold accuracies achieved by the each of the
classification algorithms tested in this study. For each algorithm,
the final model used was that which attained the highest test set
accuracy after grid search cross validation of the hyperparameters.
Evidently, no model was able to achieve a particularly high testing
set accuracy. The random forest algorithm does show some promise
with approximately 71% accuracy but a confusion matrix of its
predictions (Figure 3) shows why it is still unsuitable for the task.

In Section 4.4, the method for defending against adversarial be-
haviour upon classification, “Masking”, is outlined. This is the same
method as was used by Gleave et al. [6] where the victim pretends
the goalkeeper is fixed in the starting position and ignores its adver-
sarial actions. The high rate of false Adversarial predictions mean
that the agent would regularly ignore the actions of a “normal” goal-
keeper. In fact, Gleave et al. [6] studied the effects of unnecessary

masking and found that “masked victims do worse than a normal
victim when playing normal opponents” [6]. False Zoo predictions
are not as impactful in the sense that if the goalkeeper is acting
adversarially and the victim does something other than masking, it
will likely lose regardless.

Figure 4 provides insight into why the instantaneous classifiers
are unable to correctly separate the data. There is significant overlap
between both Adversarial and Zoo activations (when converted
to 2 dimensions using t-SNE [14]) implying that attacks simulate
“normal” behaviour with small tweaks to induce sub-optimal actions
in the victim.

4.2 Time-Series Classification
Conversion of both the activations and observations into time-series
data led to significant improvement in the classification accuracy.

4.2.1 Activations. After 10 epochs of training, the LSTM model
achieved 98.0% accuracy on the test set. While this result is impres-
sive, as mentioned in Section 3.2, classifying the entire episode is
not the goal of this study. Instead, we want to achieve in-episode
classification of the opponent so that the victim agent can react
to and defend against attacks. For live classification, a list of all
of the timesteps’ activations up to that point is passed in and a
prediction between 0 (Adversarial) and 1 (Zoo) is output. A batch
of the last 35 predictions is then averaged and the result is classi-
fied. If the average of the predictions gets under 0.05, the model
predicts that the opponent is acting adversarially. Conversely, if the
average exceeds 0.8, Zoo behaviour is predicted. These thresholds
and the 35 prediction size of the batch were chosen as they were
found to achieve good accuracy while also forming predictions
relatively quickly. This is illustrated in Table 2, where an upper
threshold of 0.7 amasses the most correct predictions at all check-
points throughout the episode except for the final one. However,
an upper threshold of 0.8 achieves only slightly less correct classifi-
cations in the early checkpoints while making almost no incorrect
predictions. As incorrect predictions are likely to be much more
harmful than slightly late predictions, the higher threshold is used.

Despite not being trained for live classification, the model per-
formed well and attained 97.6% overall accuracy. Table 3 shows
that even when the model does not predict its opponent correctly,
it is rarely confidently incorrect. In fact, the 0.8% of incorrect Zoo
predictions only amounts to a single prediction, meaning the model
was only confidently incorrect for 1 of the 250 testing samples.
Here, indecisions denote episodes where the averaged predictions
never got outside of the range [0.05, 0.8] within the maximum 500
timesteps. One possible cause of these indecisions is that some
episodes are extremely short, ending in less than than 40 timesteps
(3 of the 5 indecisions were in sub-40 timestep episodes). It would
be unsurprising if an agent could not form a confident prediction
in so few timesteps, especially considering the median length of
the Adversarial and Zoo episodes are 272.5 timesteps and 171.5
timesteps, respectively (Table 4).

The time taken to reach correct predictions is another promising
result from this method of live classification. Classifying an adver-
sarial opponent’s behaviour after only about 35% of an episode
should mean that there is more than enough time to defend oneself
appropriately and go on have a good chance to win the episode.



Figure 2: The evaluation process for creating the observation and activation datasets

Table 1: The 5-fold accuracies of each of the tested instantaneous classification methods.

Algorithm Testing Set Accuracy Training Set Accuracy

Random Forest 0.711 ± 0.002 0.999 ± 0
Logistic Regression 0.643 ± 0.003 0.643 ± 0.001

Gaussian Naive Bayes 0.568 ± 0.002 0.569 ± 0.001
k-Nearest Neighbours 0.646 ± 0.002 0.792 ± 0.001

Table 2: Number of correct and incorrect predictions at a number of checkpoints throughout 250 episodes. The Upper Threshold
column describes the threshold which must be exceeded to predict Zoo behaviour while the lower threshold (Adversarial) is
fixed at 0.05

Upper No. predictions at episode checkpoint
Threshold 20% 40% 60% 80% 100%

0.7 30 163 208 236 239
Corrects 0.8 16 109 166 203 244

0.9 13 86 118 135 194
0.7 5 6 6 7 7

Incorrects 0.8 0 0 0 1 1
0.9 0 0 0 1 1

Table 3: Results of live classification of activations

Avg. % of Episode Avg. % of Episode
True Label Correct Incorrect Indecision to Correct Prediction to Incorrect Prediction

Adversarial 98.4% 0% 1.6% 35.9% N/A
Zoo 96.7% 0.8% 2.4% 64.2% 76.4%

Furthermore, it suggests that there is no one “killer blow” which the
goalkeeper performs to quickly end the episode. Instead, adversarial
behaviour is detectable at an early stage long before it “successfully”
disrupts the victim agent. This is confirmed in Section 4.4.

4.2.2 Observations. The same experiments as in Section 4.2.1 were
also performed on the victim’s raw observations. Again, the model
learned the relationship well, this time achieving a test set accuracy
of 98.4%. Similarly, the results of live classification presented in



Figure 3: Random forest confusion matrix

40 30 20 10 0 10 20 30 40
t-SNE attribute 0

30

20

10

0

10

20

30

t-S
NE

 a
ttr

ib
ut

e 
1

t-SNE Plot of Adversarial and Zoo activations
Adv
Zoo

Figure 4: Adversarial and Zoo activations

Table 4: The distribution of episode lengths in the dataset.
The 1-timestep long episodes comprise the kicker agent
falling over immediately. Other than these, the shortest Ad-
versarial and Zoo episodes are 5 and 7 timesteps, respectively.

Label Shortest Longest Mean Median

Adv 1 500 296.096 272.5
Zoo 1 500 183.728 171.5

Table 5 indicate that observation classification is as good or even
better than activation classification. This is especially true with
the absence of any confidently incorrect predictions. This could be
due to the observations having more features (384 compared to the
activations’ 128). The Zoo prediction threshold was increased in this
model from 0.8 to 0.975 as it was found through experimentation

Figure 5: Multi-class Confusion Matrix for activations

Figure 6: Multi-class Confusion Matrix for observations

to achieve a good balance between correct classification and timely
predictions.

In order to test the models on random inputs, a normal agent
played against a randomly acting goalkeeper for 500 episodes. The
models were re-trained including the random inputs for 20 epochs
and the results of classifying a held-out set are shown in Figures 5
and 6. Both the model trained on activations and the model trained
on observations accurately separate Zoo (“normal”) behaviour from
random and adversarial behaviour. However, both models then
struggle to distinguish between an opponent acting adversarially
and an opponent acting randomly. The activations classifier is par-
ticularly poor, only achieving 68% accuracy on classification of the
two abnormal behaviours. This is a potential avenue for improve-
ment, however random inputs are not likely to be encountered very
often and thus are not especially relevant. Firstly, the chances of



Table 5: Results of live classification of observations

Avg. % of Episode Avg. % of Episode
True Label Correct Incorrect Indecision to Correct Prediction to Incorrect Prediction

Adversarial 96.88% 0% 3.13% 30.37% N/A
Zoo 98.36% 0% 1.64% 35.94% N/A

0.95 0.96 0.97 0.98 0.99 1.00
Accuracy with observat ion perm uted

a13

a117

a127

a135

a259

a364

a4

a9

a17

a18

a375

a376

a378

a379

a380

a381

a382

a383

a356

a373

O
b

se
rv

a
ti

o
n

Baseline Accuracy= 0.980

Figure 7: The most extreme changes in accuracy caused by
permuting each observation (10most and least affected). Note
the y-label corresponds to the observation index from the
list of 384 observations returned by the victim.

an opponent acting randomly in the first place is highly unlikely
whether that is in a simulated or real-life environment. A trained
agent will seek to maximise its reward which random behaviour is
highly unlikely to achieve while a real person has no reason to act
randomly. Most importantly though, false identification of adver-
sarial behaviour when the opponent is acting randomly should not
adversely affect our agent’s performance. The approach of masking
observations upon detection of adversarial behaviour means the
victim will simply ignore the random opponent and likely win the
episode regardless. Therefore, it is proposed to only train on and
classify Adversarial and Zoo behaviour in future applications.

4.2.3 Feature Importance. Permutation feature importance [5] was
used to calculate what effect each feature had on the overall accu-
racy . For each feature, in every episode the values for that feature
were shuffled. The model then classified these new episodes and the
overall accuracy was calculated. If shuffling a feature decreases the
accuracy significantly, the feature is important because the model
depends on it. Conversely if the accuracy increases from shuffling a
feature, that means it is not at all important for classification. This
results of this analysis are only presented for the observations case
as the insights to be gained from a result like “Activation 42 of 128
is very impactful” are minimal.

Figure 7 outlines the 10 most and least important features. The
overall changes to accuracy are relatively small; the biggest de-
crease in accuracy is ≈ 1% less than the baseline while the least
important gives a ≈ 1% increase to the accuracy. However, there
are still some interesting insights to be gained. For example, the
fact that shuffling some observations increases the overall accuracy

Table 6: Prediction results of in-agent live classification of
observations and activations

True Label Correct Incorrect Unsure

Observ- Adversarial 90.42% 0% 9.57%
ations Zoo 98.11% 0% 1.88%
Activ- Adversarial 92.4% 4.8% 2.8%
ations Zoo 95.3% 2.6% 1.9%

suggests that there are features which actively make classification
more difficult. Therefore, feature selection may offer equal or even
improved performance while reducing the model size. Some inter-
esting observations which the model deems important include a13
(right_knee rotation), a9 (abdomen_x rotation) and a17 (left_knee
rotation). One intriguing inclusion is a18 (right_shoulder_1 rota-
tion). The normal goalkeeper almost always uses its legs to tackle
the victim or to save the ball but this result implies that abnormal
shoulder movement is one of the biggest factors in disrupting the
victim. This could indicate that we can manipulate limbs which
normally would not have much impact to achieve our adversarial
behaviour.

4.3 In-Agent Classification
To enable in-agent classification, firstly the saved models from
Section 4 were loaded. The maximum and minimum values en-
countered during training for each of the observed features were
also loaded so that they could be used for normalisation of the
live values. Once the episodes began, the same procedure as in
Section 3 was used to classify the victim’s inputs (observations or
activations);

(1) Normalise the most recent timestep’s features according to
the maximum and minimum values observed during training

(2) Form a prediction on all of the previously seen timesteps
(3) If the average of the last 𝑛 predictions exceeds the upper

threshold (Zoo) or goes under the lower threshold (Adver-
sarial), output that average as the final classification

Each of the three victim agents given by Gleave et al. [6] were
evaluated against each of the three Adversarial attackers provided in
their paper. Each victim was also evaluated against each of the three
Zoo agents provided by [2]. In all cases, an agent was evaluated
against their respective opponent for 500 episodes. This lead to
3𝑣𝑖𝑐𝑡𝑖𝑚𝑠 × 3𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠 × 500𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 4500𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 against each
type of opponent (Adversarial or Zoo). These evaluations were
performed for both the observation and activation classifying case.

The live classificationmodel performed verywell using the above
method, achieving accuracies of approximately 90% and 98% on



Figure 8: A boxplot of the win rates of both masking and
non-masking agents. Observations corresponds to the victim
reacting by masking based on its classification of its obser-
vations while Activations represents an agent reacting by
masking based on its classification of its activations.

Adversarial and Zoo observations, respectively (Table 6). Further-
more, there were no incorrect predictions at all in the 9000 episodes
used for evaluation. The trade-off between indecision and incorrect
classification can be tweaked by changing the thresholds used for
determining when the final prediction should be made. The chosen
lower threshold of 0.15 and upper threshold of 0.95 were found
to achieve a suitable compromise between timely predictions and
high classification accuracy.

Similarly high correct prediction accuracies were observed for
the activations case (Table 6). This time, a lower threshold of 0.05
and a upper threshold of 0.9 were used which lead to some incorrect
guesses but also allowed for a higher correct classification rate of
Adversarial inputs.

4.4 Reacting
While classification of behaviour is interesting on its own, it is more
realistic that the user will want the agent to react in some way to a
prediction of the opponent type. Therefore, masking (as per Gleave
et al. [6]) was implemented. This involves storing the first position
of the goalkeeper and using that initial value as a substitute for
the actual observed position in order to negate adversarial attacks.
To implement this, at the start of every episode, the goalkeeper’s
position was stored. Then, if Adversarial behaviour was detected,
that initial position would be used as the observed position for all
remaining timesteps in the episode.

Masking was tested by evaluating three different Zoo kickers
against each of three Adversarial goalkeepers for 500 episodes each
as in the previous section. This was done for an agent masking
based on observations, an agent masking based on activations and
a agent who does no masking (and “succumbs” to the adversarial
attacks). Figure 8 illustrates the improvements in win rate as a result
of using masking to react to attacks for each masking case for each
of the 9 combinations of agents.

For the observation classifying case, the average win rate of the
9 victim agents grew from 55.3% to 72.1%. The highest win rate

of an agent increased from 65.2% to 81.4%. Finally, the lowest win
rate of an agent rose from 24.8% to 58.8%. Reacting to one’s own
activations increased the average win rate across the 9 victim agents
to 72.5%. The highest win rate of the activation classifying agents
was 84.8% while their lowest win rate stood at 63.2%. The new win
rates are impressive and show that the classifier can achieve timely,
correct predictions which can nullify the effects of Adversarial
attacks. While masking is a simple fix, these results show that a
more complicated defense may not be necessary to successfully
defend against adversarial perturbations.

5 CONCLUSION & FUTUREWORK
This paper has demonstrated that it is possible to implement clas-
sifiers to accurately predict the behaviour of an opponent agent
only using raw observations of the opponent or the victim’s own
internal activations. “Live” classification was also proven effective
which enabled opponent modelling within simulation episodes.
This lead to the average win rate of victim agents against adver-
saries to rise approximately 17%. Time-based models, such as the
model implemented in this paper, could be used in wide range
of opponent classification applications while an effective activa-
tion classifier should be transferable to many domains. One of the
key considerations for the future is whether to use activations or
observations for opponent classification. It is improbable that a
real-world agent such as an autonomous car will have access to
as fine-grained observations as the Mujoco agent does i.e., a car
won’t have a millimetre-level precision measurement of every an-
gle, position, velocity, and inertia of every joint in a pedestrian’s
body. Therefore, classification of one’s own activations appears
to be more generally applicable. As activations are calculated in
all agents that use neural networks to process observations, this
approach could also work well in transfer learning or multi-task
learning settings that require the same agent architecture to be
used. On the other hand, observations are more explainable than
activations. “The right elbow moving anticlockwise rapidly is the
major cause of the victim’s downfall” is far more intuitive than
“Activation 99 in the 128 node network is the most impactful on our
victim”.

One avenue for further research is to investigate how best to
train adversarial agents whose behaviours are more difficult to
distinguish from normally expected behaviours. This could be ac-
complished by incorporating a penalty into the reward function of
the adversarial agent each time its behaviour can be distinguished
from that of a non-adversarial agent, by a classifier such as ours.
This should lead to a level of deception (like “feinting” in sports)
which is a more rational type of attack than the current method of
contorting on the ground. A more advanced adversary could also
be used to train a higher level (non-)victim which could be “fed
back” again, leading to an “arms race” of improved defenders and
attackers.

Adversarial behaviour has significant potential for interference
with learning agents deployed in real-world applications. For ex-
ample, a pedestrian agent trained to disrupt an autonomous vehi-
cle’s pedestrian path prediction model could have disastrous conse-
quences. Therefore, it is crucial that defences against adversarial



behaviour are developed in parallel with attacks. Opponent classi-
fication approaches such as the one presented in this paper could
allow victim agents to detect and react appropriately to incoming
attacks. Another interesting direction following from this research
is to develop methods to visualise which observations are most
important to the victim agent. Live identification of the joints/limbs
which the victim is paying attention to could offer great insight
into why the adversarial actions are so effective.

A RELATED CODEBASES
(1) Multi-agent Competition: https://github.com/openai/multiagent-

competition [2]
(2) Adversarial policies videos: https://adversarialpolicies.github.

io/#videos [6]

ACKNOWLEDGMENTS
This work is supported but the National University of Galway, Ire-
land College of Science and Engineering Postgraduate Scholarship.

REFERENCES
[1] Stefano V. Albrecht and Peter Stone. 2018. Autonomous agents modelling other

agents: A comprehensive survey and open problems. Artificial Intelligence 258
(2018), 66–95. https://doi.org/10.1016/j.artint.2018.01.002

[2] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In Proc. ICLR-18
(2018).

[3] Vahid Behzadan and Arslan Munir. 2020. Adversarial Reinforcement Learning
Framework for Benchmarking Collision Avoidance Mechanisms in Autonomous
Vehicles. IEEE Intelligent Transportation Systems Magazine PP (01 2020), 1–1.
https://doi.org/10.1109/MITS.2019.2898964

[4] Grazia Bombini, Nicola Di Mauro, Stefano Ferilli, and Floriana Esposito. 2010.
Classifying Agent Behaviour through Relational Sequential Patterns. In Proceed-
ings of the 4th KES International Conference on Agent and Multi-Agent Systems:
Technologies and Applications, Part I (Gdynia, Poland) (KES-AMSTA’10). Springer-
Verlag, Berlin, Heidelberg, 273–282.

[5] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. 2019. All Models are
Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an
Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 20, 177
(2019), 1–81.

[6] A Gleave, M Dennis, N Kant, C Wild, S Levine, and S Russsell. 2020. Adversarial
Policies: Attacking Deep Reinforcement Learning. In Proc. ICLR-20 (2020).

[7] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
2017. Adversarial Attacks on Neural Network Policies. arXiv preprint
arXiv:1702.02284 (2017). https://doi.org/10.48550/ARXIV.1702.02284

[8] Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia, and Nicolas
Papernot. 2020. On the Robustness of Cooperative Multi-Agent Reinforcement
Learning. In 2020 IEEE Security and Privacy Workshops (SPW). 62–68. https:
//doi.org/10.1109/SPW50608.2020.00027

[9] Nicolas Papernot, PatrickMcdaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,
and Ananthram Swami. 2016. The Limitations of Deep Learning in Adversarial
Settings. 2016 IEEE European Symposium on Security and Privacy (EuroS&P) (2016),
372–387.

[10] Pietro Pierpaoli, Magnus Egerstedt, and Amir Rahmani. 2015. Altering UAV flight
path by threatening collision. In 2015 IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC). 4A4–1–4A4–10. https://doi.org/10.1109/DASC.2015.7311414

[11] Pieter Spronck and Freek den Teuling. 2010. Player Modeling in Civilization
IV. In Proceedings of the Sixth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (Stanford, California, USA) (AIIDE’10). AAAI
Press, 180–185.

[12] Timo Steffens. 2003. Feature-based declarative opponent-modelling. In Robot
Soccer World Cup. Springer, 125–136.

[13] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1312.6199

[14] Laurens van der Maaten and Geoffrey Hinton. 2008. Viualizing data using t-SNE.
Journal of Machine Learning Research 9 (11 2008), 2579–2605.

[15] Akifumi Wachi. 2019. Failure-Scenario Maker for Rule-Based Agent using Multi-
agent Adversarial Reinforcement Learning and its Application to Autonomous

Driving. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial In-
telligence Organization, 6006–6012. https://doi.org/10.24963/ijcai.2019/832

[16] Ben G. Weber and Michael Mateas. 2009. A data mining approach to strategy
prediction. In 2009 IEEE Symposium on Computational Intelligence and Games.
140–147. https://doi.org/10.1109/CIG.2009.5286483

[17] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. 2021. Adversarial Pol-
icy Training against Deep Reinforcement Learning. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 1883–1900. https:
//www.usenix.org/conference/usenixsecurity21/presentation/wu-xian

https://github.com/openai/multiagent-competition
https://github.com/openai/multiagent-competition
https://adversarialpolicies.github.io/#videos
https://adversarialpolicies.github.io/#videos
https://doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1109/MITS.2019.2898964
https://doi.org/10.48550/ARXIV.1702.02284
https://doi.org/10.1109/SPW50608.2020.00027
https://doi.org/10.1109/SPW50608.2020.00027
https://doi.org/10.1109/DASC.2015.7311414
http://arxiv.org/abs/1312.6199
https://doi.org/10.24963/ijcai.2019/832
https://doi.org/10.1109/CIG.2009.5286483
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Methodology
	3.1 Instantaneous Classification
	3.2 Time-series Classification

	4 Results
	4.1 Instantaneous Classification
	4.2 Time-Series Classification
	4.3 In-Agent Classification
	4.4 Reacting

	5 Conclusion & Future Work
	A Related Codebases
	Acknowledgments
	References

